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Abstract—In this paper, we further consider a method for
solving the basis pursuit denoising problem (BPDP), which has
received considerable attention in signal processing and statistical
inference. To this end, a new self-adaptive algorithm is proposed,
its global convergence results is established. Furthermore, we
also show that the method is sublinearly convergent rate of
O( 1

k
). Finally, the availability of given method is shown via some

numerical examples.
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I. INTRODUCTION

The basis pursuit denoising problem (BPDP) is considered
to be an important issue encountered in the fields of signal
processing and statistical inference, which is to find a sparse
signal x̄ ∈ Rn from linear system z = Ax̄, and can be
mathematically depicted as the following

min
x∈Rn

F (x) := f(x) + ρϕ(x), (1)

where f(x) := 1
2‖Ax− z‖

2
2, ϕ(x) = ‖x‖1, A ∈ Rm×n (m�

n), ρ > 0 is a parameter, and the `1-norm and `2-norm of
the vector x are defined by ‖x‖1 =

∑n
i=1 |xi| and ‖x‖2 =

(
∑n
i=1 x

2
i )

1/2, respectively. In addition, we denote the solution
set of the problem (1) by Ω∗, and Ω∗ 6= ∅.

Clearly, (1) is an unconstrained convex optimization prob-
lem, and some standard algorithms such as the Newton-type
algorithms or the conjugate gradient methods to solve it.
But, these methods are not suitable for large-scale cases of
BPDP, and it even become invalidation as n increases. In
recent years, there are a lot of algorithms for solving BPDP
have been extensively developed since its appearance. He
and Cai et al([1]) introduce a splitting method (MPRSM)
for solving Dantzig selector problem, and the BPDP is a
special case of this problem. Based on this theory, Sun and
Liu et al ([2])further investigate MPRSM for BPDP, and
regularize its first subproblem by the proximal regularization.
Yang and Zhang ([3]) investigate alternating direction methods
for several `1-norm minimization, including the basis pursuit
problem, the basis-pursuit denoising problems, and so on. Yu
et al.([4]) apply the primal Douglas-Rachford splitting method
to solve equivalent transformation form of BPDP. In [5], the
authors proposed some efficient methods to solve `1−-norm
minimization problems, and are used in BPDP. Zhang and
Sun ([6]) presented projection-type method to solve BPDP, its
global convergence results of the new algorithm is established.
BPDP can be transformed into a smooth optimization problem

by some splitting technique equivalent. some iterative algo-
rithms which can solve smooth optimization problem are ap-
plicable to this problem. Xiao and Zhu ([7]) transformed BPDP
into a convex constrained monotone equations, and presented
a conjugate gradient method for the equivalent the forms.
Sun and Tian ([8]) give a derivative-free conjugate gradient
projection algorithms for non-smooth equations with convex
constraints. Sun et al. ([9]) reformulated BPDP as variational
inequality problem, and proposed a novelly inverse matrix-free
proximal point algorithm. Base on the same transformation of
([9]), Feng and Wang ([10]) also proposed a projection-type
algorithm. Although there are so many ways to solve it, the
solving speed and accuracy are still need improved. In the
paper, we further consider a new self-adaptive method to solve
BPDP, which this method is sublinearly convergent rate, the
motivation behind this is for the better numerical performance
when the dimension increases.

The rest of this paper is organized below. In Section
2, some related properties are given, which are the basis
of our analysis. We present a new self-adaptive algorithm
with Armijo-like line search to solve BPDP, and show that
this method is global convergence in detail. Furthermore, the
sublinearly convergent rate of O( 1

k ) is presented. In Section
3, we give some numerical experiments on BPDP for sparse
signal recovery to show availability of the presented algorithm.
Finally, some results are described in Section 4.

In the end of this section, we give some notations used
in this paper. Use RN to denote an N -dimensional Euclidean
space with the standard inner product. For vectors x, y ∈ RM ,
we use < x, y > to denote the standard inner product. We
denote the standard l1-norm and l2-norm by ‖·‖1 and ‖·‖,
respectively.

II. ALGORITHM AND CONVERGENCE

In this section, we will present a new iterative algorithm
with Armijo-like line search to solve BPDP, and the global
convergence and sublinearly convergent rate of new algorithm
is proved in detail. To this end, we give some needed prelim-
inaries which will be used in the sequel.

