
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

Improving Data Services of Mobile Cloud Storage
with Support for Large Data Objects using

OpenStack Swift

Aslam B Nandyal1, Mohammed Rafi2, M Siddappa3, Babu B. Sathish4

Dept. of Computer Science & Engg, University BDT College of Engineering, Davanagere, Karnataka, India1,2

Dept. of Computer Science & Engg, Sri Siddhartha Institute of Technology Maralur Tumkur, Karnataka, India3

Department of Computer Science & Engg, R.V. College of Engineering Bengaluru, 560059, India4

Abstract—Providing data services support for large file upload
and download is increasingly vital for mobile cloud storage. There
is an increase in mobile users whose data access trends show
more access and large file sharing. It is a challenging task for
Mobile Application Developers to handle upload and retrieve
large files to/from a mobile app because of difficulties with latency,
bandwidth, speed, errors, and disruptions to service in a wireless
mobile environment. Some scenarios require these large files to
be used offline, sometimes to be updated by a single user, and
sometimes be shared among all other users. The Wireless mobile
environment must consider mobile user’s constraints, such as
frequent disconnections and low bandwidth, which affect the
ability to handle data and transactions management. The primary
objective of this study is to propose a cloud-based Mobile Sync
service (sometimes referred as Mobile backend as a Service)
with OpenStack Swift object storage to manage large objects
efficiently using two main techniques of segmentation and object
chunking with compression in a mobile cloud environment. This
work further contributed to a prototype implementation of the
proposed framework and provides Application Programming
Interface (API) consisting of Create, Read, and Delete queries
and chunking operations and a lightweight sync protocol that can
manage large file synchronization and access. The experimental
findings with object-chunking tested size settings show that
the proposed Mobile Sync framework can accommodate large
files ranging from 100MB to 1GB and provides a decrease in
upload/download synchronization times of 63.203% / 92.987%
percent as compared to other frameworks.

Keywords—Mobile cloud computing; mobile backend as a
service; large files; distributed systems

I. INTRODUCTION

The development of enterprise mobile services can use
variety of cloud computing models. The predominant service
models for cloud computing are mainly classified as Infras-
tructure as a Service (IaaS), Software as a Service (SaaS) and
Platform as a Service (PaaS) [1]. With the introduction of a
new service model known as Mobile Backend as a Service
(MBaaS), making it easy to integrate cloud-based applications
with mobile platforms has become possible.

The model of Sync framework offers a cloud server
infrastructure to store application data and facilitate easy
configuration. The developer needs to do significant work for
the application to remain responsive during interruptions in
communication due to poor or no network. The Sync frame-
work offers a solution for the unreliable connection problem
with customized synchronization and replication processes and

helps synchronize with multiple clients. An intelligent Sync
framework allows enterprise data to take offline and facilitate
sync operation by syncing data across multiple mobile devices
with the backend systems, detect and resolve the conflicts with
configurable, standards-based rules, setting precedence based
on policies [2] [3]. Ideally, the Sync framework should provide
a consistent state at all times (strong consistency). However,
the CAP theorem [4] for the distributed systems enforces the
Sync framework to guarantee immediate availability and toler-
ate network partitions to provide a weak form of consistency,
commonly known as eventual consistency [5].

Data Services is one of the critical capabilities of an MBaaS
platform and provide the following features:

• Data Management: A quality MBaaS framework will
provide the services to create, save, manage and sync
application data and files within the framework itself,
in addition to a mechanism for connecting into both
public and private systems of record and abstraction
layers [3].

• Online/Offline Workflow: TThe mobile apps can
operate in online and offline modes, and hence MBaaS
can support offline/online database synchronization
[6].

• Sync: An intelligent MBaaS framework allows enter-
prise data to take offline, syncing data across multiple
devices with the backend systems, detect and resolve
the conflicts with configurable, standards-based rules,
setting precedence based on policies [2].

• Caching: Various caching methods are offered as a
part of the MBaaS platforms to reduce latency and
boost app performance. The caching can be provided
as an inbuilt feature in the framework or at a connec-
tion point to systems of record or even cross-platform
on-device caching strategies (via client SDKs) [7].

Due to the rising numbers of people making their files
shareware accessible via mobile devices, the reliability and
efficiency of service for large files is a more crucial feature in
mobile file-sharing than previously thought [8] [9]. Developers
have to deal with complex issues of latency, speed, timeouts,
and interruptions during the uploading and retrieving from
mobile apps [10] [11] [12].

Recently, some efforts are focused on finding out the trend

www.ijacsa.thesai.org 866 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

of mobile users to access data on both public and private cloud
storage services and several different personal cloud storage
systems. One such study in [9] aimed to analyze data access
trends in large-scale mobile cloud storage [9].

This research aimed to analyze the database of 350 million
HTTP transaction log files from mobile applications to find
the trend in how quickly cloud storage is being used for
collaborative and large file storage. This study concluded that
for retrieving one file in multiple sessions, the average volume
was about 70 MB.

An empirical study was conducted by a cloud storage ven-
dor [8], which involved the services of media file uploading,
transformations, and storage in the cloud. This research studied
a data set of one million mobile applications rendering these
services. Their observation examined the statistical information
regarding the number of files, including different file sizes and
formats, which have been uploaded (from the year 2015 to
2016). Their research showed that the amount of growth files
with size 100MB and above is 170%, while files of other sizes
increased by 50% year over year. According to this study, it
appears that the file sizes are increasing as mobile users make
more frequent use of the files or share files and have larger
storage requirements (above 100MB).

Some of the mobile operating systems limit the size of
the file over which over-the-air (OTA) or app-store downloads
are not allowed [13]. For example, Apple’s iOS platform [14]
limits the Cellular Data downloads to a file size of 100 MB.
Android OS limits the size of downloads via cellular data to
150MB [15]. Based on the above studies and mobile operating
system guidelines, it can be concluded that a file with a size
greater than 100MB is considered a large file.

The rest of this paper is structured in the following manner:
Next Section II provides a brief background and problem
formulation. Section III analyzes some of the Mobile Sync
frameworks in the literature along with support for large
objects. Section IV provides the background information of the
OpenStack cloud platform and support for large file storage
in the Swift module that handles object storage. Section V
describes the details of the proposed framework for data
services to handle large files. The data management at both
mobile Client and Cloud server-side is discussed. Section
VI discusses the performance of the proposed Mobile Sync
framework, followed by a conclusion and future work in
Section VII.

