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Abstract—Lattice-based crypto systems are regarded as secure
and believed to be secure even against quantum computers.
lattice-based cryptography relies upon problems like the Shortest
Vector Problem. Shortest Vector Problem is an instance of lattice
problems that are used as a basis for secure cryptographic
schemes. For more than 30 years now, the Shortest Vector
Problem has been at the heart of a thriving research field and
finding a new efficient algorithm turned out to be out of reach.
This problem has a great many applications such as optimization,
communication theory, cryptography, etc. This paper introduces
the Shortest Vector Problem and other related problems such as
the Closest Vector Problem. We present the average case and
worst case hardness results for the Shortest Vector Problem.
Further this work explore efficient algorithms solving the Shortest
Vector Problem and present their efficiency. More precisely,
this paper presents four algorithms: the Lenstra-Lenstra-Lovasz
(LLL) algorithm, the Block Korkine-Zolotarev (BKZ) algorithm,
a Metropolis algorithm, and a convex relaxation of SVP. The
experimental results on various lattices show that the Metropolis
algorithm works better than other algorithms with varying sizes
of lattices.
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I. INTRODUCTION

A lattice an abstract structure defined as the set of all
integer linear combinations of some independent vectors in
Rn. Over the last two centuries, mathematicians have explored
the fascinating combinatorial structure of lattices, and it has
also been studied from an asymptotic algorithmic viewpoint
for at least three decades. Most fundamental problems are
not considered to be effectively solvable on lattices. In ad-
dition, hardness results suggest that such problems can not be
solved by polynomial-time algorithms unless the hierarchy of
polynomial-time collapses. Cryptographic constructions based
on lattice hold a clear promise for cryptography with strong
security proof, as was demonstrated by Ajtai [1], who came
up with a construction of cryptographic primitives based on
worst-case hardness of certain lattice problems.

Two main important and very closely related hard com-
putational problems used by cryptographers are the Shortest
Vector Problem (SVP) and the Closest Vector Problem (CVP).
In the former, for a lattice specified by some basis we are
supposed to find nontrivial and small nonzero vector (length of
vector) in the lattice. The problem CVP is an inhomogeneous
variant of SVP, in which given a lattice (specified by some
basis) and a vector v, one has to find the vector in L closest
to v. The hardness of these problems is partially due to
the fact that multiple bases can generate the same lattice.
This work presents the best hardness result known for SVP,

compares different algorithms solving SVP with respect to
their efficiency and optimal solution.

II. PRELIMINARIES

A. Definitions and Related Problems

Let (b1, . . . , bn) be a basis in Rn and N a norm on Rn.
Let L denote

⊕n
i=1 Zbi, L is called a lattice. Set

λ(L) = min
v∈L\{0}

N(v)

We are now able to define SVP. For L a lattice, the exact form
Shortest Vector Problem, denoted by SV P (L) is as follows.

SV P (L) : Find v ∈ L such that N(v) = λ(L)

As it is often the case, we will actually be interested in
algorithms solving an approximation of SVP. For γ > 1 the
approximated form of SV P (L), denoted by SV Pγ(L) is

SV Pγ(L) : Find v ∈ L\{0} such that N(v) 6 γλ(L)

Now, a closely related problem is the Closest Vector Problem
CV P (L, x), defined for a lattice L ⊂ Rn and x ∈ Rn as

CV P (L) : Find v ∈ L such that N(v − x) = λ(L)

In its exact form. As in the above we can define an
approximated problem CV Pγ

CV Pγ(L) : Find v ∈ L such that N(v − x) 6 γλ(L)

In fact, CV Pγ solves SV Pγ . Indeed, for i = 1, . . . , n
set Li = Zb1 ⊕ . . . ⊕ 2bi ⊕ . . . ⊕ bn and xi a solution to
CV Pγ

(
Li, bi

)
, then one of the vectors in {xi − bi}i=1...n is

a solution to SV Pγ(L). For we have the following claim:

Claim 1. Let xi be a solution to CV P
(
Li, bi

)
then

{xi − bi}i=1,...,n contains a solution to SV P (L)
Proof. Indeed, let x =

∑
nibi be any solution to SV P (L), as

N
(
x
2

)
< N(x) we get that x2 /∈ L and there is i ∈ {1, . . . , n}

such that ni is odd. Then, x + bi ∈ Li Therefore, the set
{xi − bi}i=1,...,n contains a element of norm less than or
equal to N(x).

