
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

Proposal of a Method to Measure Test Suite Quality
Attributes for White-Box Testing

Mochamad Chandra Saputra1, Tetsuro Katayama2
Dept. Materials and Informatics, Interdisciplinary Graduate School of Agriculture and Engineering,

University of Miyazaki, Miyazaki, Japan

Abstract—As an important asset in software testing,
measuring quality attributes of the test suite is important to
describe the quality of software. This research proposes a method
to measure the test suite quality attributes for white-box testing.
The attributes are usability, efficiency, reliability, functionality,
portability, and maintainability that are selected from 28
attributes in software quality. By using the proposed method, the
test suite quality attributes are calculated with various results of
level of quality. The result of test suite quality attribute
measurement then proves the validity of its result by the
reliability analysis. It is used Cohen’s kappa coefficient to
validating the result of test suite quality attributes measurement
based on the level of agreement between the result of
measurement and expert assessment. Reliability analysis on test
suite quality attribute finds the attribute that strongly related
based on the minimum percentage of level of agreement value are
usability, reliability and functionality. Hence, our proposed
method is useful to measure test suite quality attributes.

Keywords—Test case; test suite quality attributes; white-box
testing; reliability analysis; software quality

I. INTRODUCTION
The quality of software is confirmed by systematically

exercising the software in carefully controlled circumstances
especially in testing phase[1]. During the testing, test suite
which contains several test cases play a very important role to
check various aspects of the software such as actual program
structure and the software functions as per the
specification[2]. The test cases are usually developed by a set
of inputs, execution preconditions, and expected outcomes for
a specific objective. Testing in software development is one of
the ways to ensure quality of the software.

The main activity of software testing is verification and
validation[3]. In software development life cycle, verification
and validation aim is to help the software development build
software with good quality. Verification ensures the specific
function of the software is correctly implemented. Validation
ensures the software are suitable to customer requirement.
One of the software testing approaches is white-box. The
white-box testing approach aims to ensure that the program is
successfully tested based on the internal structures of the
software[4].

Software quality is defined as the whole of features and
characteristics of a product or service that able to satisfy stated
or implied user needs[1]. As an important asset in software
testing, measuring the quality of a test suite is important to
describe quality of the software. Software testing is one of the

quality approaches to control the program before its delivery
or installation at the user with an acceptable level of quality.
Various software quality attributes have been used on software
quality models to define the degree of quality. Software
quality attributes are multipurpose attributes that mean any
area of software development process can use the attributes.
Examining code programs by using the test suite is one of the
methods to assure their quality. Test suite quality
measurement is necessary to gain information on the test suite
performance.

The big problem with quality attributes is uncertainty
attributes and their measurement for informing the degree of
test suite quality. Currently, measuring the attributes of test
suite quality is one of the interesting problems in software
testing. The aim of test suite quality attributes measurement to
provide useful information about the degree of test suite
quality.

The objective of this research is to find and propose the
test suite quality attributes measurement and then validate its
measurement by the reliability analysis. The research concern
with quality attributes for test suite in white-box testing. The
research provides a questionnaire for the expert to assess the
test suite quality attribute based on their experience. The
reliability analysis uses Cohen’s kappa coefficient approach.
Cohen’s kappa coefficient is used to analyze the reliability of
test suite quality from test suite quality attributes measurement
result and expert assessment. The level of agreement is
presenting the reliability of the test suite quality attributes
measurement with the expert assessment. This research uses
only the test suite for white-box testing. The results of the
reliability analysis are the test suite quality attributes that have
strongly agreed to the quality of the test suite.

The rest of the paper is organized as follows. Section 2
describe the highlight work done by others that somehow ties
in with this research. Section 3 describes the principle and
formula to measure test suite quality attributes. Section 4
describes the reliability analysis of test suite quality attribute
by using Cohen’s kappa coefficient. Section 5 describes the
research methodology to validate the test suite quality
attributes by using the level of agreement between the result of
the measurement and expert assessment. Section 6 describes
for experimental activity and its result. Section 7 explains the
result of the questionnaire to test suite quality attributes
measurement. Section 8 describes the conclusion and future
work of the research.

286 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

II. RELATED WORKS
Test suite consists of a set of test scripts or test procedures

known as test case to be executed in a specific test run[2]. Test
script in test suite is related to the test case that consists of
expected results based on the inputs. The difficulties in
software testing quality especially in white-box testing
approach vary depending on the size and complexity of the
program being tested[5]. It was a great idea to measuring the
degree of test suite quality by using the attributes from
software quality. Several studies have been reported in the
scope of quality attributes of test case that focus on increasing
the testing effectiveness consider to mutation testing[6]. The
usability especially identification error with effective and
efficient is important to enhance software quality[7][8].
Efficiency of test suite is related to number of redundant test
cases in the test suite and reducing redundant test cases
possible to improve the efficiency in testing[9]. Reliability is
considered to number of mutants because the result on
mutants coverage could be used to find the true reliability of a
program[10][11]. Functionality in the testing approach is to
ensure the method in the program satisfies functional
requirements and assesses the quality itself[12]. The study on
test suite reusability is related to portability has been reported
that in the test suite reuse effective at discovering and
repairing bugs inserted during pragmatic reuse[13]. Reducing
number of test cases and ability of the test cases reused to
examine another object should be considered to improve the
maintainability[14][15].