II. BACKGROUND AND PROBLEM FORMULATION

More recently, there has been an exponential growth in
mobile devices with requirements for seamless personal data
synchronization and availability across devices for mobile
users. Different methods, such as Chunking, Deduplication,
Segmentation, and Delta-encoding, have been used by cloud
storage providers to maximize storage space and reduce trans-
mission time [10]. In addition to custom features, various Mo-
bile Cloud Storage providers have developed and implemented
services to incorporate techniques of Chunking, Deduplication,
Segmentation, and Delta-encoding. Despite all the efforts,
there is still much space for improvement in handling syncing
data in the mobile cloud storage, as the sync time is much
longer than expected under some circumstances. Executing

data synchronization is a challenging task in a mobile/wireless
environment with frequent disconnections.

As commercial storage systems are primarily closed source
with encrypted data, the public remains unclear regarding their
designs and operating processes. Exhaustive research of the
sync protocol of specific frameworks can be time-consuming
to determine the cause of sync difficulty and maybe inefficient
[16].

Furthermore, while some existing services attempt to inte-
grate multiple capabilities to increase sync speed and efficiency
in mobile/wireless environments, whether these strategies are
viable is still unclear [11].

Ultimately, as a mobile cloud storage system will need
storage and network technologies, storage techniques must be
flexible and function effectively in a mobile/wireless environ-
ment. Communications in such environments are vulnerable
to high delay or interruption due to mobility and changing
channel conditions [17].

Although several mobile sync frameworks support mobile
customer data replication and management systems, they lack
support for large artifacts (more than 10MB to Gigabytes)
[11] [17] [18] [19] [20] [21]. The main observation from
the literature study in the papers [22] [23] [24] revealed
that out of 19, only nine frameworks (47.36 percent) support
large objects, including commercial frameworks; additionally,
few have limitations (in terms of maximum file upload size,
chunking support option, and handling techniques for better
performance of large objects). In the case of local storage
and updates on the cloud and on other client mobile devices,
managing large data and maintaining consistency becomes
difficult.

Deduplication techniques, in particular, do not always
lead to sync efficiency by reducing redundant data transfers.
Reasonable attempts to implement delta encoding algorithms
are hampered by the distributed nature of storage infrastructure
and may lead to high overhead traffic due to the lack of
incremental sync. When synchronizing files across a slow
network is necessary, the iterative synch scheme suffers from
low throughput [16].

To tackle the above challenges, Chunking, Segmentation,
and Compression techniques are suggested to improve the sync
performance for large objects in modern mobile cloud storage
systems, focusing on Data management for large objects.

III. RELATED WORK AND LARGE OBJECT HANDLING
TECHNIQUES IN FRAMEWORKS

Cloud storage providers use different techniques to opti-
mize the storage space and speed up data transmissions [10].
The main techniques used in different synchronization frame-
works are Chunking, Bundling, Segmentation, Compression,
Deduplication, and Delta-encoding.

1) Chunking: For each piece of the large file uploaded
to the Server, some frameworks will break up the
upload into multiple pieces and upload the parts one
at a time. The process of dividing the file into several
smaller files or sections is called file chunking.

www.ijacsa.thesai.org 867 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

2) Bundling: During uploading multiple files together,
some frameworks of cloud providers combine them
into larger bundles for the sake of efficiency before
storing them in the cloud. In file bundling, the trans-
mission latency is reduced because cloud servers have
fewer connections to mobile clients.

3) Segmentation: This method consists of creating a file
that takes in a large object and divides it into smaller,
self-contained portions. Because Segmentation allows
for virtually unlimited segment uploads in a single
object with faster and parallel segment uploads, it is
a favorite technique used by Internet service providers
and application developers.

4) Compression: Prior to transmitting to the cloud, the
file data can be compressed. With a bit of overhead of
processing, data compression can minimize the traffic
and reduce storage requirements [11].

5) Deduplication: In the case of an identical copy of
a file being uploaded by the user or another user
in the cloud storage service, that file can be dedu-
plicated. In such cases, instead of sending the file
over the network again, it maintains only a unique
link to avoid network traffic and reduce storage
requirements. Some frameworks support chunk level
deduplication if the provider’s data storage unit is a
chunk object rather than a file.

6) Delta-encoding: This process transmits only the mod-
ified portion of a file with Compression. If the pre-
vious version of the file already exists on the server,
the transmission will contain only the modified parts
of the file compared previous version.

A. Analysis of Large Object Support in Frameworks

For mobile cloud services, supporting large file uploading
and retrieval is critical as data sizes of sharing content are
increasing, and mobile users are accessing or sharing enormous
size files [9] [8]. However, only Desktop customers and not
mobile apps can use valuable large object services. Open-
source and commercial cloud storage services for mobile de-
vices are analyzed for large file object support. The studies are
mainly classified into three categories: open source frameworks
(Parse Server [25] , BaasBox [21], Simba’s [11] and Open
Data Kit 2.0 [26]), academic research reference frameworks
(SwiftCloud [18], QuickSync [16]) and commercial mobile
cloud frameworks (Dropbox [27], Google Drive [28], Amazon
Dynamo [29], CloudKit [30]).

Table II in the Appendix summarizes the large object
support and techniques used to optimize the storage space and
speed up data transmissions in the various reference frame-
works. Many commercial cloud-based frameworks support
large objects, but not every framework addresses large files,
unfortunately.

Further investigation on frameworks revealed the various
techniques of handling large objects and the maximum files
supported with options of resuming uploads if interrupted
due to network disconnections. A brief explanation of each
framework with respect to handling large files is given below.

In the category of open-source reference frameworks, the
Parse Server [25] service platform uses MongoDB as the

backend datastore. It can only handle files up to 10MB in
size. The ’ParseFile’ is a particular data type that makes it
easier for Developers to store application files in the cloud.
Parse provides another option with a data type known as
’PareObject’ to upload an array of up to 10MB in bytes or
as a series of Streams. Implementing the ’SaveAsync’ method,
the users can save the file to the Parse framework.

Another MBaaS open-source framework based n the Play
framework but does not support large files by default is
BaasBox [21]. However, based on the component design
architecture, some custom implementations are needed to
support uploading and downloading data up to 300MB. It
is built on the Play web application framework, which is
a lightweight, stateless, open architecture. BassBox requires
configuration modifications for the maximum payload size
in POST operations. By default, the value of POST request
size is 100KB, which can be changed based on the server
configuration. Special HTTP requests known as Body parsers
in the Play framework are used for POST or PUT operations.

Simba [11] is a recent framework aimed to expedite the
development and deployment of data-centric mobile apps and
enable them to store data into the cloud storage. Simba
extended the table interface of Izzy [17] but the sync protocol
of Simba [11] does not support streaming APIs that can handle
large files like Media or Video.

SwiftCloud [18] is another middleware framework that is
based on the technique of Conflict-Free Replicated Data Types
(CRDTs) with the Riak [31] key store and does not support
storing objects over 50MB for performance reasons.