When N is the l2 norm on Rn, CV P has another formula-
tion that allows us to use convex optimization techniques. To
this end, let B be the matrix given by the basis (b1, . . . , bn)
and c a vector in Rn. Then, CV P (L, c) is equivalent to

minimize xTBTBx− 2cTx

subject to x ∈ Zn
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This is readily seen by expanding out the quantity ‖Bx− c‖2.
Following (ref), we will apply a convex relaxation to this
problem to get an efficient randomized algorithm solving
CV Pγ .

Finally, a last related problem is the Hermite Shortest
Vector problem denoted by HSV P . Again, let B ∈ Rn×n
be the matrix given by (b1, . . . , bn) , for γ > 1, HSV Pγ(L)
is the following problem.

HSV Pγ(L) : Find v ∈ L such that N(v) 6 γ|det(B)|

According to a theorem of Minkowski’s, HSVP and SV P are
in fact closely related. The LLL algorithm described in Section
III-A actually solves HSV Pγ .

B. Hardness: Average and Worst Case

An interesting feature of lattice problem is there hardness.
M.Ajtai in his seminal papers [1], [2] showed in particular
that worst-case hardness is related to average-case hardness
and that SVP is NP-hard for randomized reductions. This
makes lattice problems particularly interesting as basis for
crypto systems. Example of such systems are systems of
Ajtai and Dwork [3], Goldreich, Goldwasser and Halevi [4],
the NTRU cryptosystem [5], and the first fully homomorphic
encryption scheme by Gentry [6]. In this section we state
a number of hardness results without proofs. For a more
precise treatment see also [7]. The main result of worst-case
to average case NP-hardness is as follows.

Theorem 1 Suppose there is a randomized polynomial
time algorithm A such that for all n,A returns a vector of
Λ(X) of length 6 n with probability 1

nO(1) for Λ(X) chosen
at random in Λn,m,q where m = αn log(n) and q = nβ for
appropriate α, β. Then, there exist a randomized polynomial
time algorithm B and constants c1, c2, c3 such that for all
n, (b1, . . . , bn) basis of Rn and L := ⊕Zbi,B performs the
following with high probability [3]:
1) Finds a basis {β1, . . . , βn} for L such that

max ‖βi‖ 6 nc1 min
(ci) basis of L

max ‖ci‖ ;

2) finds an estimate λ̄ of λ(L) such that,

λ1(L)

nc2
6 λ̃ 6 λ(L)

3) If moreover, L has a nc3 unique shortest vector, finds this
vector.

We are now oing to explain the content of this theorem.
First of all, we must explain a number of concepts and notation.

Here, ‖.‖ refers to the l2 -norm.

A randomized algorithm is an algorithm that uses a degree
of randomness as part of its process. As such, it does not
guarantee success, but the probability of success for a given
input size can be computed. A randomized algorithm is said
to perform an event with high probability if the probability of
this event goes to 1 as the input size goes to +∞

We turn now to the definition of Λ(X). Let n,m, q ∈
N, (Z/qZ)n×m the space of matrices with entries in (Z/qZ),
and Ωn,m,q the uniform distribution on (Z/qZ)n×m Now,

for any X ∈ (Z/qZ)n×m, set Λ(X) as the lattice
{y ∈ Zm | Xy ≡ 0[q]} and Λn,m,q the space of such lattices.
We see Λn,m,q as a probability space by choosing X according
to Ωn,m,q and computing Λ(X). For any X,Λ(X) is indeed
a lattice, as q (Zm) ⊂ Λ(X).

