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Abstract—Point clouds are a popular way to represent 3D
data. Due to the sparsity and irregularity of the point cloud
data, learning features directly from point clouds become complex
and thus huge importance to methods that directly consume
points. This paper focuses on interpreting the point cloud inputs
using the graph convolutional networks (GCN). Further, we
extend this model to detect the objects found in the autonomous
driving datasets and the miscellaneous objects found in the
non-autonomous driving datasets. We proposed to reduce the
runtime of a GCN by allowing the GCN to stochastically sample
fewer input points from point clouds to infer their larger
structure while preserving its accuracy. Our proposed model offer
improved accuracy while drastically decreasing graph building
and prediction runtime.
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I. INTRODUCTION

Autonomous vehicles are becoming the future of mobility,
supported by advances in deep learning techniques. Point cloud
learning has lately attracted increasing attention due to its
wide applications in many areas, such as computer vision,
autonomous driving, and robotics. Recent advances in graph
convolution networks suggest that graph representations could
provide better features for point cloud processing. Graphs are
one of the most common data structures in the analysis and
storage of the real-world data-modeling of social networks,
roads, etc. However, the amount of work devoted for develop-
ing the neural network models to process graphs has not been
proportional to the amount of data available for such analysis.
In the past couple of years, some researchers have looked at
generalizing current neural network models to process arbitrary
graphs, some of which we will briefly summarize later in this
section. Thomas et al. [1] offers a brief overview of GCNs and
the architecture is shown in Fig. 1. In essence, most GCNs
have a universal architecture and their convolutional nature
arises from sharing filter parameters over all graph locations.

The objective of a GCN is to learn a function of features
for a given graph G, which takes the inputs:

• X, an N × D feature matrix which summarizes a
feature description xi for every node i (where N is the
number of nodes, and D the number of input features),

• A descriptor of the graph’s structure in matrix form,
usually as an adjacency matrix A.

This produces an output Z, which is a node-level N ×D
feature matrix (F is the number of output features per node).

Fig. 1. Overview of a Graph Convolutional Network (GCN) and its
Associated Layers [1].

Each layer H l out of the total layers L in the GCN can then
be modeled as a nonlinear function:

H(l+1) = f(H(l), A)

, where
H(0) = X and H(L) = Z. (1)

Most GCNs only differ in how the nonlinear function f is
parametrized and chosen.

The rest of this paper is organized as follows. Section II
presents motivation as well as related works. Limitations and
contributions are presented in Section III. Section IV elaborates
the pointGCN model and the proposed work is presented in
Section V. Experimental studies are then presented in Section
VI, followed by a discussion on the results in Section VII.
Finally, conclusions are provided in Section VIII.

II. RELATED WORKS

Existing research on processing the arbitrary graphs pro-
posed the usage of the neural networks for extracting the
information from the arbitrary graphs. Bruna et al. [2] used the
graph-based analogs with the convolutional neural networks
(CNN) to obtain an efficient architecture by reducing the
number of parameters, relying on hierarchical clustering of the
graph and by analyzing the spectrum of the graph’s Laplacian
matrix. David et al. [3] introduced a CNN approach with an
end-to-end pipeline that could operate directly on arbitrarily
sized graphs to generalize molecular feature extraction. Jain et
al. [4] used the high-level modeling ability of spatio-temporal
graphs to improve a recurrent neural network architecture to
model the sequential computer vision tasks (like human or
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object interactions) more effectively. Mich et al. [5] proposed
a true generalization of CNNs to work on any graph structure
by developing a model based in spectral graph theory, which
affords the same linear computational and learning complexity
as traditional CNNs. This work constitutes a big jump forward
in the field in terms of modeling GCNs. Moreover, Kipf et al.
[1], created a GCN model based on spectral graph convolutions
that scale linearly in the total number of graph edges. The
model layer representations encoded the specific features of
nodes as well as the local structure of the graph around a given
region. Hence it is clear that GCNs offer a better scheme for
the analysis of data that is generally arbitrarily grouped or
sparse in nature, such as the structure seen in point clouds.
In terms of the application of CNNs to the processing of 3D
point clouds, PointNet [6] is the first major DL method for
3D classification and segmentation. The network directly takes
point clouds as input and allows for efficient and effective
classification, segmentation and scene semantic parsing. The
model proposed by kiran et al. [7] uses 3D prior maps to reduce
the computational requirements on 3D point clouds. Zar zar
t al. [8] proposed the PointRGCN for using the point cloud
inputs for vehicle tracking. The model uses a residual GCN
and a contextual GCN for refining a 3D object from a point
cloud using a graph representation of the object.