Mobius [7] is an application platform that enables real-
time cloud-based data replication and messaging for mobile
devices. Mobius is focused on addressing the development
challenges of data management and messaging for data-centric
mobile apps and does not deal with large files. Also, large size
handling is not considered in the case of special CRDT cloud
types in libraries like TouchDevelop [32] [33]. On the other
hand, high-level ideas of sets and maps enable support for large
files, but the storage providers do not support the storage of
large objects (greater than 50 MB) for performance reasons.

Open Data Kit 2.0 [26] supports the Android operating
system and enables the data to be stored in the cloud and han-
dle offline data management. The default size limit on remote
procedure calls in Android service is 1MB. To overcome the
limitation of 1MB, the ODK Kit exposes higher-level features
using a transport-level interface to developers. Using a client-
side proxy, the ODK Kit implements a chunking interface.

Dropbox [27] is a commercial sync service provider, and
files uploaded via the dedicated REST APIs can be up to
150MB in size. There is a maximum file size of 150 MB
only when uploading with the files put API. Dropbox exposes
chunked upload API to upload large chunks of data. A chunk of
any size between 150 MB and 4 MB can be chosen. Dropbox
has a built-in support to resume uploads if the upload is
affected because of network disconnections.

QuickSync [16] is a framework that focuses on addressing
the sync performance issues considering the network con-
ditions. The framework integrate Seafile/Dropbox APIs and
allows large data up to 180MB. It allows the big files to

www.ijacsa.thesai.org 868 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

be uploaded using the ”chunk” API support. The APIs also
supports automatic presumable data upload. A chunk of any
size between 150 MB and 4 MB can be chosen.

Google Drive [28] is another file sync service provider that
provides SDK to upload/retrieve data to/from cloud storage.
To achieve resumable uploads, more than 5MB of data can
be uploaded by making one request or via multiple requests
with Google Drive SDK. In order to make the upload as fast
as possible, larger chuck sizes are recommended. The upload
request in Google Drive recommends chunk size to be in
multiples of 256 KB.

Apple has extended the service of iCloud [32] with Cloud
Kit [30], a new way of storing and accessing data stored in
iCloud storage. The iCloud storage allowance is dependent on
user type (paid or premium subscriptions allow larger storage).
There is no explicit description document size limitation and
Core Data (iOS local) storage limit. However, uploads depend
on the device’s or iCloud user storage limit. The operating
system (iOS) starts and manages the upload and download
of data from devices on the iCloud account. The iCloud app
only needs to adopt the lifecycle of document management
and need not communicate directly with iCloud servers. There
is no need to invoke data upload or download operations in
most cases.

Amazon uses DynamoDB [29] as the backend data store for
cloud storage, focusing on high availability. Mobile SDKs from
Amazon provide the way to interact with cloud services via
REST APIs for DynamoDB. DynamoDB allows safe update
operation of data even in the face of network partitions or
server failures. In the DynamoDB, the total maximum item
size is 400 KB, which includes both the name attribute’s
binary length and value. Suppose the application requires more
storage space than that allowed by the Amazon DynamoDB
limit. In that case, the developer may try compressing large
attributes, or the app may store data in AWS Simple Cloud
Storage (S3) [33] and associate the Amazon S3 ID with the
Amazon DynamoDB entity using the Amazon object identifier.

The key observation from the study is that out of 19, only
nine frameworks (47.36%) support large objects, and a few
also has limitations. Because current Mobile Sync frameworks
do not support large objects and have restrictions (in terms
of maximum file upload size, chunking support, configuration,
and large object handling strategies for better performance),
this article provides an enhanced cloud-based Mobile Sync
framework.

IV. OPENSTACK SWIFT AND SUPPORT FOR LARGE
OBJECTS

OpenStack platform (developed by NASA and Rackspace)
offers a combination of open-source tools for the manage-
ment of the core cloud computing services in the areas of
computing, identity, storage, networking, and image services.
This platform can be customized and integrated with addi-
tional packages based on the requirements. The framework
proposed in this paper is based on Swift, the object storage
of OpenStack. The primary design hierarchy of Swift is based
on a tenant/container/object structure to efficiently, safely, and
cheaply store files.

The flow of request processing in Swift is shown in Fig.
1. When a client submits a request to retrieve an object A,
an intermediary proxy server retrieves the object. The proxy
is regarded as a stateless single entry point to the storage
cluster and allows it to scale to arbitrary clients. The proxy is
also responsible for determining the appropriate object server
for the client’s requested object and eventually returning the
response object to the client. Apart from the object catalog,
the cluster has a running container catalog that stores data
about objects grouped within containers. Alternatively, hash
functions are used to locate containers. Swift is based on
the Web Server Gateway Interface (WSGI), which allows
frameworks to define a pipeline. This pipeline comprises one
or more middlewares that can pre-process requests before they
reach the main web server component.

With regard to the enterprise architecture, Objects corre-
spond to files and are arranged in Containers, i.e.,directories.
Tenants form the highest level of hierarchy to set up an
organization assigning a set of containers. Swift defines two
types of ACLs: tenant-level and container-level. A tenant-level
ACL allows administrative access to the tenants. Container
level ACLs define the permissions on the container for reading,
writing, and listing. OpenStack Swift limits the association of
any ACL for objects, and the ACL of a container applies to
all objects in it.

This study recommended the techniques of Segmentation
and chunking to deal with large object files. The principal goal
is to attain faster reading and writing speeds using a low object-
to-node ratio with a lesser number of objects having large
chunk sizes. In addition to effective data reduction, the method
uses effective bandwidth reduction techniques [11] [16].

Using the Chunking Mechanism, large objects can be split
into smaller parts of a certain data unit when uploading
data to cloud storage services without raising the resulting
file size issue (in the user interface of memory-constrained
devices). Hence when a user attempts to upload a large file,
some frameworks divide the input file into smaller parts and
then upload these smaller chunks asynchronously later. The
proposed chunking mechanism can handle large object data
management and end-to-to-end consistency in a mobile cloud
environment [16].

It is also a common technique to decrease network traffic
by using chunks [34]. The proposed Mobile sync framework
in this article provides data structures that can accommodate
both table and object data. A single Table (TableDS) can contain
several rows (RowDS). In the proposed cloud synchronology
design, in the case of a RowDS with one or more objects, the
changeset for the sync will only consider the modified chunks.
Individual chunks are not versioned.

The technique of Segmentation consists of creating a file
that takes in a large object and divides it into smaller, self-
contained portions. These smaller segments are then trans-
mitted as one object together. Segmentation allows a nearly
infinite object size, with more segments that can be uploaded
nearly simultaneously in parallel for quick transfer. The Open
Stack Swift [35] supports large object uploads by utilizing
this segmentation technique. Such a framework would provide
cloud-based services with support for large files of any size,
from megabytes to gigabytes, and allow the Developers to

www.ijacsa.thesai.org 869 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

Object

Server1

Container

Server1

Object

Server2

Container

Server2

Object

Server3

Container

Server3

PUT(B, location = 3)

Client−1

Client−2
Proxy Server

PUT(A, = true)chunk

O3

C1
O1

C2

O2
C3

HASH(A)

A

B

A1 A2 B

Fig. 1. Request Processing in OpenStack Swift.