With respect to previous work, this research analyzes the
quality attributes for test suite to ensure the quality of the test
suite. As we already introduced, this proposal a method to
measure the test suite quality attributes is adopted the quality
attributes from software quality which related to test suite,
especially in white-box testing approach.

III. TEST SUITE QUALITY ATTRIBUTES
Software quality defines as the degree of software,

component, or process to establish the customer requirement
under specific conditions[2]. Successful software testing
activity is achieved by collaborative activity between testing
activity and quality assurance activities[16]. One of the
important assets in testing activity is test suite. Software
quality has many approaches such as McCall’s Model (1977),
Boehm’s Quality Model (1978), ISO 9126 Standard Quality
Model (1986), FURPS (1987), FURPS+ (2000), Capability
Maturity Model (CMM 1991), Ghezzi Model (1991), IEEE
Model (1993), Dromey’s Quality Model (1995), SATC’s
Quality Model (1996), Bansiya’s QMOOD Model (2002),
Aspect-Oriented Software Quality Model (2006), Component-
based Software development Quality Model (2008),
DEQUALITE Model (2009), Sehra S. K Model (2011) and
SQuaRE’s Model (2011)[17].

Software quality attributes are multipurpose attributes that
mean any area of software development process can use the
attributes. Examining code programs by using the test suite is
one of the methods to assure their quality. The most used
attributes on the software quality model are usability,
efficiency, reliability, functionality, portability, and
maintainability that selected from 28 attributes. The principle

of test suite quality attributes on white-box testing in this
research is related to the software quality principle. The
research proposes the following formula and definition for test
suite quality attributes. To simplify the formula, the research
uses the following notation.

• SRTC : Successful Reused Test Cases

• DCC : Distinct Code Coverage

• OT : Objects Tested

• NOLOC : Number of Original Line of code

• NOTC : Number of Test Cases

• NOMut : Number of Mutants

• NOMutK : Number of Mutants Killed

• NOR : Number of Redundant Test Cases

• NOMet : Number of Method

• NOMetExec : Number of Method Executed

The parameters for measuring the test suite quality
attributes are gathering from the test suite examination that
enhances the accuracy of test suite quality measurement. The
result of test suite quality attribute measurement is numerical
which ranges from 0 to 1. The experiment assumes that the
test suite quality attribute has three levels of quality such as
low, medium, and high. The result of test suite quality
attributes divided into those three levels which begin from 0 –
0.33 for low quality, 0.34 – 0.66 for medium quality, and 0.67
– 1 for high quality. One of the criteria of good test cases in
the test suite related to white box testing is that the test cases
can achieve 100% code coverage. The test suite quality
attribute measurement additionally considers code coverage
on its measurement.

1) Usability as test suite quality attribute: Usability
defines as the degree of a program able to be used by specified
users to achieve specified goals with effectiveness, efficiency,
and satisfaction in a specified context of use[18]. The research
assumes that the test suite usability should consider for the
effectiveness and efficiency related to previous definition. In
other words, test suite usability defines as the extent to test
suite is successfully examine program by the software tester to
guarantee that all statements have been exercised at least once
and validate the internal data structure with effectiveness and
efficiency. By using the notation, the formula for test suite
usability as follows.

𝑇𝑒𝑠𝑡 𝑆𝑢𝑖𝑡𝑒 𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = �1−(NOR/NOTC)�+(𝐷𝐶𝐶/𝑁𝑂𝐿𝑂𝐶)
2

 (1)

2) Efficiency as test suite quality attribute: Efficiency
defines as the capability of the software product to provide
appropriate performance, relative to the number of resources
used under stated conditions[2]. Number of resources in the
case of test suite is related to number of test cases. Redundant
test cases in the test suite are one of the problems that can
reduce efficiency value. The previous research conducted the

287 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

identification and elimination process of redundant test cases
in the test suite[19]. The efficiency in this research is related
to the degree of redundancy of test cases on the test suite. The
test suite efficiency defines as the level of test suite
redundancy to complete a certain task. The redundant test
cases exist when both of the two test cases are executed in the
same lines of code. By using the notation, the formula for test
suite efficiency as follows.

𝑇𝑒𝑠𝑡 𝑆𝑢𝑖𝑡𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = �1 − (𝑁𝑂𝑅/𝑁𝑂𝑇𝐶)� (2)

3) Reliability as test suite quality attribute: Reliability
defines as the ability of the software to operating required
functions in specific conditions and time, or number of
operations[2]. One of the causes of the inability of the
software product to perform a required function is mutant.
Mutants define as changed/mutated statements of the source
code. The capability of the test cases kills the mutants to
ensure the quality of test cases in terms of reliability. Test
suite reliability is defined as the probability of test cases in the
test suite killed the mutants in testing that consider to its
coverage. By using the notation, the formula for test suite
reliability as follows.