Finally, for c > 1 a lattice L endowed with a norm N is
said to have a c-unique shortest vector v if the following holds

{v ∈ L | N(v) 6 cλ(L)} = {v,−v}

This result is called a worst-case to average case hardness
because it links the lack of a polynomial ranodmized
algorithm over ‘all’ lattices to the lack of such algorithm for
a small class of lattices, namely Λn,m,q . We also note that
similar results exist for related problems such as CV P . In
the following, we list further hardness results.

Theorem 2 SV P is NP -hard under the l∞ -norm.
Moreover, CVP is NP-hard under the lp -norm for all p > 1
[8]..

Theorem 3 For all γ, CV Pγ is NP-hard under any lp
-norm [9].

Building on results by Ajtai [2], Micciancio proved the
following.

Theorem 4 For all ε > 0, SV P√2−ε is NP -hard under
randomized polynomial time reductions [10].

Finally:

Theorem 5 There is c > 0 such that CVP is NP-hard
to approximate within a factor n

c
log(log(n)) , where n is the

dimension of the lattice [11].

Many other results related to hardness exist. We only
decided to mention some of the most fundamental ones.

III. SOLVING SVP

This section presents solving SV P and related results.
Even though many hardness results have been found, we
can still solve approximate SV P within some reasonable
constant depending on the input size. Usually, the ‘reasonable
constant’ is not known theoretically to be ‘reasonable’ but only
empirically. For instance, the first algorithm on this list, LLL,
is only known to solve SV P within a factor exponential in
the input size. However, results with LLL are in practice much
better than the bound.

A. Lenstra-Lenstra-Lováz Algorithm

This section presents the Lenstra-Lenstra-Lovász reduction
basis algorithm, by Lenstra, Lenstra and Lovász, see [12].
Originally, the purpose of this algorithm is to factor polyno-
mials, we will not consider this problem here.

Moreover, it is important to note that the techniques used
were developed by Hermite, Minkowksy and others to study
Siegel sets and lattices in algebraic groups. This is why LLL
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is in fact an algorithm solving HSV P. HSV P and SV P are
related thanks to the following results due to Minkowski.

Theorem 6 (Minkowski). Let n ∈ N and L be any lattice
in Rn, then

λ(L) 6 γn(det(L))
1
n

where γn is some constant depending only on n. More
precisely, γn is known to satisfy√

n

2πe
6 γn 6

√
n

πe

This theorem admits a short and elementary proof but can
also be seen as a consequence of Minkowski’s convex body
theorem. For proofs and further details see [13] and [14]. In
particular, we get the following important fact.

Claim 2. For γ > 1, HSV Pγnγ(L)⇒ SV Pγ(L)

The Gram-Schmidt orthogonalization method is critical in
the LLL algorithm, we briefly recall what this method entails.
Let (V, 〈·, ·〉) be a vector space endowed with a scalar product
and ‖·‖ the l2 -norm on V given by this scalar product. For any
basis (b1, . . . , bn) we define inductively its orthogonalization
(b∗1, . . . , b

∗
n) as

b∗i = bi −
∑
j<i

〈
bi, b

∗
j

〉
b∗j

This new basis (b∗1, . . . , b
∗
n) is orthogonal i.e.

〈
b∗i , b

∗
j

〉
=

0 whenever i 6= j. More-over, span (b1, . . . , br) =
span (b∗1, . . . , b

∗
r) for all 1 6 r 6 n. In the follow-

ing, we will pay particular attention to the Gram-schmidt
coefficients µi,j :=

〈bi,bj〉
‖b∗j‖2

for i > j. Moreover, let

B∗ be the matrix with columns the vectors (b∗1, . . . , b
∗
n)

and L the lattice generated by (b1, . . . , bn) . Then, it is
readily seen that vol (L) = ‖b∗1‖ · . . . · ‖b∗n‖. (For vol
(L) = |det (B∗)| as for all i we have span (b1, . . . , br) =

span (b∗1, . . . , b
∗
r) , but diag

(
‖b∗1‖

−1
, . . . , ‖b∗n‖

−1
)
B∗ ∈

On(R) so det (B∗) = ‖b∗1‖ · . . . · ‖b∗n‖ .) Now, assume that
‖bi‖
‖bi−1‖ is bounded below by some constant c > 0. As b1 = b∗1,
we get that

