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Abstract—The inherent scarcity of frequency spectrum, along 
with the fixed spectrum allocation adopted policy, has led to a 
dire shortage of this indispensable resource. Furthermore, with 
the tremendous growth of wireless applications, this problem is 
intensified as the unlicensed frequency spectrum becomes 
overcrowded and unable to meet the requirement of emerging 
radio devices operating at higher data rates. Additionally, the 
already assigned spectrum is underutilized. That has prompted 
researchers to look for a way to address spectrum scarcity and 
enable efficient use of the available spectrum. In this context, 
Cognitive Radio (CR) technology has been proposed as a 
potential means to overcome this issue by introducing 
opportunistic usage to less congested portions of the licensed 
spectrum. In addition to outlining the fundamentals of Cognitive 
Radio, including Dynamic Spectrum Access (DSA) paradigms 
and CR functions, this paper has a three-fold objective: first, 
providing an overview of Software Defined Radio (SDR), in 
which the architecture, benefits, and ongoing challenges of SDR 
are presented; second, giving an extensive review of spectrum 
sensing, covering sensing types, narrowband and wideband 
sensing schemes with their pros and cons, Machine Learning-
based sensing, and open issues that need to be further addressed 
in this field; third, exploring the use of Cognitive Radio in the 
Internet of Things (IoT) while highlighting the crucial 
contribution of CR in enabling IoT. This Review is elaborated in 
an informative fashion to help new researchers entering the area 
of Cognitive Radio Networks (CRN) to easily get involved. 

Keywords—Cognitive radio; cognitive radio networks; software 
defined radio; spectrum sensing; machine learning; CR-based IoT 

I. INTRODUCTION 
The radiofrequency spectrum represents a scarce and finite 

resource that is used for transmitting information in the radio 
environment. This resource is used by several services, 
including radiocommunication, radio broadcasting, maritime 
radio, and satellite communications. 

At the national level, the assignment of this spectrum to 
these services is managed and regulated by local authorities 
(governmental agencies) that are responsible for determining 
the appropriate frequency band, the geographical extent of the 
use of this band, the maximum transmission power, etc. One of 
the fundamental purposes of these agencies is to ensure a 
minimum interference level between the different radio 
technologies. 

At the global level, the International Telecommunication 
Union (ITU) organizes, every three to four years, the world 
radiocommunication conferences (WRC) 1so as to examine and 
revise the treaties governing the use of the radio frequency 
spectrum. 

Nevertheless, the static spectrum allocation strategy 
adopted, where spectral frequency bands allocated to a wireless 
communication system can only be used by that system, has 
caused the shortage of frequencies. This shortage is confronted 
with a strong demand for spectrum resulting from the 
emergence and abundance of wireless technologies and the 
extremely rapid proliferation of radio applications developed in 
the scope of the Internet of Things (IoT). 

In addition, while unlicensed bands like ISM (Industrial, 
Scientific, and Medical) bands can be freely used by all radios 
respecting a specific set of rules, such as a shared channel 
access mechanism and a maximum power per Hertz , they have 
become very crowded and can’t accommodate more wireless 
applications [1]. 

On the other hand, the already assigned spectrum is 
inefficiently used in all domains, such as the time domain, the 
space domain, and the frequency domain, as shown in Fig. 1. 
This was confirmed by the Federal Communications 
Commission (FCC), which reported in 2002 that the radio 
spectrum, in most of the time, was from 15% up to 85% 
underutilized [2]. 

As a result, it has been found that while some bands are 
overcrowded, such as those bands used by cellular base 
stations, many other bands are not in use or are used only for 
short periods [2]. 

Cognitive Radio (CR) technology has been commonly 
regarded as an efficient solution to address the above-
mentioned issues by enabling the opportunistic usage of the 
frequency bands that are not heavily occupied by licensed users 
[3,4]. 

1 https://www.ntia.doc.gov/category/wrc-19 
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Fig. 1. Spectrum Utilization [3]. 