𝑇𝑒𝑠𝑡 𝑆𝑢𝑖𝑡𝑒 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑁𝑂𝑀𝑢𝑡
𝑁𝑂𝑀𝑢𝑡𝐾

 (3)

4) Functionality as test suite quality attribute: The
functionality defines as the capability of the software to
perform functions that are related to user requirements with
specific conditions[2]. The research analyzes the terms
function in Java program related to the white-box testing is a
method that also considers the coverage of the test suite. The
test suite functionality is defined as the capability of test cases
on the test suite to performs the behavior of the program. The
test suite has performed the behavior of the java program
when a high number of the method examines by the test suite.
The formula for test suite functionality measurement as
follows.

𝑇𝑒𝑠𝑡 𝑆𝑢𝑖𝑡𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑜𝑛𝑎𝑙𝑖𝑡𝑦 = 𝑁𝑂𝑀𝑒𝑡𝐸𝑥𝑒𝑐
𝑁𝑂𝑀𝑒𝑡

 (4)

5) Portability as Test Suite Quality Attribute: Portability
defines as the capability of software that can be reused from
one hardware or software environment to another[2]. Test
suite portability is defined as the capability of the test cases in
the test suite to run on a new program without change.
Portability is related to the degree of reusability of test suite.
The test suite reusability defines as the capability of test cases
in the test suite to examine several or all paths of method that
should be tested on diverse objects.

This research uses the clones of Banker's Algorithm with
code clones type 1, 2, 3, and 4 [20][21]. The test suite
portability measurement is applied on code clones because the
portability of the test cases in the test suite needs to use the
same characteristic of input for the program. Code clone type
1 (exact clones) are identical clones with no differences with
original code. Code clone type 2 which the differences from

the original code are renamed identifiers, literals, types,
layout, and comments but the structurally and syntactically are
similar. Code clones type 3 are modified the statement such as
statement insertions/deletions in addition to changes in
identifiers, literals, types, and layouts. Code clone type 4 has
been modified on code fragments to perform the same
objective but different syntactic variants. By using the
notation, the formula for test suite reusability as follows.

𝑇𝑒𝑠𝑡 𝑆𝑢𝑖𝑡𝑒 𝑃𝑜𝑜𝑟𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = ∑𝑆𝑅𝑇𝐶+∑𝐷𝐶𝐶
(∑𝑂𝑇×∑𝑇𝐶)+∑𝑁𝑂𝐿𝑂𝐶

 (5)

6) Maintainability as test suite quality attribute:
Maintainability defines as the capability of software to be
modified for correct defects, meet new requirements, make
future maintenance easier, or adapted to a changing
environment with less effort to maintain[2]. Test suite
maintainability is related to the capability of the test suite that
suitable to test another program with less effort to maintain by
avoiding redundant test cases. The maintainability considers to
reusability and efficiency(non-redundant test cases) of the test
suite. By using the notation, the formula for test suite
maintainability as follows.

𝑇𝑒𝑠𝑡 𝑆𝑢𝑖𝑡𝑒 𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦

=  
1 − (𝑁𝑂𝑅/𝑁𝑂𝑇𝐶) + � ∑𝑆 𝑅𝑇𝐶 + ∑𝐷 𝐶𝐶

(∑𝑂𝑇 × ∑𝑇 𝐶) + ∑𝑁𝑂𝐿𝑂𝐶�

2 (6)

IV. RELIABILITY ANALYSIS
Reliability analysis in this research is to validate the

formulas of test suite quality attributes measurement.
Validation of those formulas is to observe the result with the
real condition based on the expert assessment. Reliability
analysis objective is to validate the level of agreement from
the result of measurement to the expert [22]. The validation
refers more specifically to the consistency of measurement
that involves the expert.

Cohen’s kappa coefficient is generally for assessing
agreement between raters. Cohen defined the coefficient as
“the proportion of chance-expected disagreements which do
not occur, or the proportion of agreement after chance
agreement is removed from consideration”[23]. Cohen’s
Kappa has used a quantitative measurement of reliability for
two raters that are rating the same thing, corrected for how
often that the raters may agree by chance. The formula for
Cohen’s kappa coefficient as follows.

𝑘 = 𝑝0−𝑝𝑐
1 − 𝑝𝑐

 (7)

where,

p0 = the proportion of units for which the judges agreed
(relative observed agreement among raters)

pc = the proportion of units for which agreement is
expected by chance (chance-expected agreement)

288 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

TABLE I. COHEN’S KAPPA CONTINGENCY MATRIX

Rater 1

Category 1 Category 2

Rater 2

Category
1

a: number of
agreements on category
1
P(a) = a/N

b: number of
disagreements (judge 1
and category 2, and
judge 2 and category 1)
P(b) = b/N

Category
2

c: number of
disagreements (judge 1
and category 1, and
judge 2 and category 2)
 P(c) = c/N

d: number of agreements
on category 2
P(d) = d/N

TABLE II. COHEN’S KAPPA INTERPRETATION

Kappa Statistic Strength of Agreement

<0.00 Poor

0.00 – 0.20 Slight

0.21 – 0.40 Fair

0.41 – 0.60 Moderate

0.61 – 0.80 Substantial

0.81 – 1.0 Almost Perfect

Distribution of the frequency for two raters on Cohen’s
kappa coefficient is represented by the contingency matrix as
shown in Table I [23]. Based on Cohen’s kappa contingency
matrix, p𝑜𝑜 and pc are calculated as follows:

po=P(a)+P(d)

pc=Pcategory1+Pcategory2

Pcategory1=(P(a)+P(c))*(P(a)+P(b))

Pcategory2=(P(b)+P(d))∗(P(c)+P(d))

The value of Cohen’s kappa coefficient is positive when
the value greater-than-chance agreement and negative when
less-than-chance agreement. The maximum value for Cohen’s
kappa coefficient is +1.0. Its value related to the strength of
agreement as shown in Table II.