We propose to extend the PointGCN model developed by
zang et al. [9]. We down sample the graph with localized
convolutions to obtain the latent features for describing the
local structures of the input point cloud. Our approach at-
tempts to leverage the flexibility of GCNs in dealing with
unstructured input with the inherent nature of point clouds.
From our experiments, we see that proposed model reduces the
computational requirements on 3D point clouds and improves
the performance.

III. CURRENT LIMITATION OF GCN MODELS

Most of the research in the field of point cloud computation
involves converting of 2D image to a point cloud to extract
information. The existing research focusses on utilizing the
depth information collected via a LiDAR for classification
or segmentation (as done in PointNet). We know that such
methods are accurate individually, but do not necessarily make
the best use of the data at hand. The GCN models which we
reviewed are effective but not necessarily specialized for real-
world object classification tasks. PointGCN [9] does not appear
to target any specific application and hence is not specifically
optimized for any purpose. Likewise, PointRGCN [8] mainly
works on bird’s-eye view detection and classification tasks
rather than typical views from a camera on the ground. It also
uses a variety of different models to obtain its final result.
Through our work, we would like to extend [9] and [8] to
fit other kinds of point cloud datasets without restricting to
autonomous driving. We will be looking into using some of
the datasets at [10] to train on and will attempt to generalize
the model to gain good predictive performance on these varied
datasets.

The main contributions of the paper are:

• Extending and generalizing a GCN model to work on
other kinds of LiDAR point clouds such as objects
in urban environments or the interiors and exterior of

buildings, without suffering a significant performance
loss.

• Optimizing and generalizing current GCN model such
that it can run on small computing processors such as
arm cortex A7.

Our work will attempt to combine useful features from
the current state of the art (for 3D object classification)
into an innovative approach that will hopefully match current
performance in the field at a reduced time cost. The models
currently used in research (processing on a point cloud with
PointNet and RGB feature/depth extraction) have their own
merits and demerits. 2D RGB images are better for feature
extraction and segmentation at a reduced time cost. However,
the 2D RGB images lack the depth information, which leads
to poor capturing of the relationship between the subject and
the objects. In our approach we use the point clouds to bridge
this gap for extracting the relationship between the objects
and the subject. We note that we can generalize the current
methods in the field to adapt with different types of data. In
our approach, we adapt a method without suffering the feature
loss. This method will be important for the researchers working
on autonomous driving, cave mapping, home modeling, and
video game designers, to name a few.

IV. ARCHITECTURE OF THE POINTGCN MODEL

The PointGCN appears to have the potential for flexibility
in inputs and did not require the processing of its data through
multiple models [9]. It was also extremely lightweight in terms
of the code involved, and so would be easier to modify.The
following is a brief overview of the model architecture for a
Graph Convolutional Network for the purpose of 3D object
classification as used in [9]. Similar to most simple CNNs,
the GCN consists of a convolution layer, a pooling layer, and
a fully connected layer. The graph convolutional layer allows
the GCN to encompass the structural information of the object
to be able to discriminate between them. Graph Laplacians
of the input point cloud data are generated. The graphs are
normalized to keep them to a uniform spectrum range. As
described in [11], the ChebyNet Graph-CNN performs better
on homogenous graphs for prediction tasks such as image
classification. Hence, a similar transformation is applied to the
heterogeneous graphs generated from point clouds. To obtain
a single level of a feature transformation, the model applies
Chebyshev polynomial filters, which keep the learned feature
maps localized.

A Rectified Linear unit (ReLu) nonlinear activation func-
tion is applied at the output of each graph convolutional layer.
Furthermore, global max pooling is performed after these
activations are applied. This allows for the computation of the
global statistics of all the output points. When multiple graph
convolutional layers are used, the statistics of each layer are
used together for the final probability computations.

The version of the model we used two graph convolutional
layers, and the Chebyshev polynomials are of order = 4
and order = 3 for the two layers respectively. The rest is
similar to as used in [9], with a 40-nearest neighbor graph
for each point cloud object for graph convolution and global
pooling. The intermediate outputs of the graph convolution
layers are passed through a final fully-connected linear layer
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with softmax activation as a flattened vector. The number of
output nodes in the output layer corresponds to the number of
labels in the dataset, which in our case, we kept at 40 labels.
Hence, the output is a vector where each index corresponds to
the probability of the input belonging to that label.