Fig. 2. Open Stack Swift APIs for Large Object Support.

arbitrarily complex, synchronized large objects to be built and
maintained in the cloud.

Fig. 1 and 2 shows the sequence of request in segmentation
process of OpenStack Object Storage. While the data is being
uploaded, the mobile client can specify how much of it to
chunk, and the proxy server will divide it into smaller sections.
The different blocks are given internal names according to
their position in the cluster. Creation of order lists all object
file names also creates a manifest file (see Fig. 2). The proxy
reads the manifest file to fetch the parts from the GET request
of client. With the integration of OpenStack Object Storage,
the proposed Mobile Sync framework can support files that
are as large as 5 GB in size.

In addition to the techniques of Chunking and Segmen-
tation, this research also incorporates Compression so that
the data will be transmitted to the cloud in a smaller, more
compressed form. Google’s SPDY [36] with Google Protocol
buffers [37] are employed, which uses multiplex to HTTP
extensions to save on network overhead and perform better
Compression for multiplexing requests over a single connec-
tion. Google Protocol buffers provide an expandable serializa-
tion mechanism for structured data, which are language and
platform-neutral.

V. PROPOSED FRAMEWORK FOR DATA SERVICES TO
HANDLE LARGE FILES

A. Prototype Implementation

There are two main modules to the proposed architecture
of the Mobile Sync framework: one for executing on the
handheld device (Data Service) and the other for data in
the cloud. Together, these two modules assist enables mobile
application development with the Software Development Kit
(SDK) provided by the framework. Fig. 3 shows the basic
block diagram of the proposed Mobile Sync framework.

The ‘Framework Data Service’ (FDS)is a module that
connects the mobile apps and the Cloud Data Server by using a
custom sync protocol and works as a mediator for transferring
data and messages. Each client application is built with the

Mobile Table Data Handler

(LevelDB)

(Sqlite)

Mobile Object Data Handler Da
ta

Ha
nd

ler

Mobile Client Data Store

User Manager

Identity Services

Access Control

Identity Manager

Data Streaming HandlerLarge Data Handler

Framework API

Data Sync

Chunk Data Handler

Offline Data Manager

Data Services Manager

Data CompressorChunk Selector

Google Protocol Buffer Large File Transfer

Network Manager

Cloud Object Store

(OpenStack Swift)

Cloud Table Store

(Cassandra)

Cloud Data Store

Store Node

Store Node

Store Node

Open Stack Cloud Infrastructure

Framework SDK

Mobile App 2

Framework SDK

Mobile App 3

Framework SDK

Mobile App 1

Pr
ot

oc
ol

Sy
nc

Framework Data Service

Fig. 3. Block Diagram of Proposed Mobile Sync Framework.

Framework DataService API provided by the SDK and talks to
the system-wide data service (FDS) via streaming and CRUD
APIs. Mobile Local database store consisting of Sqlite and
LevelDB, enable FDS to save all the application data and
metadata in the local store. For the Mobile client apps that
run on mobile devices, the local database is not accessible
directly since FDS manages it.

The primary modules used to manage large objects are
‘Chuck Data Handler’ and handler modules like ‘Large Data
and Streaming Data’, which are included within the framework
SDK. These modules use a simplified data storage model for
apps to use the chunking process proposed in this research
article. ‘Mobile Client Data Store’ is a local storage module
to store tabular data and large app objects in the memory of
a mobile device (typically the internal flash memory or the
external SD card). On the client-side, the framework integrates
SQLite for table and LevelDB for object data (in addition to
handling large files).

The data model of the proposed Mobile Sync framework
facilitates the storage of data for all client applications and
hides the complex details of storing and synchronizing data.
A custom Data Model consists of chuck layout support with
additional support for larger objects.

The ‘Cloud Data Store’ is the other main server-side
module responsible for data management and interacts with
the ‘Framework Data Service’ (FDS) via the custom Sync
Protocol. The primary responsibility of this module is to man-
age data across multiple mobile clients of the framework and
implement the chunking & segmentation method at the server-
side. For supporting large files in the cloud, through Object
Storage, the framework uses the Infrastructure of OpenStack
Swift, which has built-in support for the Segmentation process.
The framework API must handle the request and responses
from the OpenStack Swift server.

B. Framework APIs

The proposed Mobile Sync framework API is designed in
the same way as the well-known CRUD interface, allowing
apps to set Table/Object properties, access their data, push
new data, and resolve conflicts. The framework provides a
streaming API abstraction that allows objects to be written
to or read from, making it ideal for dealing with large object.
It also allows to read or write only a portion of a huge object
locally. Table I lists only the APIs that are specific to chunk
processing.

www.ijacsa.thesai.org 870 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

TABLE I. CHUNK PROCESSING APIS IN THE PROPOSED MOBILE SYNC
FRAMEWORK.

API Purpose

UploadObjectChunk[] Creating chunk

GetChunkObjectRange[] Retrieving chunk

RemoveChunkObject[] Remove a chunk

RemoveChunks(table, chunkref) Removing multiple chunks

UploadManifest[dataptr] Creating large objects using Chunk

DownloadManifest[] Retrieving large objects using Chunk

RemoveObjects[objptr] Deleting large objects

C. Mobile-side Large Objects Handling Method through Lev-
elDB with LSM

This proposed Mobile Sync framework integrates SQLite
for the table data structure and LevelDB for the file object
storage on the client-side. LevelDB is integrated into the SDK
of the proposed Mobile Sync framework for handling large
files. LevelDB uses an advanced data structure known as
Sorted String Table [38] and Log-Structured Merge (LSM) [39]
to handle large workloads with gigabytes of data. LevelDB’s
append and update performance meet the throughput criteria
for the mobile client-side layer. LevelDB also has atomic snap-
shot in-like functionality, which is used for synchronization.

Sorted String Table (SSTable) [38] is a valuable and
practical data structure for storing key-value pairs in large
numbers and high throughput sequential access. SSTable offers
flexibility for sequential read/write requests with workloads
consisting of data sets that are Gigabytes in size.

The Log-Structured Merge (LSM) [39] architecture adds
various new behaviors to the SSTable. Write operations are
always fast no matter the size of the data set (append-
only) because the LSM permits all write requests directly
to the MemTable index. In addition, random reads can be
obtained quickly or quickly served from memory (Initially
search MemTable and then the indexes in SSTable). SSTable
periodically flushes the MEMTables to the disk.