Definition 2.1: ([11]) Set f : RN → R be convex. The
subdifferential of f at x is defined as

∂f(x) = {ξ ∈ RN |f(y) ≥ f(x) + 〈 ξ, y − x〉 ,∀y ∈ RN}.

For F (x) involved in (1), we establish quadratic approxi-
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mation of F (x) below:

QL(x, y) :=
[
f(y) + 〈x− y,∇f(y)〉+ L

2 ‖x− y‖
2
]

+ ρϕ(x), ∀L > 0.
(1)

Let
pL(y) = arg min

x∈Rn
{QL(x, y)}, (2)

and (2) can be further written as:

pL(y) = argmin

{
ρϕ(x) +

L

2

∥∥∥∥x− (y − 1

L
∇f(y)

)∥∥∥∥2
}
.

(3)

Next, we recall Lemma 2.1 below, which is fundamental
property for smooth function in the class C1,1. It will be crucial
for the convergence analyses of our algorithm below.

Lemma 2.1: (Lemma 3.2. [12],[13]) Let f : RN → R be
a continuously differentiable function with constant Lf . Then,
for any L ≥ Lf , one has

f(x) ≤ [f(y) + 〈x− y,∇f(y)〉+
L

2
‖x− y‖2],∀x, y ∈ RN .

(4)

From Lemma 2.1, if L ≥ Lf , then for any y ∈ Rn, one has

F (pL(y)) = f(pL(y)) + ρϕ(pL(y))
≤ [f(y) + 〈pL(y)− y,∇f(y)〉

+ L
2 ‖pL(y)− y‖2

]
+ ρϕ(pL(y))

= QL(pL(y), y).

(5)

Now, we formally state our algorithm for model (1) as
follows.

Algorithm 2.1.

Step0. Choose β > 0, ε ≥ 0, some η > 1, γ ∈
(0, 1), and an initial point x0 ∈ Rn, and let k :=
0..
Step1. For k = 1, 2, · · · , update the next iterate
xk via

(xk)i =


(θk)i + σ

Lk
if (θk)i < −

σ
Lk

0 if |(θk)i| ≤
σ
Lk

(θk)i −
σ
Lk

if (θk)i >
σ
Lk

(6)
where θk = xk−1 − 1

Lk
∇f(xk−1), Lk = ηmkβ,

and mk is the smallest integer m ≥ 0 such that

f(xk) ≤ f(xk−1) +
〈
xk − xk−1,∇f(xk−1)

〉
+ ηmβ

2

∥∥xk − xk−1∥∥2 .
(7)

Step2. If ‖xk − xk−1‖ ≤ ε, stop. Then, xk is
a solution of (1). Otherwise, go to Step 1 with
k
4
= k + 1.

Remark 2.1: By the subdifferential of the absolute value
function |t|, which be given as follows:

∂(|t|) =

{ −1 if t < 0,
[−1, 1] if t = 0,

1 if t > 0.

Combining this with (7), we obtain the following results.

If (θk)i < −
σ
Lk

, then (xk)i = (θk)i+
σ
Lk

< 0, i.e., (xk)i =

(θk)i −
σ
Lk

∂ϕ(xk)
∂xi

, where ∂ϕ(xk)
∂xi

= −1.

If (θk)i >
σ
Lk

, then (xk)i = (θk)i −
σ
Lk

> 0, i.e., (xk)i =

(θk)i −
σ
Lk

∂ϕ(xk)
∂xi

, where ∂ϕ(xk)
∂xi

= 1.

If | (θk)i | ≤
σ
Lk

, then | (θk)i |/
σ
Lk
≤ 1. From (xk)i = 0,

one has (xk)i = 0 = (θk)i+
σ
Lk

(θk)i /
σ
Lk

= (θk)i−
σ
Lk

∂ϕ(xk)
∂xi

,

where ∂ϕ(xk)
∂xi

= (θk)i /
σ
Lk

. By the above analysis, we have

xk = θk −
σ

Lk
∂ϕ(xk),

i.e.,

σ∂ϕ(xk) +∇f(xk−1) + Lk(xk − xk−1) = 0. (8)

Remark 2.2: Combining (7) with Lemma 2.2, we know
that

ηmkβ = Lk ≥ Lf = ‖A>A‖ (9)

for some m. In addition, we know that Lk/η must violate (7),
i.e., Lk < η‖A>A‖. Thus, we obtain

‖A>A‖ ≤ Lk < η‖A>A‖. (10)

Using Lk = ηmkβ and η > 1, one has β < Lk for every
k ≥ 1. Hence, β < η‖A>A‖.