V. RESEARCH METHODOLOGY
This section explains the research methodology to measure

the test suite quality attributes and then validate the result by
using the reliability analysis. The reliability analysis is used
Cohen’s kappa coefficient to validate the result of test suite
quality measurement based on the level of agreement from the
result of measurement and expert assessment. Fig. 1 shows the
test suite quality attributes measurement and validation
activity that consists of two main activities such as test suite
profiling for test suite quality measurement and expert
assessment for validating the result of measurement.

A. Proposed Test Suite Quality Measurement Activity
The objective of test suite profiling is to collect the

important and useful information of the test cases in the test
suite for the test suite quality attributes measurement in white-
box testing. Test suite profiling uses the Java program and
given test suites then running the test suite which has been
implemented on Junit to test the Java program and the result is
test suite information. The test suite information contains such
as follow.

Fig. 1. Test Suite Quality Attributes Measurement and Validation Activity.

a) Number lines of code,
b) Number lines code executed,
c) Number of test cases,
d) Distinct lines of code executed,
e) Number of mutants
f) Number of mutants killed by the test suite
g) Number of methods
h) Number of method executed.

Test suite information uses to calculate test suite quality
attributes. Test suite quality attributes calculated in this
research is usability, efficiency, reliability, functionality,
portability, and maintainability. The result of the calculation is
the score and level for test suite quality attributes.

B. Validation
Validation aims to prove the validity of test suite quality

attributes measurement results with expert assessment. The
expert assessment activity objective is to assess the quality of
the test suite based on the experience from the expert. The
questionnaire contains information and question that should
answer by the expert such as how long the experience in
software engineering and his work. The questionnaire
provides information such as the explanation for test suite
quality attributes, Java program and given test suites, and the
result of test suite examination. The expert answers the
question of test suite quality attributes assessment based on
their experience, and knowledge. The expert assesses the
quality of the test suite by choosing the level of quality such as
low, medium, and high quality.

The level of test suite quality attribute from the test suite
quality attributes measurement and expert assessment then
analyze the reliability by using Cohen’s kappa coefficient. The
profiling and expert assessment for test suite quality attributes
are used the same dataset. Cohen’s Kappa coefficient and
percentage of agreement are used to measure the level of
agreement for test suite quality attributes. The result of
measurement is the value of Cohen’s kappa coefficient and
percentage of agreement from test suite quality attributes
measurement and expert assessment.

289 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

VI. THE EXPERIMENT
The purpose of the experiment is to collect the test suite

information for test suite quality attributes measurement for
white-box testing. The result of measurement then validates
the level of agreement from the result of measurement by
using the result of expert assessment.

A. Dataset
The experiment uses Banker’s Algorithm Java program as

shown in Fig. 2 and given two test suites for the dataset as
shown in Table III that contains the number of test case (TC),
input data, and expected output. Banker’s Algorithm is
developed by Dijkstra for resource allocation and deadlock
avoidance algorithm[11], [24]. The number of test cases is
seven for each test suite. The test suites are implemented on
Junit to examine the Banker’s Algorithm. The test suite
mutants information gains by using PIT mutation testing
tool[25] and Junit for code coverage information.

B. Experiment Works
The Banker’s Algorithm java program is examined by the

given test suites in which test cases implemented in Junit. The
test suite examination result is code coverage information and
mutation coverage for profiling the test suite. The code
coverage information for each test suite is collected by
executing the Junit in Eclipse IDE that presents the
information of lines of code executed by the test case in the
test suite and percentage of code coverage.

The test suite mutants information is collected by using
PIT mutation testing tool. PIT mutation testing tool are greatly
manipulated bytecode to generates mutants and examine the
test suite or test case to know the capability of the test suite to
kill the mutants[25]. The mutants are killed by the test case in
the test suite by showing different behaviour, and live when
they are not. The ratio of mutants in the test suite is calculated
in PIT mutation testing tool. The ratio of mutants is calculated
by the mutants killed over the total number of mutants. The
mutation score is used in test suite reliability measurement by
combining with code coverage. Test suite quality attributes
such as usability, efficiency, reliability, functionality,
portability, and maintainability are calculated by using the
formula that explains in Section 2.

The experiment uses the questionnaire to gathering the test
suite quality attributes information from the expert
assessment. The questionnaire contains the introduction and
aims of the test suite quality attribute assessment, dataset,
result of the test suites execution, and summary of the test
suites examination. The question is focused on assessing an
aspect of the level of test suite quality attributes from an
expert view with seven questions. They are designed from the
definition of test suite quality attributes and the result of all
test suites examination. An example of the question is as
follows.