‖b1‖n 6 c−n(n−1)/2 ‖b∗1‖ · . . . · ‖b∗n‖ = c−n(n−1)/2 vol(L)

So b1 is a solution to HSV Pc−(n−1)/2(L).
In order to make use of this observation, we define the
following condition.

Definition 1 (Lovász’ condition). A basis (b1, . . . , bn)
satisfies Lovasz’ condition if there is δ ∈

(
1
4 , 1
]

such that
for all 2 6 i 6 n

‖bi‖2

‖bi−1‖2
6 δ − µ(i, i− 1)2

Where (b∗1, . . . , b
∗
n) is the Gram-Schmidt orthogonalization of

(b1, . . . , bn).

For the sake of simplicity, we removed the necessary parts
that consist in updating the Gram-Schmidt orthogonalization

initialization;
Require: a basis (b1, . . . , bn) of L and δ ∈

(
1
4 ; 1
]

Ensure: the output basis (b1, . . . , bn) of L satisfies
Lovász’ condition
i← 2
while i 6 n do

bi ← bi −
∑
j<i | µi,j

]
b∗j

if ‖b∗i ‖
2 >

(
δ − µ2

i,i−1
)
‖bi−1‖2 then

i← i+ 1
else

swap bi, bi−1;
i← max(2, i− 1);

end
end

Algorithm 1: LLL basis reduction algorithm

and Gram-Schmidt coefficients. Therefore, the previous
algorithm is only a sketch of the Lenstra-Lenstra-Lovász
reduction algorithm. Let us now state the main result about
this algorithm, namely its complexity and the properties of
the output basis.

Theorem 7 Let (b1, ..., bn) be a basis generating a lattice L
and δ ∈

(
1
4 , 1
]
. Given these as input, the LLL algorithm ter-

minates in poly
(
d, (1− δ)−1, log (max ‖bi‖)

)
and the output

is a basis (β1, . . . , βn) generating L such that:

‖β1‖
vol(L)1/n

6

(
1

δ − 1
4

)(d−1)/4

In particular, for δ = 1 − ε with e small, the LLL algorithm
terminates in poly

(
d, 1ε , log (max ‖bi‖) time and the output

satisfies:

‖β1‖
vol(L)1/n

6

(
4

3
+O(ε)

)(d−1)/4

' 1.07d−1

Empirically, it has been observed that for large n, that ‖β1‖
vol(L)1/6

is around 1.02n which is a considerable improvement [15].

This result is about how well LLL solves the Hermite
Shortest Vector Problem [12]. According to a remark made
earlier, we obtain the following result concerning our main
interest, the Shortest Vector Problem.

Corollary 1. With the same input as above, the output
(β1, . . . , βn) satisfies:

‖β1‖
vol(L)1/n

6

(
1

δ − 1
4

)(d−1)/2

Or for ε > 0 small and δ = 1− ε we get that:

‖β1‖
vol(L)1/n

6

(
4

3
+O(ε)

)(d−1)/2

≈ 1.15d−1

More precisely, we can get the following complexity.

Theorem 8 (Lenstra-Lenstra-Lovaisz, 1982, [ L.LL 82]
). The LLL algorithm has complexity O

(
n6 log max ‖bi‖

)
.
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Now, we briefly mention an improvement of LLL due to
Schnorr and Euchner, see [16]. In the previous algorithm, when
the swap function is applied, instead of swapping bi and bi−1
we apply what Schnorr and Euchner call deep insertions. This
entails to inserting bi at the index j where j is the smallest
index satisfying:

δ
∥∥b∗j∥∥ > ‖bi‖

The result of this change is shorter outputs but longer running
time.