A Cognitive Radio represents a Software Defined Radio 
(SDR) system [5] capable of exploring the radio environment, 
learning, and deciding to use the unoccupied portions of the 
spectrum, called "spectrum holes" or "white spaces", and 
consequently of dynamically adjusting its operating 
parameters, based on the decisions made. These decisions must 
imperatively take into account the impact on the primary users 
(PUs), which have a license on the chosen spectrum and have 
the higher priority to access it, in order not to cause them 
harmful interference. Unlicensed users, which use Cognitive 
Radio to access the spectrum, are referred to as secondary users 
(SUs). 

Furthermore, the transition from analog to digital television 
has released many frequencies, known as TV white spaces, 
which have too high propagation and penetration qualities [6]. 
For this reason, the FCC authorized in 2008 the use of these 
frequencies by non-licensed users following a list of rules like 
using the geo-location capability to obtain the available TV 
bands, from White Space DataBase (WSDB), before operating 
[7–9]. That has created a lot of opportunities for Cognitive 
radio users. 

The remarkable contribution of this promising technology 
to the efficient use of spectrum, the minimization of 
interference, the reduction of cost, etc., has pushed its use in 
several areas, namely the Internet of Things (IoT). 

The main objective of this paper is to provide a 
comprehensive survey of Cognitive radio with a particular 
focus given to: 

• Software Defined Radio, as it is the building block of 
Cognitive Radio system; 

• Spectrum sensing, as one of the most important pillars 
to set up a Cognitive Radio system; 

• CR-Based IoT, given that Cognitive Radio is one of the 
important enabler technologies of IoT. 

To the best of our knowledge, in the literature, there is no 
such work that gives a comprehensive survey of the three 
aforementioned aspects, highlights the relation between them, 
and exhibits the future research directions to handle their 

challenges in a single paper. The existing surveys dealt only 
with a particular aspect. 

The remainder of this paper is organized as follows: 
Section II gives the fundamentals of Cognitive Radio 
technology. Section III exhibits an overview of Software 
Defined Radio and its different challenges. Section IV provides 
a detailed view of spectrum sensing and its challenges. Section 
V highlights the use of Cognitive Radio in IoT. Finally, this 
article is concluded in Section VI. 

II. COGNITIVE RADIO FUNDAMENTALS 
Cognitive Radio technology was first introduced by Joseph 

Mitola in 1999 to depict an intelligent radio system capable of 
reconfiguring dynamically its radio parameters according to its 
operational environment and to the user’s QoS requirements 
[4]. Afterward, Cognitive Radio has been defined in many 
ways by different entities and researchers. The Federal 
Communications Commission defined CR as follows: 
“Cognitive radio: A radio or system that senses its operational 
electromagnetic environment and can dynamically and 
autonomously adjust its radio operating parameters to modify 
system operation, such as maximize throughput, mitigate 
interference, facilitate interoperability, access secondary 
markets.” [10]. 

Moreover, Simon Haykin defined CR as “an intelligent 
wireless communication system, capable of being aware of its 
environment, learning, and adaptively changing its operating 
parameters (e.g., transmit-power, carrier-frequency, and 
modulation strategy) in real-time for providing reliable 
communication (anytime and anywhere) and efficient 
utilization of the radio spectrum” [11]. 

As mentioned in the above definitions, the main 
characteristics of Cognitive Radio are cognitive capability and 
reconfigurability [3,11]. 

Thanks to the cognitive capability feature, the CR user can 
sense and collect information related to its radio environment 
and choose the best channel to use. The collected information 
mainly involves transmission frequency, power, bandwidth, 
modulation, etc. 

The reconfigurability feature allows CR users to adjust 
automatically its operating parameters (transmission frequency, 
modulation, power, etc.) based on the gathered information and 
without the need to change the hardware. Hence an efficient 
and effective Cognitive Radio system is imperatively built on 
Software Defined Radio platform. The latter will be briefly 
reviewed in the next section. 