Fig. 2. Java Program for Banker’s Algorithm.

public class Banker {
private final int need[][], allocate[][], max[][], avail[][], np, nr;
public Banker(int[][] need, int[][] allocate, int[][] max, int[][] avail, int np, int nr) {
 if (need.length != np || allocate.length != np || max.length != np || avail.length != 1|| need[0].length != nr ||
allocate[0].length != nr || max[0].length != nr || avail[0].length != nr) {
 throw new IllegalArgumentException("The matrices should have \"np\" rows and \"nr\" columns. \"avail\" should have only one
row.");}
 this.need = need;
 this.allocate = allocate;
 this.max = max;
 this.avail = avail;
 this.np = np;
 this.nr = nr;}
 private int[][] calc_need() {
 for (int i = 0; i < np; i++) {
 for (int j = 0; j < nr; j++) {
 need[i][j] = max[i][j] - allocate[i][j];}
 }
 return need;}
 private boolean check(int i) {
 for (int j = 0; j < nr; j++) {
 if (avail[0][j] < need[i][j]) {
 return false;}
 }
 return true;}
 public boolean isSafe() {
 calc_need();
 boolean done[] = new boolean[np];
 int j = 0;
 while (j < np) {
 boolean allocated = false;
 for (int i = 0; i < np; i++) {
 if (!done[i] && check(i)) {
 for (int k = 0; k < nr; k++) {
avail[0][k] = avail[0][k] - need[i][k] + max[i][k];}
 System.out.println("Allocated process : " + i);
 allocated = done[i] = true;
 j++;}
}
 if (!allocated) {
 break;}
}
return j == np;}
}

290 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

TABLE III. TEST SUITES OF BANKER’S ALGORITHM

Test Suite-1

TC-1
Input data

int[][] intArray0 = new int[1][1];
int[][] intArray1 = new int[1][1];
int[] intArray2 = new int[1];
intArray2[0] = 1;
intArray1[0] = intArray2;

Test Suite-2

TC-1
Input data int[][] intArray0 = new int[1][1];

int[][] intArray1 = new int[1][6];

Expected Output True or false for method isSafe() Expected Output fail("Expecting exception:
IllegalArgumentException")

TC-2
Input data

int[][] intArray0 = new int[1][1];
int[] intArray1 = new int[1];
intArray1[0] = 1;
intArray0[0] = intArray1; TC-2

Input data

int[][] intArray0 = new int[1][1];
int[][] intArray1 = new int[1][1];
int[] intArray2 = new int[9];
intArray1[0] = intArray2;

Expected Output True or false for method isSafe() Expected Output fail("Expecting exception:
IllegalArgumentException")

TC-3
Input data int[][] intArray0 = new int[1][6];

TC-3
Input data int[][] intArray0 = new int[0][6];

Expected Output True or false for method isSafe() Expected Output fail("Expecting exception:
IllegalArgumentException")

TC-4
Input data Banker banker0 = null;

TC-4
Input data int[][] intArray0 = new int[1][6];

int[][] intArray1 = new int[3][0];

Expected Output True or false for method isSafe() Expected Output fail("Expecting exception:
IllegalArgumentException")

TC-5
Input data int[][] intArray0 = new int[0][6];

int[][] intArray1 = new int[1][0]; TC-5
Input data

int[][] intArray0 = new int[0][6];
int[][] intArray1 = new int[1][0];
int[][] intArray1 = new int[1][0];

Expected Output True or false for method isSafe() Expected Output fail("Expecting exception:
IllegalArgumentException")

TC-6
Input data

int[][] intArray0 = new int[1][1];
int[][] intArray1 = new int[1][1];
int[] intArray2 = new int[1];
intArray2[0] = 1;
intArray0[0] = intArray2;

TC-6
Input data int[][] intArray0 = new int[1][6];

Expected Output True or false for method isSafe() Expected Output fail("Expecting exception:
IllegalArgumentException")

TC-7

Input data

int[][] intArray0 = new int[1][1];
int[][] intArray1 = new int[1][1];
int[] intArray2 = new int[9];
intArray1[0] = intArray2; TC-7

Input data int[][] intArray0 = new int[11][6];

Expected Output fail("Expecting exception:
IllegalArgumentException") Expected Output fail("Expecting exception:

IllegalArgumentException")

“The efficiency of test suite usability in this research is
related to the degree of redundancy of test cases on the test
suite. The test suite efficiency defines as the level of test suite
redundancy to complete a certain task. The redundant test
cases exist when both of the two test cases are executed in the
same lines of code.

Based on the definition and the summary of test suites
examination, what is the degree of test suite efficiency for test
suite 1 and test suite 2?”.

The expert will choose one answer such as low, medium,
high for each test suite. The questionnaire collects the personal
information of the expert like name, kind of experience in
software engineering. Result of the questionnaire is presenting
the level of each test suite quality attributes of every test suite.