LevelDB architecture uses the SSTable and MemTable pro-
cessing schemes to form an efficient database engine with pow-
erful algorithms. Many other related products follow the same
architecture include Apache Cassandra, Google BigTable, and
Hadoop’s HBase.

Fast write operations are allowed in LevelDB regardless of
the data-set size, as all write operations are directly executed
to the log and the MemTable. The logs of up to 2MB are
periodically written to disk assorted string table files (SST)
into a database. Each piece of SST data is compressed into
single-writable 4K sections. Entries are positioned so that an
end-marker block designates the beginning of each data set,
and the most recently processed section of the list points to the
start of the next. Bloom filters perform lookups more quickly
and enable fast search of indexed blocks.

For an improved reading speed, LevelDB breaks SST into
sets or levels (see Fig. 4). Each level in LevelDB has ten times
the size of the previous one.

D. Server-side Large Object Support with Segmentation

This proposed Mobile Sync framework integrates Cassan-
dra [40] for the table data structure and OpenStack Swift [35]

Level 0

Level 1

Level 2

Level 3

Reads

Cache
Log

into Level 3

into Level 2

into Level 1
Max total size of 10MB, then one file compacted

Max of 4 SST files, then one file compacted

Max total size of 100MB, then one file compacted

one file compacted into next Level
Max total size of 10 X previous level, then

into a set of Level 0 SST files
Max size of 4MB (configurable), then flushed

Writes

Fig. 4. Architecture of LevelDB with SSTable and MemTable.

for the file object storage on the cloud server-side.

OpenStack Swift [35] employs the process of Segmentation
to enable large file uploads. The goal of the Segmentation
process is to create a single file that divides the object into
segments. With Segmentation, it is possible to upload a single
object of virtually any size while taking advantage of the
double uploads and the ability to upload multiple segments
in parallel.

Unless the size of an object exceeds the maximum value
(5 GB) set for the Swift cluster, each object is considered
as a single file and stored in the disk. This restriction of the
maximum file size of 5 GB avoids one object taking up all of
the storage while half of the disk is empty. If the item to be
stored is enormous, it is typically stored in several segments
to allow future reassembly.

VI. RESULTS AND DISCUSSION

The proposed Mobile Sync framework is designed for
use in large file sync scenarios, from a couple of hundred
megabytes up to several gigabytes. Multiple modules serve
both the clients and the servers from in same architecture.

The evaluation process discusses the performance of the
proposed Mobile Sync framework for the following factors:

1) The performance of Application Programming Inter-
face (API) consisting of Create, Read and Delete
queries and chunking operations [11] [41] [42]

2) The efficiency of Sync Protocol [43] [44] [45].

A. Efficiency of Chunking and Data Access APIs

The Application Programming Interface (API) of the pro-
posed Mobile Sync framework for cloud storage is designed
to handle requests from thousands of mobile clients. For
evaluating the performance of the cloud storage interface, a
Linux Test client is implemented. The prototype included a
test application to issue requests of subscriptions for reading
or writing to a table data structure exposed by the SDK by
generating a configurable number of threads. The test applica-
tion will then generate required read/write (I/O) requests. Both
file object and tabular data sizes can be configured as per the
requirement during the API testing. The chunk size for objects
and consistency scheme is also configurable.

A series of tests are conducted with an individual API
call. A combination API invokes the Create-Read-Delete to
carry out the performance testing of exposed APIs from the
proposed Mobile Sync framework. Test files ranging in varying
sizes from 1MB up to 1 GB are generated for testing. A test

www.ijacsa.thesai.org 871 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

0 200 400 600 800 1000

File size in MiB

0

20

40

60

80

100

Tim
e(

ms
)

Put API (upload)

Get API (download)

Delete API

Fig. 5. Latency for Put, Get and Delete APIs in Proposed Mobile Sync
Framework.

0 200 400 600 800 1000

File size in MiB

0

10

20

30

40

50

60

70

Tim
e(

ms
)

2MB

4MB

8MB

16MB

Fig. 6. Latency for Upload Operation with Different Chunk Sizes in
Proposed Mobile Sync Framework.

suite is created for large file reading to analyze if the Mobile
Sync framework can handle 1MB to 1GB of data. In addition,
testing is also done to delete individual files. The Create-Read
test is done with 8MB of the default chunk size. A graphical
representation in Fig. 5 shows the latency for Put, Get and
Delete APIs in the proposed Mobile Sync framework.

As illustrated in Fig. 5, latency increases with the file
size. Upload APIs also took longer than download APIs
because the upload operation includes data acknowledgments
and processing time. It is observed that the time variation of
upload data for a size greater than 500MB is less since the
framework sync protocol employs data compression during the
optimized transfer of data in the network.

The Delete operation is quicker Mobile Sync framework,
as the operation completes instantly by marking objects as
deleted, instead of removing them. The objects are per-
manently removed in the scheduled deletion cycle through
configuration. The experimental evaluations show that the
proposed Mobile Sync framework APIs can handle reading,
and removing large files with excellent efficiency.

The third measurement evaluated the performance of object
chunking. A method for modifying the object-to-to-node ratio
is achieved by altering the testing file size with varying
chunk size [11] [41] [42]. A large file size with a larger
chunk size results in a low object-to-node ratio, enabling fast
reads and writes. Fig. 7 illustrate the impact of configuring
different object chuck size (2MB, 4MB, 8Mb and 16MB) on
Upload or Put query for proposed Mobile Sync framework.
Having a large chunk size demonstrated to be more effective
since the large chunks only require a few partitions but can
transmit more data efficiently and quickly. For the proposed
Mobile Sync framework chunk size of 16MB is recommended
subjected to the

B. Sync Protocol Efficiency

The main goal of the proposed Mobile Sync framework is
the efficient synchronization of mobile device data through
high-level abstractions. It is , therefore, essential to ensure
that the synchronization process is not significantly affected
by overhead by the proposed framework. So, it has to be
shown that the Sync protocol of the Mobile Sync framework
is lightweight. To do so the overhead of synchronization of
rows with 1 byte of table data with six scenarios is calculated
as follows: First with no data, second with one-byte data, and
four other cases with 64 KB, 200 KB, 100 MB, and 300 MB
objects. In order to minimize compressibility, random bytes
are produced for the payload.

Fig. 7 and Fig. 8 show the overhead of sync protocol for
a single message with 1 row and ten rows, respectively, for
different payloads.