B. Block Korkine-Zolotarev Algorithm

The Block korkine-Zootarev (BKZ) algorithm is another
algorithm solving SV Pγ . Even though it also runs in polyno-
mial time, its purpose is to achieve better accuracy than LLL,
therefore has longer running time. After breaking down how
LLL algorithm works, we could see that it uses an SVP-oracle
for lattices in dimension 2 called Gauss’s reduction. Given
more efficient oracles or higher dimensional SVP -oracles we
could hope for a more efficient algorithm. This algorithm was
proposed by Schnorr and Euchner in their paper [17].

Along this line of thought, given an SVP-oracle for all
dimensions up to some integer k the BKZ algorithm finds a
shorter vector than LLL does. Unsurprisingly, running BKZ
takes more time than running LLL. Here, there is a clear
tradeoff between the shortness of the output and the complexity
of the algorithm. Moreover, as of today it is not known theo-
retically if BKZ terminates in polynomial time, only empirical
results are known.

Here, an SV P -oracle is a mean by which we are able
to solve the exact SV P . Many techniques were developed to
solve SV P, but as one could guess from NP-hardness results,
all these methods have at least exponential time complexity.
Therefore, it is not deemed feasible to run these algorithms
in high dimension. Among such oracles are enumeration
algorihtms which are some kind of greedy algorithms that dates
back to Pohst [18], sieving techniques which are applications
of Monte-carlo methods (just as the next section is) due to
Micciancio and Voulgaris in [19], and a method based on
Voronoi cells due to the same authors in [20]. Even though
these methods have exponential complexity, they can still be
used for lattices in reasonably large dimension.

Let us now turn to the exposition of BKZ algorithm.
To this end, we first need to define the notion of Korkine-
Zolotarev reduced basis and a KZ-reduction algorithm. Sup-
pose we have a SV P -oracle O up to dimension k and,
for any basis (b1, . . . , bk) generating a lattice L define πi :
Rk → span (b1, . . . , vi)

⊥ as the orthogonal projection and
Li = πi−1(L). A basis (b1, . . . , bn) is called KZ-reduced if

||b∗i || = λ (Li)

where (b∗1, . . . , b
∗
n) is the Gram-Schmidt reduction of

(b1, . . . , bn) . (Note that πi (bi) = b∗i .) As for all i there is
αi ∈ [−1/2; 1/2] such that αib∞i + b∗i+1 ∈ Li we get by an
induction argument the following theorem.

Theorem 9. Let (b1, . . . , bn) be a KZ -reduced basis.
Then,

‖b1‖ = λ(L) and
‖b1‖
‖bk‖

6 k(1+log(k))/2

Moreover, we have the following KZ-reduction algorithm.

Result: Write here the result
initialization;
Require: a basis B = (b1, . . . , bn) for L and a SV P

-oracle O for up to k dimensions.
Ensure: The output basis is KZ-reduced.
m← c(R)
for i = 1 to k do

call O to find b∗i ∈ πi(L) of length λ (πi(L))
lift b∗i into bi ∈ L such that ‖b∗i − bi‖ is minimal;
change (bi+1, . . . , bk) such that (b1, . . . , bk)
generates L

end
Algorithm 2: KZ-reduction algorithm

Note that step 4 may look as hard as solving CV P but
is actually a lot easier thanks to the properties of orthogonal
projections. Now, BKZ is as follows.

Algorithm 3 Schnorr and Euchner’s BKZ-reduction
algorithm
Require: a basis B = (b1, . . . , bn) for L, ak ∈ N, δ ∈

(
1
4 , 1
)

and a SV P -oracle O for up to k dimensions.
Ensure: The output basis satisfies Lovisz’ conditon with
factor δ and ‖b∗i ‖ = λ

(
πi−1

(⊕k
j=1 bi+j−1

))
for i from 1

to d− k + 1

initialization;
Require: a basis B = (b1, . . . , bn) for
L, ak ∈ N, δ ∈

(
1
4 , 1
)

and a SV P -oracle O for up
to k dimensions.