V. PROPOSED APPROACH - MODIFIED POINTGCN

PointGCN was geared to be used with the ModelNet40
dataset. Therefore, in order to use the model with different
datasets and different labels, we had to make the model label-
agnostic, and make sure the data format we wanted to use
worked everywhere in the model.

We also approached the problem from another angle. The
initial implementation in [9] used 2048 point cloud examples
per test/train set, and each point cloud consisted of 2048 points.
This amounted to an extremely large amount of input data and
meant the creation of the nearest-neighbor graphs from the
point cloud data was computationally expensive and extremely
memory-intensive. It often formed a bulk of the actual runtime
of the network where data was fed into it. Therefore, we
tried running the model and testing its accuracy with fewer
training examples and points per cloud instead, which would
significantly reduce runtime if successful.

We then also attempted to make some changes in the
PointGCN model itself, by introducing link prediction and
an entity classification layer, which helps in the recovery
of missing points or facts from the dataset, and recovery
of attributes corresponding to the missing entity, which was
motivated by work in [12]. Hidden representation of GCN of
ith layer is computed by:
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If we introduce the link prediction and entity layer in the

above function to utilize this hidden representation we can
compute the edges more freely by:
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where Nr,i denotes the set of neighbor indices of node

i under relation rR and ci,r is a normalization constant. In
the entity classification layer the GCN uses ci,r = |N − ri|.
This method helps determine a node’s relational encoding, aids
in nearest-neighbor finding, and helps reduce the computation
cost. Though the there is an increase in the number of
hyperparameter’s the paper [13]

We decided to try and generalize the PointGCN model to
achieve a good accuracy over two different datasets:

• Princeton ModelNet40 Dataset [14]: A volumetric
representation of 3D objects across 40 categories,
generated in a highly controlled environment using
CAD models.

• CMU Oakland Dataset [15]: Contains 44 labels as
shown in Fig. 2. This is generated using a SICK
LMS laser scanners and used in push-broom, collected

around the CMU campus in the neighborhood of
Oakland, Pittsburgh, and contains X, Y, and Z point
coordinates, corresponding labels, and confidence as
properties.

Fig. 2. A Log-scale Plot of the Distribution of the 44 Different Labels in the
CMU Oakland dataset. The Four Labels with the Lowest Frequencies were
Dropped out to Maintain Consistency with the 40 Outputs in the ModelNet40
Dataset.

A. Preparing Input Datasets

We faced some challenges in deciding how to generalize
the input datasets to the model. The biggest is the representa-
tion of the data points in point clouds. Each prepared dataset
uses a different representation of 3D point clouds, which is
specific to a single model’s architecture. Furthermore, the
collection methods and reference frame of the collecting device
also vary across datasets. Some datasets contain far more
information (such as semantic annotations or segmentations)
that cannot be found in other datasets. Each dataset also has a
different density and distribution of points for every object in
the set. The CMU Oakland dataset has labels for objects that
occur so infrequently in the set that the data is unusable on a
larger scale (mainly power cables or wires in the background).
The PointGCN model constructs its initial graph data from two
arrays found in an HDF5 file. The first, the ‘data’ array, is
an N-by-M array with N point cloud examples and M points
per point cloud. Each point in the point cloud is a 3-by-1
array consisting of the X, Y, and Z coordinates of the point.
The second array is the ‘label’ array, an N-element array, with
each index corresponding to a point cloud in the ‘data’ array.
This meant there must be a generalized method of preparing
or feeding the respective data into the model. As such, for
object classification, we decided to use the bare minimum. A
preprocessed dataset to the model should contain the X, Y, and
Z coordinates per point, along with the object label to which
that point belongs.

B. Dataset Creation

To overcome the issues we faced with point sparsity and
the parsing of datasets, we wrote a script to process and ‘mass-
create’ datasets that we could test on. This script was tested
and used on the CMU Oakland dataset [15] which is shown
in Fig. 3. It requires the point cloud x, y, and z coordinates,
along with the corresponding label for the point, in four
columns in a formatted text file as the input. This required
some manual processing, including dropping points with the
four least frequent labels (essentially unusable data). Dropping
four labels from the 44-label Oakland dataset also allowed us
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Fig. 3. A Visualization of the Complete, Preprocessed CMU Oakland Point
Cloud Dataset, with the Lowest Frequency Labels Dropped from the Set.

to keep the model consistent with the total data labels in the
ModelNet40 set. This would allow us to cross-test graphs made
with one dataset on another dataset. A maximum number of
point clouds per data file is set as well. These data points
were later split into test and train datasets using a random
distribution.