Next, we will discuss global convergence results and sub-
linearly convergent rate of the proposed method. To this end,
we present some lemmas below.

Lemma 2.2: The sequence {F (xk)} generated by Algo-
rithm 2.1 is non-increasing.

Proof: For any k ≥ 1, we have

F (xk) = f(xk) + ρϕ(xk)
≤ f(xk−1) +

〈
xk − xk−1,∇f(xk−1)

〉
+ Lk

2

∥∥xk − xk−1∥∥2 + ρϕ(xk)
= QLk

(xk, xk−1)
≤ QLk

(xk−1, xk−1)
= F (xk−1),

(11)

where the first inequality is obtained by using (4)with y =
xk−1, x = xk and L = Lk, the second inequality follows
from (2) and (6). Thus, the desired result follows.

Lemma 2.3: For any x ∈ Rn, and k ≥ 1, we have

F (x)− F (xk) ≥ Lk

2

∥∥xk − xk−1∥∥2
+ Lk

〈
x− xk−1, xk−1 − xk

〉
.

(12)

Proof: By (5), one has

F (pLk
(xk−1)) ≤ QLk

(pLk
(xk−1), xk−1). (13)

By (6), one has xk = pLk
(xk−1). Combining this with (13),

we obtain

F (x)− F (xk) ≥ F (x)−QLk
(xk, xk−1). (14)
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Since f and ϕ are convex, we can deduce

F (x) = f(x) + σϕ(x)
≥ [f(xk−1) + 〈x− xk−1,∇f(xk−1)〉]

+ [σϕ(xk) + σ〈x− xk, ξk)〉],
(15)

where ξk ∈ ∂ϕ(xk). Using (1) with x = xk, y = xk−1, one
has
QLk

(xk, xk−1) = [f(xk−1) +
〈
xk − xk−1,∇f(xk−1)

〉
+ Lk

2

∥∥xk − xk−1∥∥2] + σϕ(xk).
(16)

Applying (15), (16) and (14), we have

F (x)− F (xk)
≥ F (x)−QLk

(xk, xk−1)
≥
〈
x− xk,∇f(xk−1) + σ∂ϕ(xk)

〉
− Lk

2

∥∥xk − xk−1∥∥2
= Lk

〈
x− xk, xk−1 − xk

〉
− Lk

2

∥∥xk − xk−1∥∥2
= Lk

〈
(x− xk−1) + (xk−1 − xk), xk−1 − xk

〉
− Lk

2

∥∥xk − xk−1∥∥2
= Lk

〈
x− xk−1, xk−1 − xk

〉
+ Lk

2

∥∥xk − xk−1∥∥2 .
(17)

where the first equality holds by (8).

Theorem 2.1: Suppose that x∗ be an arbitrary solution of
(1), and {xk} be sequence generated by Algorithm 2.1. Then,
for any k ≥ 1, one has

F (xk)− F (x∗) ≤
η
∥∥A>A∥∥

2k

∥∥x∗ − x0∥∥2 . (18)

Proof: Applying Lemma 2.3 with x = x∗, k = m, one
has

2
Lm (F (x∗)− F (xm))

≥
∥∥xm − xm−1∥∥2 + 2

〈
x∗ − xm−1, xm−1 − xm

〉
=
∥∥xm − xm−1∥∥2
+
〈
(x∗ − xm) + (xm − xm−1), xm−1 − xm

〉
+
〈
x∗ − xm−1, (xm−1 − x∗) + (x∗ − xm)

〉
=
〈
x∗ − xm, xm−1 − xm

〉
+
〈
x∗ − xm−1, xm−1 − x∗

〉
+
〈
x∗ − xm−1, x∗ − xm

〉
=
〈
x∗ − xm, (xm−1 − x∗) + (x∗ − xm)

〉
+
〈
x∗ − xm−1, xm−1 − x∗

〉
+
〈
x∗ − xm−1, x∗ − xm

〉
= ‖x∗ − xm‖2 −

∥∥x∗ − xm−1∥∥2 .
(19)

Since x∗ be a solution of (1), then one has F (x∗)−F (xk) ≤ 0.
Combining this with (10), we obtain

2
η‖A>A‖ (F (x∗)− F (xm))

≥ 2
Lm (F (x∗)− F (xm))

≥ ‖x∗ − xm‖2 −
∥∥x∗ − xm−1∥∥2 . (20)

where where the second inequality is by (19). By (20), we can
deduce

2

η ‖A>A‖
[kF (x∗)−

k∑
m=1

F (xm)] ≥
∥∥x∗ − xk∥∥2−∥∥x∗ − x0∥∥2 .