Ensure: The output basis satisfies Lovisz’ conditon
with factor δ and ‖b∗i ‖ = λ

(
πi−1

(⊕k
j=1 bi+j−1

))
for i from 1 to d− k + 1

repeat
for i = 1 to d− k + 1 do

KZ-reduce the basis πi−1 (bi, . . . , bi+k−1);
Lift up to the closest vectors in L and

complete the basis.
end

until no changes occur;
Algorithm 3: Schnorr and Euchner’s BKZ-reduction algo-
rithm

The theoretical complexity computation of this algorithm
is not computed, but the following can be proved.

Theorem 10 Given a basis (b1, . . . , bn) generating L and
an SV P oracle O for up to k dimensions, the BKZ algorithm
outputs a basis (β1, . . . , βn) generating L that satisfies:

‖b1‖
λ(L)

6
(
k

1+log(k)
2k−2

)n−1
and

‖b1‖
vol(L)1/d

6
√
γk

(
k

1+log(ω)
2k−2

)n−1
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C. Metropolis-Hasting’s Algorithm

The next algorithm is a randomized algorithm applying
the well-known Metropolis algorithm, a kind of Monte-Carlo
method, to lattice problems. For a precise account on this
method see for instance [21]. The following Metropolis al-
gorithm is due to Ajitha, Biswas, and Kurur in [22]. This
algorithm returns an approximate solution with respect to the
euclidean norm, denoted by ‖ · ‖.

The search space is defined as follows.

Once again let (b1, . . . , bn) be a matrix of Rn, L the lattice
it generates and B the matrix given by (b1, . . . , bn).

The main idea behind this Metropolis-Hastings is to work
on a bounded set of vectors with integer entries and pair each
of these vectors v to a cost c(v) := ‖Bv‖. If w ∈ L has norm
less than or equal to k then w = Bv where v has integer entries
bounded above by M = (αn)n, where α = maxi,j (|bij | , k) .
Thus, it is enough to look at vectors bounded above by M . As
we want to modify the vector step by step, it is interesting to
work with more than one vector at a time. Let us now define
the Markov chain we will be working on.

Fix parameters k ∈ R,m ∈ N and set M as above. The
search space S consists of matrices A′ := [A | I] with integer
entries bounded above by M where A is a n×m matrix and
I is the n× n identity matrix. It remains only to describe the
transition probability of the Markov chain. We first describe
the neighbourhood of a given the state, the actual transition
matrix will be described later on in the pseudo-code of the
Metropolis-Hastings algorithm.

A matrix S′ = [S | I] is in the neighbourhood N (R′) of
R′ = [R | I] if

(i) S is equal to R up to swapping two columns;
(ii) S is equal to R up to multiplying a column by -1

(iii) we can get from R′ to S′ by ri ← ri ± 2lrj for any
1 6 i 6 m, 1 6 j 6 n+m, i 6= j

Two interesting features of S are:

• For any R′ ∈ S,#N (R′) = O
(
m2 log(M)

)
• For any R′, S′ ∈ S, there is a path between R′ and

S′ of length O(mn log(M))

Let us now turn to the pseudo-code and the actual description
of the transition probability.