TABLE IV. RESULT OF TEST SUITE INFORMATION

Test Suite Information Test
Suite-1

Test
Suite-2

Number lines of code 33 33

Distinct lines of code executed 33 3

Number of test cases 7 7

Number of mutants 41 41

Number of mutants killed 32 3

Number of methods 4 4

Number of methods executed 4 1

Number of object reused test suite(test cases) 4 4

Number of successful reused test cases for all
object tested 28 28

Number of redundant test cases 3 6

291 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

TABLE V. RESULT OF TEST SUITE QUALITY ATTRIBUTES MEASUREMENT

Test Suite
Quality
Attributes

Test Suite-1 Test Suite-2

Score
Test Suite
Quality
Attribute Level

Score
Test Suite
Quality
Attributes Level

Usability 0.79 High 0.12 Low

Efficiency 0.57 Medium 0.14 Low

Reliability 0.78 High 0.07 Low

Functionality 1.00 High 0.25 Low

Portability 1.00 High 0.51 Medium

Maintainability 0.79 High 0.33 Low

Fig. 3. Expert Time Experiences in Software Engineering.

The result of level test suite quality attributes and expert
assessment is used to calculate the level of agreement by using
Cohen’s kappa coefficient and percentage of agreement. The
contingency matrix for Cohen’s kappa coefficient contains
several conditions. True positive condition is the total number
of instances that both raters said correct. False positive
condition is the total number of instances that the result of test
suite quality attribute measurement said incorrect, but experts
said correct. False negative condition is the total number of
instances that the result of test suite quality attribute
measurement said correct, but the experts said incorrect. True
negative condition is the total number of instances that both
the result of test suite quality attribute measurement and the
experts said incorrect. The value in the contingency matrix is
used to calculate Cohen’s kappa.

The percentage of agreement is calculated based on
comparison data from the result of the level of test suite
quality attributes measurement and expert assessment. Criteria
of the match agreement if the result from the expert is the
same as the measurement. The result from Cohen’s kappa
coefficient and percentage of agreement is to enrich the
analysis of reliability in test suite quality attributes.

C. Experiment Result
The dataset from Banker’s Algorithm and given test suites

then examines by using Junit and PIT mutation testing tool,
the result of test suite information is shown in Table IV. The
test suite information consists of the number of lines of code,
number of lines executed by the test case, distinct number of
lines executed, number of methods, and number of method
executed. Table V shows the result of test suite quality
attributes measurement for usability, efficiency, reliability,
functionality, portability, and maintainability by using the
formula in Section 2 and their quality level.

The level of agreement is analyzing by Cohen’s kappa
coefficient and percentage of agreement. The Cohen’s kappa
coefficient in this research is to present the degree of
agreement. The percentage of agreement is to enhance
detailed information about the percentage of test suite quality
attributes agreement. The number of experts is ten with
different year experiences as shown in Fig. 3. Most of the
experts have experience 3-5 years in software engineering.
Time experience in software engineering from the expert helps
to answer the question.

Calculation of Cohen’s kappa coefficient uses the value of
true positive, false positive, false negative, and true negative
on contingency matrix from the result of the questionnaire as
shown in Table VI. The percentage of agreement is measured
with the proportion of experts who respond that identical or
similar, lower or higher than the result of test suite quality
attributes measurement as shown in Table VII. Similar terms
in Table VII means that the result from the expert is the same
as the measurement result, lower means that the result from
the expert is lower than the measurement result, and higher
means that the result from the expert is higher than the
measurement result.

TABLE VI. CONTINGENCY MATRIX FOR ALL TEST SUITE AND EACH TEST SUITE

Cohen’s Kappa Coefficient

All Test Suite Test Suite -1 Test Suite-2

 Expert Expert Expert

Measurement Yes No Total Measurement Yes No Total Measurement Yes No Total

Yes 31 40 71 Yes 28 4 32 Yes 4 37 41
No 29 20 49 No 20 6 26 No 1 19 20
Total 60 60 120 Total 48 10 58 Total 5 56 61
Po 0.425 Po 0.586 Po 0.377
Pc 0.5 Pc 0.533 Pc 0.356

Kappa -0.15 Less than Chance
Agreement Kappa 0.112 Slight Agreement Kappa 0.032 Slight Agreement

292 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

TABLE VII. RESULT OF PERCENTAGE OF AGREEMENT FOR ALL TEST SUITE AND EACH TEST SUITE

Quality Attributes
Similar Lower Higher
Total Percentage Total Percentage Total Percentage

Usability 11 55% 6 30% 3 15%
Efficiency 6 30% 1 5% 7 35%
Reliability 10 50% 3 15% 7 35%
Functionality 13 65% 2 10% 5 25%
Portability 8 40% 7 35% 9 45%
Maintainability 4 20% 7 35% 9 45%
All Attributes 52 43% 26 22% 40 33%

VII. DISCUSSION
This section provides implications from the result of the

questionnaire to test suite quality attributes measurement. The
Cohen’s kappa coefficient result for all test suites is – 0.15
which means less than chance agreement or no agreement as
shown in Table VI. Negative value of Cohen’s kappa
coefficient is represented great disagreement between
measurement and experts. Disagreement means that the
observed agreement is less than chance agreement. There is no
strict lower value for the kappa coefficient and its meaning.
The weakness for a negative value of kappa has no fixed
threshold for a lower value that difficult to have suitable
interpretation from the assessment especially on the level of
agreement.