None 1B 64KiB 200KiB 100MB 300MB
Object Size for single row

103

104

105

106

107

108

Siz
e i
n B

yte
s

19
0.0

68
.66

1 K
iB

21
4.5

32
 Ki

B

11
4.0

5 M
B

33
9.2

 MB

10
9.2

42

19
0.6

38

68
.72

6 K
iB

21
4.7

33
 Ki

B

11
4.1

58
 MB

33
9.6

 MB

14
1 25

2

68
.90

8 K
iB

21
5.3

25
 Ki

B

11
4.4

79
 MB

34
0.5

57
 MB

PayLoadSize
MessageTransfer
NetworkTransfer

Fig. 7. Overhead of Sync Protocol for a Single Message with 1 Row with
Different Payloads.

None 1B 64KiB 200KiB 100MB 300MB
Object Size for 10 rows

102

103

104

105

106

107

108

109

Siz
e i
n B

yte
s

20
0

6.2
5 M

B

20
0.0

 Ki
B

10
34

.34
 M
B

31
60

.34
 M
B

2.4
1 K

iB 9.9
3 K

iB

6.2
6 M

B

20
0.2

5 M
B 11
09

.18
1 M

B

33
89

.55
 M
B

74
3.0

10
.46

3 K
iB

6.7
15

 M
B

20
5.0

 M
B 11

11
.32

 M
B

33
95

.76
 M
B

PayLoadSize
MessageTransfer
NetworkTransfer

Fig. 8. Overhead of Sync Protocol for a Single Message with 10 Rows with
Different Payloads.

The test results indicated that the Sync Protocol of the
Mobile Sync framework produces a total message overhead of
approximately 109 bytes. There is no object in this request but
a single row with 1 byte of tabular data. There will be a reduced
overhead for per-row baseline requests with the integration of
data compression and batch operations of 10 rows turning into
one sync request. Thus, with an increase in the payload (table
or object) size, the data transfer overhead ultimately becomes
negligible.

To sum up, the network overhead is reduced for the batched
row or multiple rows operations because of data compression
used in sync protocol. By working with single rows instead of

www.ijacsa.thesai.org 872 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

0 200 400 600 800 1000

File size (MB)

0

25

50

75

100

125

150

175

200

Ti
me

(s)
Comparison of proposed Sync framework with other frameworks for Upload data

Proposed Sync framework

Parse, 2018 (Parse Platform)

The BaasBox Server, 2019 (BaasBox)

Fig. 9. Comparison of Proposed Mobile Sync Framework with other
Frameworks for Upload Data.

batches, the Mobile Sync framework incurs a little overhead.
Hence the sync protocol is lightweight and efficient with
batching or group operations. More or less, empirical testing
supports the claim that synchronization protocol is lightweight.

C. Performance Comparison with Other Sync Frameworks

The proposed Mobile Sync framework local performance
is compared with two other open source mobile frameworks
namely ParseServer [25] and BaasBox [21]. A file size of up
to 500MB is tested in both Parse Server and BaasBox with the
prebuilt virtual machine setup available. Some custom changes
are required in Parse Server and BaasBox to support files upto
500MB .

The proposed Mobile Sync framework local performance
is compared with two other open-source mobile frameworks,
namely ParseServer and BaasBox, with a chunk size of 16MB.
Fig. 9 shows latency comparison of Upload API (Put query)
for the proposed Mobile Sync framework. The BaasBox upload
process is handled by the REST APIs in the Play framework
and takes more time than the proposed Mobile Sync frame-
work due to the time taken for HTTP buffer processing and
acknowledgment. Also, BaasBox does not support dedicated
APIs through the Play framework to handle large files. Baas-
Box seems to be better in efficiency than the Parse Server
framework. Overall the proposed framework reduces synchro-
nization time with object chunking by 65.4% for upload on
average when compared ParseServer and BaasBox.

Fig. 10 shows latency comparison of Get API (down-
load query) for the proposed Mobile Sync framework, Parse
Server, and BaasBox. The performance of Parse Server is
comparatively better than BaasBox for files up to 500MB,
and it should be noted that the experiment for download run
on mobile with only a single file and no other application
running on the device. The latency, which is the measure of
response time between the device and a service’s Server, must
be considered. Since the BaasBox, Parse Server, and proposed
Mobile Sync framework run on the virtual network setup in
the testing network, the performance is better. The proposed
Mobile Sync framework runs better than Parse Server and
BaasBox since while downloading, the tests are configured
with a chunking feature of 16MB to retrieve data in the
device. The download tests are also dependent on the memory
available for downloading and processing in the client device,
depending on the RAM size. Overall the proposed framework
reduces synchronization time with object chunking by 93.7%
for download on average when compared to ParseServer and
BaasBox.

0 200 400 600 800 1000

File size (MB)

0

20

40

60

80

100

120

140

Ti
me

(s)

Proposed Sync framework

Parse, 2018 (Parse Platform)

The BaasBox Server, 2019 (BaasBox)

Fig. 10. Comparison of Proposed Sync Framework with Other Frameworks
for Download Data.

Delete API performance in the proposed Mobile Sync
framework and other two frameworks Parse Server, and Baas-
Box is almost identical. These frameworks follow a lazy dele-
tion policy wherein objects are marked deleted and physically
removed after the completion of the sync operation.

VII. CONCLUSION AND FUTURE WORK

It is essential to develop Mobile applications to store
and access data from backend enterprise systems. Certain
usage patterns require storing and access data in large files.
Uploading or downloading large files is a complex and time-
consuming process for developers because of difficulties with
latency, bandwidth, speed, errors, and disruptions to ser-
vice in wireless mobile environment. In this article different
techniques (Chunking, Bundling, Segmentation, Compression,
Deduplication and Delta-encoding) for large objects (ranging
from hundreds of megabytes to 5GB) in different mobile cloud
storage solutions are analyzed. A Mobile Sync framework
is proposed with both flexible chunking support and high
throughput feature with segmentation technique to store and
access large objects for a mobile cloud storage framework. The
prototype implementation of the framework supported upload
or download larger objects from the cloud storage, with support
for tunable chunking configuration at the mobile side and
local caching or data transfer only for a part of large objects.
The extensive evaluations under the representative data-set
show that the Mobile Sync framework works can quickly
and effectively store large files and effortlessly keep minimal
traffic burden on large workloads with reduced synchronization
time. As a future work it is desired to extend the Mobile
Sync framework with support for consistency schemes (like
Eventual, Strong, Sequential consistency and others).

REFERENCES

[1] P. Mell and T. Grance, “The nist definition of cloud computing
recommendations of the national institute of standards and technology,”
Nist Special Publication, vol. 145, p. 7, 2011.

[2] M. Satyanarayanan, “Fundamental challenges in mobile computing,”
Annual ACM Symposium on Principles of Distributed Computing, pp.
1–7, 1996.

[3] A. Gheith, R. Rajamony, P. Bohrer, K. Agarwal, M. Kistler, B. W. Eagle,
C. Hambridge, J. Carter, and T. Kaplinger, “Ibm bluemix mobile cloud
services,” IBM Journal of Research and Development, vol. 60, no. 2-3,
pp. 7–1, 2016, doi:https://doi.org/10.1147/JRD.2016.2515422.