Here, (pi) is a probability distribution on N such that
there is n0 ∈ N satisfying pi = 0 for all i > n0. This
algorithm seems to give better results than LLL for lattices in
low dimensional vector spaces. However, in higher dimension
such methods will have to deal with the following geometric
issue, the so-called curse of dimensionality. Let R > ε > 0
then

vol (BRn(R))

vol (BRn(R− ε))
→n→+∞ 0

Therefore, as n goes to +∞ ’most’ of the states of the markov
chain built in the Metropolis algorithm will lie in the annulus
BRn(R)\BRn(R − ε) and the markov chain might take more
and more time before hitting any point inside BRn(R−ε). For
more on related heuristics see [23].

initialization;
Require: a basis B = (b1, . . . , bn) for L and K ∈ Q
Ensure: Matrix R with integer entries such that BR
has a column c with ‖c‖ 6 K.
m← c(R)
while m > K do

Select S a neighbour of R by performing one of
the following operations.
• Swap two columns with probability Cm

2

#N(R) ;
• Multiply a column by -1 with probability m

d
• Add 2i times a column of R to another column of R

with probability d−Cm
3 −m
d · pi

if if m > c(R) then
m← c(R);

end
if S ∈ S then

R← S with probability min
(
e−c(S)/T

e−c(R)/T , 1
)

;
end

end
Algorithm 4: Metropolis-Hasting’s algorithm for SVP

Finally, note that a similar method is widely used to solve
exact instances of SVP. The version of this algorithm used
to solve SV P is called a sieve method and is often used as
an SV P -oracle in the BKZ algorithm, see for instance the
following paper by Micciancio and Voulgaris [19].

D. Convex Relaxation

This section presents the convex relaxation (see [24] for
definitions and results on convex relaxation) to obtain another
randomized algorithm to solve CV Pγ (thus, SV Pγ as well).
As mentioned in the first part of this report, CVPγ admits
another formulation, more precisely CVP(L, c) is equivalent
to

(1)
minimize xTBTBx− 2cTx

subject to x ∈ Zn

.
Where B be the matrix given by the basis (b1, . . . , bn) and
c a vector in Rn. A convex relaxation consists in relaxing
the hard condition x ∈ Zn to a looser condition so that the
problem considered is now a convex optimization problem.
Here, the method is due to Park and Boyd in [25]. The convex
relaxation is in this particular case an instance of semidefinite
programming, for more on this topic see [26]. We first relax
Problem 1 into a non-convex problem

(2)
minimize xTBTBx− 2cTx

subject to xi (xi − 1) > 0,∀i

Now, set P := BTB we can reformulate Problem 2

minimizeTr(PX)− 2cTx
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(3) subject to diag(X) > x

X = xxT

Finally, relax condition X = xxT of Problem 3 to X ≥ xxT

which means that X − xxT is semidefinite positive. But X ≥

xxT is equivalent to
[
X x

xT 1

]
≥ 0. So we get the following

relaxation.

(4)
minimize Tr(PX)− 2cTx

subject to diag(X) > x

[
X x

xT 1

]
≥ 0

Now, this is a semi definite relaxation that can be solved in
polynomial time.

initialization;
Require: P = BTB, c ∈ Rn,K ∈ N
Solve (4) to get X∗ and x∗
Σ← X∗ − x∗x4T
Find Cholesky factorisation LLT = Σ;
xbest ← 0;
f best ← 0
for k=1,2, . . . , K do

z(k) ← x∗ + Lw where w ∼ N (0, I)
x(k) ← round

(
z(k)

)
if f best > f

(
x(k)

)
then

xbest ← x(k);
f best ← f

(
x(k)

)
end

end
Algorithm 5: Randomized algorithm for suboptimal solu-
tion

Where the Cholesky factorisation is an algorithm
computing the square root of a positive semidefinite matrix in
O
(
n3
)

[27].

initialization;
Require: x ∈ Zn, P = BTB, c ∈ Rn.
g ← 2(Px+ c)
repeat

Find index i and integer a minimizing a2Pii + cgi;
xi ← xi + c3
g ← g + 2cPi

until diag(P ) > |g|;
Algorithm 6: Greedy descent algorithm

This last algorithm runs in polynomial time as well. Com-
bining these two algorithms we get a approximate solution
such that for all integer a ∈ Z and all index i, x is a better
solution than x+ aei

IV. EXPERIMENTAL RESULTS

This section describes how the said approaches perform on
benchmark instances. We see that the output of the LLL algo-
rithm is near to the shortest vector which is 2

n−1
2 of the shortest

vector for the given lattice, it can be used for polynomial
factoring etc. LLL algorithm complexity is O

(
n6 · log3 β

)
,

where β is max1≤i≤n ||bi||. We ran tests to compare LLL
algorithm and BKZ algorithm on data from [22], [21] and
[24].