Once the data is read in and sorted, the creation process can
begin. A label is randomly selected on a uniform distribution,
and the required number of points from the corresponding data
is picked to form a point cloud. In order to overcome the
problem where a labeled object has too few points to create a
substantially-sized point cloud for training, we add noise, or
jitter, to the ground truth points, in order to create new points
for the object.

The jitter fulfilled two purposes at once. First, since these
points are only jittered with a value between 0.25 and 0.5 in
Cartesian space, the created points would “fill in the blanks”
in a sparsely-sampled object while remaining close enough in
physical space to the object in question, as illustrated in Fig. 4.
Secondly, the addition of random noise, and the randomized
nature of label selection, allows every created dataset to be
different. This would allow us to test the robustness of the
model to small perturbations as well. Finally, the datasets were
split into test and training datasets, of which five datasets were
used for training, and two for testing.

Fig. 4. A Visualization of the Jittering Process: (a) the Set of Points from
the Point Cloud for the Label ‘curb’; (b) Randomly Generated Jitter Values
Corresponding to Each of the Points; (c) the Original Points (blue) Along with
the Jittered Original Points (red) are Added to the Point Cloud

VI. RESULTS

The modified model was run using Tensorflow with GPU
acceleration. The learning rate was set to between 12and24×
104, and was halved every 20 epochs or so.Our first experiment
simply involved training the PointGCN model on the Oakland
dataset and the ModelNet40 dataset separately, and comparing
the results. With the ModelNet40, after 260 epochs of testing
and training, we received an average test accuracy of 86%

among the 40 input classes. For the Oakland set, four of the
least frequent data labels were dropped, to ensure consistency
between the total number of PointGCN outputs. After 260
epochs of testing and training, we received an average test
accuracy of 91%.

For the smaller point cloud tests, sets of 64 and 128
points per point cloud were used, with only 1000 training and
test examples per set (5000 training examples and 2000 test
examples in total). The maximum number of epochs were set
at a 100. The graph batches used by the network were first
built using the Oakland dataset, and then cross-tested with the
ModelNet40 dataset, in order to test the flexibility of the nodes
created by the model. The final results after a 100 epochs can
be seen in Table I and Table II below.

TABLE I. FINAL TRAINING AND TEST ACCURACY OF CMU
OAKLAND AND PRINCETON MODELNET40 DATASETS WITH A REDUCED

NUMBER OF POINTS PER CLOUD. WITH THE BASE GRAPH FOR THE GCN
MODEL BUILT USING THE OAKLAND DATASET

64 Points per Cloud 128 Points per Cloud
Accuracy (%) Oakland ModelNet40 Oakland ModelNet40
Training Data 95.82 90.31 96.06 90.37

Test Data 91.30 87.67 92.00 88.80
Overall 93.56 88.99 94.03 89.59

TABLE II. FINAL TRAINING AND TEST ACCURACY OF CMU
OAKLAND AND PRINCETON MODELNET40 DATASETS WITH A REDUCED
NUMBER OF POINTS PER CLOUD, WITH THE BASE GRAPH FOR THE GCN

MODEL BUILT USING THE MODELNET40 DATASET

64 Points per Cloud 128 Points per Cloud
Accuracy (%) Oakland ModelNet40 Oakland ModelNet40
Training Data 94.65 87.72 94.23 93.73

Test Data 83.66 84.59 85.18 87.45
Overall 89.15 86.15 89.71 90.59

The results were quite surprising. Even with a significantly
reduced number of points per point cloud, both the test and
training accuracies of the model on both input datasets were
extremely high. When a dataset is used to construct the graph
batch used by the GCN model, it demonstrates a significantly
higher training and test set accuracy. Nonetheless, given that
both ModelNet40 and Oakland achieve 90% accuracy and
89% accuracy respectively, on graphs not even constructed
from their data, shows the flexibility and robust nature of the
model. Furthermore, the runtime is also drastically decreased,
especially on a GPU setup. For 7000 input point clouds with
64 points per cloud, the graph build runtime was a mere 8
minutes, and the runtime for a 100 epochs was approximately
9 minutes and 40 seconds. For the same number of input clouds
at 128 points per cloud, the graph build runtime was around
13 minutes and 38 seconds, with the runtime for a 100 epochs
at 12 minutes and 34 seconds. This is quite remarkable given
that the runtime with over 14,000 input clouds at 2048 points
per cloud has a total runtime of over a day for similar levels
of accuracy, even when GPU-accelerated.