[4] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services,” ACM
SIGACT News, vol. 33, no. 2, p. 51, 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?id=564585.564601

www.ijacsa.thesai.org 873 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

[5] N. Agrawal, A. Aranya, and C. Ungureanu, “Mobile data sync in a
blink,” in Presented as part of the 5th USENIX Workshop on Hot Topics
in Storage and File Systems, 2013.

[6] H. Wu, L. Hamdi, and N. Mahe, “Tango: a flexible mobility-enabled
architecture for online and offline mobile enterprise applications,”
in Mobile Data Management (MDM), 2010 Eleventh International
Conference on. IEEE, 2010, pp. 230–238.

[7] B.-G. Chun, C. Curino, R. Sears, A. Shraer, S. Madden, and R. Ra-
makrishnan, “Mobius: unified messaging and data serving for mobile
apps,” in Proceedings of the 10th international conference on Mobile
systems, applications, and services. ACM, 2012, pp. 141–154,
doi:https://doi.org/10.1145/2307636.2307650.

[8] F. Shanon Montelongo, “How to upload large files,” https://blog.
filestack.com/thoughts-and-knowledge/how-to-upload-large-files/.

[9] Z. Li, X. Wang, N. Huang, M. A. Kaafar, Z. Li, J. Zhou, G. Xie,
and P. Steenkiste, “An empirical analysis of a large-scale mobile cloud
storage service,” in Proceedings of the 2016 Internet Measurement
Conference. ACM, 2016, pp. 287–301.

[10] I. Drago, M. Mellia, M. M Munafo, A. Sperotto, R. Sadre, and A. Pras,
“Inside dropbox: understanding personal cloud storage services,” in
Proceedings of the 2012 ACM conference on Internet measurement
conference. ACM, 2012, pp. 481–494, doi:https://doi.org/10.1145/
2398776.2398827.

[11] D. Perkins, N. Agrawal, A. Aranya, C. Yu, Y. Go, H. V.
Madhyastha, and C. Ungureanu, “Simba: Tunable end-to-end data
consistency for mobile apps,” in Proceedings of the Tenth European
Conference on Computer Systems. ACM, 2015, p. 7, doi:https:
//doi.org/10.1145/2741948.2741974. [Online]. Available: https://github.
com/SimbaService/Simba

[12] Y. Bai and Y. Zhang, “Stoarranger: Enabling efficient usage of cloud
storage services on mobile devices,” in Distributed Computing Systems
(ICDCS), 2017 IEEE 37th International Conference on. IEEE, 2017,
pp. 1476–1487.

[13] T. Ketola, “Quantifying software development: Applying mobile mon-
etization techniques to your software development process,” in 2014
Computer Games: AI, Animation, Mobile, Multimedia, Educational and
Serious Games (CGAMES). IEEE, 2014, pp. 1–4.

[14] A. Inc, “ios app ota limit in cellular network,” https://github.com/
baasbox/baasbox/, accessed: 2021-05-01.

[15] Google, “Reduce your app size,” https://developer.android.com/topic/
performance/reduce-apk-size, accessed: 2021-05-01.

[16] Y. Cui, Z. Lai, X. Wang, and N. Dai, “Quicksync: Improving syn-
chronization efficiency for mobile cloud storage services,” IEEE Trans-
actions on Mobile Computing, vol. 16, no. 12, pp. 3513–3526, 2017,
doi:https://doi.org/10.1109/TMC.2017.2693370.

[17] S. Hao, N. Agrawal, A. Aranya, and C. Ungureanu, “Building a
delay-tolerant cloud for mobile data,” in 2013 IEEE 14th International
Conference on Mobile Data Management, vol. 1. IEEE, 2013, pp.
293–300, doi:https://doi.org/10.1109/MDM.2013.43.

[18] N. Preguiça, M. Zawirski, A. Bieniusa, S. Duarte, V. Balegas, C. Ba-
quero, and M. Shapiro, “Swiftcloud: Fault-tolerant geo-replication
integrated all the way to the client machine,” in 2014 IEEE 33rd
International Symposium on Reliable Distributed Systems Workshops
(SRDSW). IEEE, 2014, pp. 30–33.

[19] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça, M. Na-
jafzadeh, and M. Shapiro, “Putting consistency back into eventual
consistency,” in Proceedings of the Tenth European Conference on
Computer Systems. ACM, 2015, p. 6, doi:https://doi.org/10.1145/
2741948.2741972.

[20] Parse, “Parse,” 2016, http://parse.com.
[21] “The baasbox server,” https://github.com/baasbox/baasbox/, accessed:

2019-01-26.
[22] Y. P. Faniband, I. Ishak, F. Sidi, and M. A. Jabar, “A review of data

synchronization and consistency frameworks for mobile cloud appli-
cations,” INTERNATIONAL JOURNAL OF ADVANCED COMPUTER
SCIENCE AND APPLICATIONS, vol. 9, no. 12, pp. 601–611, 2018.

[23] ——, “Netmob: A mobile application development framework
with enhanced large objects access for mobile cloud storage
service,” International Journal of Advanced Computer Science

and Applications, vol. 10, no. 7, 2019. [Online]. Available:
http://dx.doi.org/10.14569/IJACSA.2019.0100784

[24] ——, “Enhancing mobile backend as a service framework to support
synchronization of large object,” in Proceedings of the 2017 Interna-
tional Conference on Information Technology, ser. ICIT 2017. New
York, NY, USA: ACM, 2017, pp. 383–387, doi:http://doi.acm.org/10.
1145/3176653.3176719.

[25] P. Platform, “Parse platform,” 2016, https://parseplatform.github.io/.
[26] W. Brunette, S. Sudar, M. Sundt, C. Larson, J. Beorse, and R. An-

derson, “Open data kit 2.0: A services-based application framework
for disconnected data management,” in Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Ser-
vices. ACM, 2017, pp. 440–452, doi:https://doi.org/10.1145/3081333.
3081365.

[27] Dropbox, “Build your app on the dropbox platform,” 2016, https://www.
dropbox.com/developers.

[28] G. Drive, “Google drive,” 2016, https://developers.google.com/drive/.
[29] “Amazon dynamodb - best practices for storing large items

and attributes,” https://docs.aws.amazon.com/amazondynamodb/latest/
developerguide/bp-use-s3-too.html, accessed: 2019-01-26.

[30] A. Shraer, A. Aybes, B. Davis, C. Chrysafis, D. Browning, E. Krugler,
E. Stone, H. Chandler, J. Farkas, J. Quinn et al., “Cloudkit: structured
storage for mobile applications,” Proceedings of the VLDB Endowment,
vol. 11, no. 5, pp. 540–552, 2018.