The kappa coefficient is measured for each test suite.
Table VI shows the result of kappa coefficient is 0.112 for test
suite 1 and 0.032 for test suite 2 which has similar meaning is
slight agreement. The slight agreement means that condition is
needed to consider the result from the experts and
measurements. Interpretation of the kappa coefficient for
indicated the good agreement is not easy because in the terms
of accuracy from a single kappa analysis itself.

The research analyzes that level of agreement by kappa
coefficient is incompleted to represent the level of agreement
between test suite quality attributes measurement and expert
assessment. This research uses the percentage of agreement to
complete the analysis. The percentage of agreement has
improved the result of positive value of kappa coefficient.
Table VII shows the percentage of agreement for all and each
test suite quality attribute.

The result from all quality attributes measurement and the
expert shows that 46% are similar to the test suite quality
attributes measurement which means that the expert 46%
agree with the principle of test suite quality attributes
measurement. The highest attribute which similar is reliability
with a percentage of 70%. The lowest attribute which similar
is maintainability with a percentage of 20%.

The result of test suite quality attributes measurement for
each test suite and expert assessment are confirmed for slight
agreement. This result is approved by the result of the
percentage of agreement. The research assumes that the level
of agreement is strongly agreed when the percentage of the
agreement greater than or equal to 50%. The result shows that
usability with 55%, reliability with 50%, and functionality
65% which means that strongly agreed.

VIII. CONCLUSION AND FUTURE WORK
This research investigated the quality attributes for test

suite based on the attributes of software quality. The attributes
are usability, efficiency, reliability, functionality, portability,
and maintainability that are selected from 28 attributes in
software quality. The test suite quality attributes measurement
uses the result of test suite examination as parameters and
input. The experiment uses the Banker’s Algorithm by using
given two test suites. The result of test suite quality attributes
measurement is presented by score and level of quality as the
degree of test suite quality.

The experiment uses reliability analysis to prove the
validity of test suite quality attributes measurement. The
reliability analysis uses Cohen’s kappa coefficient and
percentage of agreement. Cohen’s kappa coefficient analyzes
the reliability of test suite quality based on test suite quality
attributes measurement result and expert assessment. The
result of Cohen’s kappa coefficient measurement is – 0.15 for
all test suites, 0.112 for test suite 1, and 0.032 for test suite 2.
The result of test suite quality attributes measurement for each
test suite is confirmed for slight agreement. This result is
approved by using the result of the percentage of agreement.
The research assumes that the level of agreement is strongly
agreed when the percentage of the agreement greater than or
equal to 50%. The result shows that usability with 55%,
reliability with 50%, and functionality 65% which means that
strongly agreed. Hence, our proposed method is useful to
measure test suite quality attributes.

Our approach is a method to measure test suite quality
attributes for white box testing which is specifically contained
usability, efficiency, reliability, functionality, portability, and
maintainability as attributes. In the future, it's important to
consider the weight of each test suite quality attribute to define
a formula that can measure test suite quality more accurately.

REFERENCES
[1] Lovely Professional University, Software Testing and Quality

Assurance. New Delhi: Excel Books Private Limited, 2012.
[2] International Software Testing Qualifications Board (ISTQB), “Standard

Glossary of Terms used in Software Testing Version 3.5,” 2020.
[3] P. D. Roger S. Pressman, Software Engineering: A Practitioner’s

Approach, 7th ed. New York: McGraw-Hill, 2009.
[4] I. Sommerville, “Software Engineering 9th Edition., USA: Addison-

Wesley Publishing Company, 133–170. 2010.
[5] Z. Nayyar, N. Rafique, N. Hashmi, N. Rashid, and S. Awan, “Analyzing

Test Case Quality with Mutation Testing Approach,” Proc. 2015 Sci.
Inf. Conf. SAI 2015, pp. 902–905, 2015.

293 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

[6] G. Grano, “A new dimension of test quality: Assessing and Generating
Higher Quality Unit Test Cases,” Proc. 28th ACM SIGSOFT Int. Symp.
Softw. Test. Anal., pp. 419–423, 2019.

[7] M. M. Ali-Shahid and S. Sulaiman, “A Case Study on Reliability and
Usability Testing Of A Web Portal,” in 2015 9th Malaysian Software
Engineering Conference (MySEC), 2015, no. June, pp. 31–36.

[8] F. A. Muqtadiroh, H. M. Astuti, E. W. T. Darmaningrat, and F. R.
Aprilian, “Usability Evaluation to Enhance Software Quality of Cultural
Conservation System Based on Nielsen Model (WikiBudaya),” Procedia
Comput. Sci., vol. 124, pp. 513–521, 2017.

[9] R. Ibrahim, M. Ahmed, R. Nayak, and S. Jamel, “Reducing Redundancy
of Test Cases Generation Using Code Smell Detection and Refactoring,”
J. King Saud Univ. - Comput. Inf. Sci., vol. 32, no. 3, pp. 367–374,
2020.