VII. DISCUSSION

From the results of the GCN’s prediction on the Model-
Net40 and Oakland datasets, it is clear that the model has
been extended to run with more than a single, specialized
dataset. An approach using a GCN offers an adaptability that
a CNN would not offer if trained on a single dataset. This
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would reduce the need to have to train a model on a different
dataset for a different use case every time. From cross-testing
one dataset on a graph built from another dataset, it is clear
that the GCN has the ability to learn and refine graphs such
that it can reflect the overall structure of an input point cloud.
It is also a model that has the potential to be robust to changes
in the input dataset. However, on comparison with a variety
of other models on the ModelNet leaderboard at [16], this
model falls some ways short of the state-of-the-art methods.
Nonetheless, it is still better than a lot of other models on the
list and so is an approach that shows promise.

TABLE III. COMPARISON WITH STATE-OF-ART METHODS ON
MODELNET40 & OAKLAND DATA SET

Method ModelNet40 Oakland
MV3D [17] 62.94 57.31
AVOD [18] 77.90 62.03

PointPillars [19] 78.39 67.39
PointRCNN [20] 85.94 73.210

RGCN [13] 83.42 74.05
PointRGCN [13] 85.97 76.73

Extended PointRGCN(Ours) 90.59 89.71

We implemented the MV3D, AVOD, PointPillars, PointR-
CNN, RGCN, PointRGCN, and compared with the proposed
approach. All the results reported above are the average results
of 10 trials for each dataset for our proposed method taking
128 points per cloud and the results are presented in Table
III. The high accuracy achieved by the model on the reduced-
size point clouds was also a very curious result. As such, we
looked closer at how the nature of the input data to the GCN
could affect its performance. The GCN model we adapted
could use one of two methods for sampling from the larger
point cloud set - immediate sampling or uniform sampling.
Immediate sampling just takes the first 64 or 128 points in the
array from the entire point cloud. Uniform sampling attempts
to take 64 or 128 samples from a uniform random probability
distribution across the point cloud. If the points are unsorted,
both sampling methods are equivalent. However, if the points
are sorted before they are passed in, using immediate sampling
shows very different effects. We attempted to sort the Oakland
dataset point clouds before passing them into the GCN. We
found that the accuracy on the Oakland set itself dropped to
a meager 33% on the training set and 24% on the test set,
while the ModelNet data achieved a 41% on the training set
and 37% on the test set.

This poor performance could be attributed to the GCN
receiving a poor understanding of the general structure of the
point cloud from the input data. In other words, with the data
sorted and sampled from the front, the GCN can essentially
“visualize” only a very small fraction of the entire cloud. This
does not allow it to truly infer any larger-scale features, and
any features it were to infer would be grossly incorrect, given
that it only has access to a small physical portion of the cloud.
When the data was left unsorted, it allows the GCN to sample
parts of the point cloud stochastically, thus giving it enough
points to infer larger features in the cloud and encode it in
the graph. We can conclude from this smaller investigation
that allowing uniform, randomized sampling of the entire point
cloud, even with a small number of points, can offer the same
levels of accuracy while drastically decreasing graph building
and prediction runtime.

VIII. CONCLUSION AND FUTURE WORK

In this paper a novel approach for extending and gener-
alizing a GCN model to work on different point clouds such
as objects in urban environments or the interiors and exterior
of buildings, without suffering a significant performance loss.
Further, we worked on Optimizing and generalizing current
GCN model such that it can run on small computing processors
such as arm cortex A7. Through our experimentation on a
modified version of PointGCN, we conclude that it is possible
to generalize a graph convolutional network across datasets.
The proposed model seems to be able to learn and preserve
underlying patterns that appear in point clouds regardless of
the object represented by the point cloud, and thus make for
powerful processors of the data type. Additionally, our model
do not appear to lose accuracy significantly when the number
of points in the point cloud input is reduced, as long as the
points remain representative of the larger structure of the object
at hand.

In future, we would like to extend our work by looking at
how exactly the graph generated by the GCN seems to preserve
the global statistics of features, and how it can effectively
exploit those same statistics across datasets. We can improve
the performance of our current model by adding deeper layers,
where they can compute the interrelation between points to
generate a feature map across the datasets. As part of future
work, we also plan to see if we could combine LiDAR
information with RGB images for better recognition.
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