[31] R. Klophaus, “Riak core: Building distributed applications without
shared state,” in ACM SIGPLAN Commercial Users of Functional
Programming. ACM, 2010, p. 14, doi:https://doi.org/10.1145/1900160.
1900176.

[32] A. Inc, “icloud for developers,” 2016, ”http://developer.apple.com/
icloud”.

[33] A. W. S. Mobile, “Aws sdk,” 2016, https://aws.amazon.com/mobile/.
[34] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, “Ivy: A

read/write peer-to-peer file system,” ACM SIGOPS Operating Systems
Review, vol. 36, no. SI, pp. 31–44, 2002, doi:https://doi.org/10.1145/
844128.844132.

[35] “Openstack swift object storage service,” 2018, http.//swift.openstack.
org.

[36] Google, “Research & Drafts — SPDY — Google Developers.”
[Online]. Available: https://developers.google.com/speed/protocols

[37] “Protocol buffers,” https://developers.google.com/protocol-buffers/, ac-
cessed: 2019-01-26.

[38] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Transactions on
Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[39] P. ONeil, E. Cheng, D. Gawlick, and E. ONeil, “The log-structured
merge-tree (lsm-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385,
1996.

[40] A. Lakshman and P. Malik, “Cassandra: structured storage system on a
p2p network,” in Proceedings of the 28th ACM symposium on Principles
of distributed computing. ACM, 2009, pp. 5–5, doi:https://doi.org/10.
1145/1582716.1582722.

[41] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, “Data Consistency
Properties and the Trade-offs in Commercial Cloud Storage: the
Consumers’ Perspective.” Cidr, pp. 134–143, 2011. [Online]. Available:
http://www.cidrdb.org/cidr2011/Papers/CIDR11{\ }Paper15.pdf

[42] L. Rupprecht, R. Zhang, B. Owen, P. Pietzuch, and D. Hildebrand,
“Swiftanalytics: Optimizing object storage for big data analytics,” in
2017 IEEE International Conference on Cloud Engineering (IC2E).
IEEE, 2017, pp. 245–251.

[43] D. Bermbach, E. Wittern, and S. Tai, Cloud service benchmarking.
Springer, 2017.

[44] M. Klems, D. Bermbach, and R. Weinert, “A runtime quality mea-
surement framework for cloud database service systems,” in Quality of
Information and Communications Technology (QUATIC), 2012 Eighth
International Conference on the. IEEE, 2012, pp. 38–46.

[45] D. Bermbach and S. Tai, “Benchmarking eventual consistency: Lessons
learned from long-term experimental studies,” in 2014 IEEE Interna-
tional Conference on Cloud Engineering. IEEE, 2014, pp. 47–56.

www.ijacsa.thesai.org 874 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

[46] S. Burckhardt, “Bringing touchdevelop to the cloud,”
2013, https://www.microsoft.com/en-us/research/blog/
bringing-touchdevelop-to-the-cloud/.

[47] S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood, “Cloud types
for eventual consistency,” in European Conference on Object-Oriented
Programming. Springer, 2012, pp. 283–307, doi:https://doi.org/10.
1007/978-3-642-31057-7 14.

[48] D. Bermbach, J. Kuhlenkamp, B. Derre, M. Klems, and S. Tai, “A
middleware guaranteeing client-centric consistency on top of eventually
consistent datastores.” in IC2E, 2013, pp. 114–123, doi:https://doi.org/

10.1109/IC2E.2013.32.
[49] “Kony mobilefabric,” http://docs.kony.com/7 0 PDFs/sync/kony sync

orm api guide.pdf, accessed: 2019-01-26.
[50] “Evernote system limits,” https://help.evernote.com/hc/en-us/articles/

209005247, accessed: 2019-01-26.
[51] Kinvey, “Kinvey baas,” 2016, https://www.kinvey.com/.

APPENDIX

www.ijacsa.thesai.org 875 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

TA
B

L
E

II
.S

U
M

M
A

R
Y

O
F

V
A

R
IO

U
S

T
E

C
H

N
IQ

U
E

S
E

M
P

L
O

Y
E

D
T

O
S

U
P

P
O

R
T

L
A

R
G

E
O

B
JE

C
T

S
IN

D
IF

F
E

R
E

N
T

R
E

F
E

R
E

N
C

E
D

A
TA

S
Y

N
C

H
R

O
N

IZ
A

T
IO

N
F

R
A

M
E

W
O

R
K

S
.

Fr
am

ew
or

k
L

ar
ge

O
bj

ec
t

Su
pp

or
t

C
hu

nk
in

g
B

un
dl

in
g

Se
gm

en
ta

tio
n

C
om

pr
es

si
on

D
ed

up
lic

at
io

n
D

el
ta

E
nc

od
in

g
O

pe
n-

So
ur

ce
Pa

rs
e

Se
rv

er
[2

5]
7

7
7

7
7

7
7

X

B
aa

sB
ox

[2
1]

7
7

7
7

7
7

7
X

O
pe

n
D

at
a

K
it

2.
0

[2
6]

*
7

7
7

7
-

7
7

X

Si
m

ba
[1

1]
7

-
7

7
X

7
7

X

Sw
if

tC
lo

ud
[1

8]
7

-
X

7
7

7
7

X

In
di

go
[1

9]
7

-
X

7
7

7
7

7

Iz
zy

[1
7]

7
-

7
7

7
7

7
7

M
ob

iu
s

[7
]

7
-

7
7

.
7

7
7

7

To
uc

hD
ev

el
op

[4
6]

[4
7]

7
-

X
7

-
7

7
7

M
id

dl
ew

ar
e

fo
r

cl
ie

nt
-c

en
tr

ic
co

ns
is

te
nc

y
[4

8]

7
-

7
7

-
-

-
7

Q
ui

ck
Sy

nc
[1

6]
X

X
X

7
7

7
7

7

N
et

M
ob

[2
3]

X
X

X
X

X
7

7
7

B
lu

em
ix

M
ob

ile
C

lo
ud

Se
rv

ic
e

[3
]

X
X

X
X

-
-

-
7

D
ro

pb
ox

[2
7]

X
X

X
7

X
7

7
7

A
m

az
on

D
yn

am
oD

B
[2

9]
X

7
7

7
-

-
-

7

G
oo

gl
e

D
riv

e
[2

8]
X

X
7

X
-

X
X

7

iC
lo

ud
w

ith
C

lo
ud

K
it

[3
2]

X
X

-
-

-
-

X
7

K
on

y
[4

9]
X

X
X

-
-

-
-

7

E
ve

rn
ot

e
[5

0]
X

X
-

-
-

X
7

7

K
in

ve
y

[5
1]

X
-

-
-

-
-

-
7

www.ijacsa.thesai.org 876 | P a g e