(21)
Applying (12) with x = xm−1, k = m, we deduce

2

Lm
(F (xm−1)− F (xm)) ≥

∥∥xm − xm−1∥∥2 . (22)

By Lemma 2.2, one has F (xm−1) − F (xm) ≥ 0, combining
(22) with (10), we obtain

2

‖A>A‖
(F (xm−1)− F (xm)) ≥

∥∥xm − xm−1∥∥2 , (23)

i.e.,
2

‖A>A‖ [(m− 1)F (xm−1)−mF (xm) + F (xm)]

≥ (m− 1)
∥∥xh − xh−1∥∥2 . (24)

By (24), we can deduce
2

η‖A>A‖ [−kF (xk) +
∑k
m=1 F (xm)]

≥ 1
η

∑k
m=1(m− 1)

∥∥xm − xm−1∥∥2 . (25)

Adding (21) and (25), we have
2k

η‖A>A‖ (F (x∗)− F (xk))

≥
∥∥x∗ − xk∥∥2
+ 1
η

∑k
m=1(m− 1)

∥∥xm − xm−1∥∥2 − ∥∥x∗ − x0∥∥2
≥ −

∥∥x∗ − x0∥∥2 .
(26)

Combining this with the fact F (x∗)− F (xk) ≤ 0, we obtain

2k

η ‖A>A‖
(F (xk)− F (x∗)) ≤

∥∥x∗ − x0∥∥2 . (27)

Thus, the desired result follows.

Remark 2.3: Theorem 2.1 indicates that we can obtain an
ε-optimal solution, denoted by x̄, and requires the number of
iterations at most [c/ε] such that F (x̄) − F (x∗) ≤ ε, where
c = η‖A>A‖‖x0−x∗‖2

2 .

Theorem 2.2: Suppose that Ω∗ is bounded. Then, the {xk}
generated by Algorithm 2.1 converges globally to a solution
of (1).

Proof: By (11), using F (x) ≥ 0, we know that {F (xk)}
be convergent. Combining this with (23), one has

lim
k→∞

‖xk − xk−1‖ = 0. (28)

Applying (19) and the fact F (x∗)− F (xk) ≤ 0, we have

‖x∗ − xk‖ ≤ ‖x∗ − xk−1‖. (29)

By (29), then the nonnegative sequence {‖xk−x∗‖} is decreas-
ing, so it converges. Since the solution set of (1) is bounded.
Thus, {xk} is bounded, and let {xki} be a subsequence of
{xk} and converges toward x̄, combining this with (28), one
has

limi→∞ ‖xki−1 − x̄‖ ≤ limi→∞ ‖xki − xki−1‖
+ limi→∞ ‖xki − x̄‖

= 0.
(30)

From (8), one has σ∂ϕ(xki)+∇f(xki−1)+Lki(x
ki−xki−1) =

0. Combining this with (30)and (28), one has

‖σ∂ϕ(x̄) +∇f(x̄)‖ = limi→∞ ‖σ∂ϕ(xki) +∇f(xki−1)‖

= limi→∞ Lki‖xki − xki−1‖
= 0.

(31)
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Since the function F (x) be convex, combining this with (31),
we have x̄ is a solution of (1). As a result, the x̄ can be
used as x∗ to discussion of Theorem 2.1 above. Thus, we
obtain that the sequence {‖xk−x̄‖} also converges, combining
limi→∞ ‖xki − x̄‖ = 0, we have limk→∞ ‖xk − x̄‖ = 0. i.e.
{xk} converges globally toward x̄.

Remark 2.4: By (28), we know that the termination criteria
in Step2 of Algorithm 2.1 is reasonable.