[10] A. Dimov, S. K. Chandran, S. Punnekkat, A. Nasir, and N. Azam,
“Mutation Testing Framework for Software Reliability Model Analysis
and Reliability Estimation,” 6th Central and Eastern European Software
Engineering Conference (CEE-SECR), pp. 163–169. 2010.

[11] G. Guizzo, F. Sarro, and M. Harman, “Cost Measures Matter for
Mutation Testing Study Validity,” Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 1127–
1139. 2020.

[12] Z. Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic Testing for
Software Quality Assessment: A Study of Search Engines,” IEEE Trans.
Softw. Eng., vol. 42, no. 3, pp. 264–284. 2016.

[13] S. Makady and R. J. Walker, “Debugging and Maintaining
Pragmatically Reused Test Suites,” Inf. Softw. Technol., vol. 102, no.
March 2017, pp. 6–29, 2018.

[14] H. Ghandorh, A. Noorwali, A. B. Nassif, L. F. Capretz, and R. Eagleson,
“A Systematic Literature Review for Software Portability
Measurement,” Proceedings of the 2020 9th International Conference on
Software and Computer Applications, pp. 152–157. 2020.

[15] D. Pfluger et al., “The Scalability-Efficiency/Maintainability-Portability

Trade-Off in Simulation Software Engineering: Examples and a
Preliminary Systematic Literature Review,” in 2016 Fourth International
Workshop on Software Engineering for High Performance Computing in
Computational Science and Engineering (SE-HPCCSE), pp. 26–34.
2016.

[16] I. C. Society, Guide to the Software Engineering Body of Knowledge
Version 3.0 (SWEBOK Guide V3.0).

[17] Suman and W. Manoj, “A Comparative Study of Software Quality
Models,” Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 4, pp. 1-8. 2014.

[18] ISO-Comitte, International Standard - ISO 9241-210. 2010.
[19] M. C. Saputra, T. Katayama, Y. Kita, H. Yamaba, K. Aburada, and N.

Okazaki, “Test Cases Redundant Elimination on Code Coverage Uses
Distance and Correlation Measurement Method,” Proc. Int. Conf. Artif.
Life Robot., vol. 25, pp. 755–758. 2020.

[20] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,
“Comparison and Evaluation of Clone Detection Tools,” IEEE Trans.
Softw. Eng., vol. 33, no. 9, pp. 577–591, Sep. 2007.

[21] C. K. Roy and J. R. Cordy, “Survey on Software Clone Detection
Research,” in Technical Report No. 2007-541, 2007.

[22] R. T. Lange, “Inter-rater Reliability,” in Encyclopedia of Clinical
Neuropsychology, J. S. Kreutzer, J. DeLuca, and B. Caplan, Eds. New
York, NY: Springer New York, pp. 1348–1348. 2011.

[23] J. Pérez, J. Díaz, J. Garcia-Martin, and B. Tabuenca, “Systematic
Literature Reviews in Software Engineering Enhancement of The Study
Selection Process Using Cohen’s Kappa Statistic,” J. Syst. Softw., vol.
168, p. 110657. 2020.

[24] “GitHub - iguit0/BankersAlgorithm: Dijkstra’s famous algorithm.”
[Online]. Available: https://github.com/iguit0/BankersAlgorithm.
[Accessed: 08-Apr-2021].

[25] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque,
“Demo: PIT A Practical Mutation Testing Tool for Java (demo),” in
Proceedings of the 25th International Symposium on Software Testing
and Analysis, 2016, pp. 449–452.

294 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Works
	III. Test Suite Quality Attributes
	1) Usability as test suite quality attribute: Usability defines as the degree of a program able to be used by specified users to achieve specified goals with effectiveness, efficiency, and satisfaction in a specified context of use[18]. The research assume�
	2) Efficiency as test suite quality attribute: Efficiency defines as the capability of the software product to provide appropriate performance, relative to the number of resources used under stated conditions[2]. Number of resources in the case of test sui�
	3) Reliability as test suite quality attribute: Reliability defines as the ability of the software to operating required functions in specific conditions and time, or number of operations[2]. One of the causes of the inability of the software product to pe�
	4) Functionality as test suite quality attribute: The functionality defines as the capability of the software to perform functions that are related to user requirements with specific conditions[2]. The research analyzes the terms function in Java program r�
	5) Portability as Test Suite Quality Attribute: Portability defines as the capability of software that can be reused from one hardware or software environment to another[2]. Test suite portability is defined as the capability of the test cases in the test �
	6) Maintainability as test suite quality attribute: Maintainability defines as the capability of software to be modified for correct defects, meet new requirements, make future maintenance easier, or adapted to a changing environment with less effort to ma�

	IV. Reliability Analysis
	V. Research Methodology
	A. Proposed Test Suite Quality Measurement Activity
	a) Number lines of code,
	b) Number lines code executed,
	c) Number of test cases,
	d) Distinct lines of code executed,
	e) Number of mutants
	f) Number of mutants killed by the test suite
	g) Number of methods
	h) Number of method executed.

	B. Validation

	VI. The Experiment
	A. Dataset
	B. Experiment Works
	C. Experiment Result

	VII. Discussion
	VIII. Conclusion and Future Work
	References