For experimental analysis a class of SVP instances are
generated using the techniques developed by Richard Lindner
and Michael Schneider [28]. They have given sample bases for
Modular, Random, ntru, SWIFT and Dual Modular lattices of
dimension 10. We have tested our code for all these instances
and found that our algorithm works faster and gives shorter
lattice vector when compared to LLL. The tested results are
given in the Table I.

Fig. 1. Norm of the Output/ Dimension; Blue: BKZ / Green: LLL.

Fig. 2. Running time/ Dimension; Blue: BKZ / Green: LLL.

A. LLL/BKZ

Fig. 1 and Fig. 2 compare the basis reduction algorithms
LLL and BKZ for a given family of Lattices parametrized
by their dimension. Moreover, BKZ given an enumeration
oracle for blocks of size 30. In particular, we see that with
these parameters, the BKZ algorithm needs considerably more
time to get a slightly shorter vector. To some extent, the LLL
algorithm already seems to be efficient. A comparative results
for running time of BKZ and LLL algorithms for varying
dimension of lattice is given in Fig. 2.
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TABLE I. RESULTS OF LLL AND MH FOR VARIOUS LATTICES

n Input size t (LLL: MH algo) Norm (LLL: MH algo)
15 150 1234.58: 1147.2279 0.016: 201.651
20 8 3: 2.8284 0.2680: 0.052
25 8 1.73: 1.73 0.008: 0.004
30 8 4.123: 3.8729 0.008: 0.008
50 100 20.49: 8.66 0.108: 291.892

B. Metropolis-Hasting’s Method

For a specific class of lattices [21], we have tested LLL and
MH algorithms and the results are shown in Table I. Moreover,
these data seem to support the curse of dimensionality heuristic
as we can see the times needed to solve cases with large input
size is high compared to small input size.

C. Convex Relaxation

The algorithm from [24] returns an approximate solution to
CV P shown in Table II. To test their method, they computed
solutions for instances randomly generated : all entries ar ∼
N (0, 1) then normalized so that the solution to problem (1)
without the integer constraint has value -1. In what follows, n
will denote the dimension, opt the percentage of outputs that
were optimal solutions and t the time it took to get this output.
All values are averages.

TABLE II. RESULTS FOR CVP FOR RANDOM INSTANCES

n t opt
50 0.397 90%
60 0.336 94%
70 0.402 89%

Because of the NP -hardness of CV P it is hard to
compute the quantity opt in higher dimensions. However, the
break down of running times of the method for larger n′s
presented in Table III.

TABLE III. RUNNING TIMES OF THE CONVEX RELAXATION

n ttotal SDP Random sampling Greeedy 1-opt
50 0.397 0.296 0.065 0.036
60 0.336 0.201 0.084 0.051
70 0.402 0.249 0.094 0.058

100 0.690 0.380 0.193 0.117
500 20.99 12.24 4.709 4.045

1000 135.1 82.38 28.64 24.07

In spite of the theoretical running time being O
(
n3
)

we
can note that the total running time seems to grow subcubically.

V. CONCLUSION

In this paper we have discussed Shortest Vector Problem,
Closest Vector Problem and their average case and worst case
hardness results. Further, this work presented solving SVP us-
ing the LLL algorithm, BKZ algorithm, a Metropolis algorithm
and a convex relaxation. We have compared the performance
of these algorithms on various lattices by varying input sizes
and the results we have obtained are fairly encouraging. The
experimental results on various lattices shows that Metropolis
algorithm works better than other algorithms.
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