III. NUMERICAL RESULTS

In this section, we present some numerical experiments
about BPDP to show availability for Algorithm 2.1. All of
codes are written by MATLAB 9.2.0.538062 and performed
on a Windows 10 PC with an AMD FX-7500 Radeon R7,10
Computer Cores 4C+6G CPU, 2.10GHz CPU and 8GB of
memory. In these experiments, let

µ = 0.001, n = 211,m = floor(n/4), k = floor(m/8),

and sensing matrix A is generated by MATLAB scripts below:

[Q, R]=qr(A’,0); A=Q’.

The initial signal x̄ is generated by

p=randperm(n); x(p(1:k))=randn(k,1).

We set the stop criterion is

‖Fk − Fk−1‖
‖Fk−1‖

< 10−10,

where Fk = F (xk). The relative error is calculated by

RelErr =
‖x̂− x̄‖
‖x̄‖

,

where the recovery signal be denoted by x̂.

A. Test on additive Gaussian white Noise

In this subsection, apply Algorithm 2.1 to recover a sim-
ulated sparse signal which observation data is corrupted by
additive Gaussian white noise. We set

n = 211,m = 29, k = 26.

The original signal, the measurement and the reconstructed
signal(marked by red point) by Algorithm 2.1 are given in
Fig.1. Obviously, from the first and the third plots in Fig.1, all
elements in the original signal are circled by the red points,
which indicates that the Algorithm 2.1 can recover the original
signal quite well.

On the other hand, use a same technique in [8] to cre-
ate another type of matrix A. Using the parameters above,
the original signal, the measurement and the reconstructed
signal(marked by red point) by the Algorithm 2.1 is given
in Fig.2. It can be concluded that our algorithm is can also
reconstruct the original signal in [8] .

Fig. 1. Signal Recovery Result.

Fig. 2. Signal Recovery Result(Matrix A is Generated by [8]).

B. Compare with Different k-Sparse Signal (n = 211,m = 29)

In this subsection, we compare the CPU Time and
the RelErr among Algorithm 2.1, Algorithm 3.1 in [2]
(PPRSM)and Algorithm 3.1 in [10] (LAPM). All algorithms
have run 5 times, respectively, and the average of the the
CPU Time and the RelErr are obtained. Some parameters
about algorithms above are listed as follows:
Algorithms 2.1: β = 4, η = 3, σ = 0.01, γ = 0.5.
PPRSM: γ = 0.2, σ = 0.1.
LAPM: β = 0.25; τ = 0.6;

The numerical results are listed in Table I. From the table,
we can drive that CPU time of Algorithm 2.1 are obviously
less than other algorithms in different k-Sparse signal whether
it is Free noise or Gaussian noise. In addition, we can not only
know that the running speed is faster than other algorithms, but
also that our algorithm is more accurate than other algorithms,
which shows that Algorithm 2.1 is batter than PPRSM and
LAPM.

IV. CONCLUSION

In this paper, we consider a new self-adaptive method to
solve the basis pursuit denoising problem (BPDP), which has
received considerable attention in signal processing and sta-
tistical inference. Global convergence result of this method is
given in detail. Furthermore, the global sublinearly convergent
rate of the method also is shown. Finally, some numerical
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TABLE I. COMPARE WITH DIFFERENT K-SPARSE SIGNAL WITH FREE
NOISE OR GAUSSIAN NOISE

No noise Gaussian noise
k-Sparse signal Methods CPU Time RelErr CPU Time RelErr
60 Algorithm 2.1 2.4215 4.6268 2.2801 4.6119

PPRSM 3.8147 4.6324 3.9575 4.9572
LAPM 5.9058 4.4218 6.8491 4.6555

80 Algorithm 2.1 3.8112 4.1989 3.4419 4.3016
PPRSM 5.0971 4.4387 5.4456 4.9157
LAPM 8.6797 4.4898 9.0344 4.3922

100 Algorithm 2.1 4.1165 4.8924 4.3346 4.5957
PPRSM 6.7260 4.7547 7.3171 4.0318
LAPM 11.7922 4.6787 12.6948 4.7655

results illustrate that this algorithm is valid for the given tests
on sparse signal recovery.

According to its limitations, this work has several possible
extensions. Firstly, the parameters of Algorithm 3.1 is adjusted
dynamically to further enhance the efficiency of the corre-
sponding method. Secondly, we may established error bound
for (1) just as was done for GLCP in [14], [15], [16], [17],
and may use the error bound estimation to establish quick
convergence rate of the new Algorithm for solving (1). This
is a topic for future research.
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