A. Dynamic Spectrum Access 
By means of Dynamic Spectrum Access (DSA) techniques, 

Cognitive Radio enables secondary users to use the unoccupied 
portions of licensed spectrum which are known as spectrum 
holes or white spaces. When a primary user appears, the 
secondary user vacates the current band and moves to another 
spectrum hole or keeps transmitting on the same band and 
adjusting its transmission power level or modulation scheme in 
order not to cause any harmful interference to the licensed user 
or affect its QoS as illustrated in Fig. 2 [3]. 
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Fig. 2. Spectrum Hole Concept [3]. 

There are three DSA approaches that the SUs can use to 
dynamically access the available spectral opportunities: 
underlay, interweave, and overlay [12]. 

1) Spectrum underlay: In the underlay transmission mode, 
the SU can coexist with the PU as long as the SU operates 
below the noise floor of the PU. In other words, the 
coexistence between the SU and the PU may occur if only the 
interference caused by the SU at the PU receiver remains 
under a predefined threshold, known as the “interference 
temperature” [13,14]. To meet the interference threshold 
requirement, SU can use some techniques such as spreading 
its signal over a wide bandwidth below the noise floor of the 
PU or using multiple antennas to direct its signals away from 
the PU receiver [15]. 

Moreover, in the case of the underlay approach, the 
spectrum sensing process is not required and the SUs can 
transmit the data over the spectrum even if it is occupied all the 
time by the PUs. Therefore, this paradigm is more appropriate 
to use in situations when the spectrum usage status of PUs 
changes rapidly [12]. 

Nevertheless, meeting the interference constraint forces the 
SU to limit its transmission power and consequently to operate 
over a small coverage. 

2) Spectrum interweave: As regards the interweave 
transmission mode, it stands for the opportunistic usage of the 
available spectrum holes which was the major motivation 
behind the introduction of the Cognitive Radio technology 
[16]. This paradigm mandates that SUs should have only 
access to the unoccupied spectrum resources. Thus, spectrum 
sensing is needed to identify the vacant spectrum bands that 
are not currently occupied by the PUs. 

Furthermore, in this case, harmful interferences to PUs are 
avoided due to the fact that SUs do not transmit concurrently 
with the PUs. Whereas, the constant tracking of spectrum 
opportunities is a challenging task, especially in rapidly 
changing environments in terms of spectrum occupancy. 
Hence, this approach is more adequate for slowly changing 
environments [12,17]. 

Concerning power resources, they are only limited by the 
range of the identified spectrum holes. 

It is also worth noting that this class of dynamic spectrum 
access is also referred to as opportunistic spectrum access [18]. 

3) Spectrum overlay: In respect to the overlay 
transmission mode, it is like the underlay approach in that 
both approaches allow SUs to simultaneously transmit with 
PUs. However, in the overlay mode, SUs can transmit at any 
power without a predefined interference threshold constraint. 

Moreover, in this paradigm, the performance of the PU 
shouldn't be negatively affected by the presence of the SU. To 
meet this requirement, SUs use a variety of techniques that 
require prior knowledge about PUs' codebooks and messages 
[19]. For instance, SUs can divide their power into two parts: 
one is assigned to transmit their packets and the other is 
allocated to support the PUs’ transmissions. In that way, the 
interference caused by the SU at the PU receiver can be 
compensated by the enhancement of the PU’s signal-to-noise 
power ratio (SNR), by dint of the part of SU’s power that is 
used to relay the PU packets. 

Additionally, SUs can exploit knowledge about PUs' 
codebooks and messages to cancel the interference caused by 
PUs, using techniques such as dirty paper coding [19]. 

Finally, hybrid schemes that combine these transmission 
modes can be conceived to increase the overall throughput of 
the wireless networks [20]. 

B. Cognitive Radio Functions 
The various tasks performed by a Cognitive Radio, 

including detecting spectrum holes, selecting the best available 
channel, determining the transmission parameters, sharing 
spectrum with other users, and moving to another frequency 
band when a licensed user appears are referred to as the 
cognitive cycle (See Fig. 3) [21]. 

In general, the cognitive cycle can be divided into three 
functional steps, namely spectrum sensing and analysis, 
spectrum management and handoff, and spectrum allocation 
and sharing [21]: 

• Spectrum sensing and analysis: in this phase, CR 
monitors the radio environment, detects the spectrum 
holes, and estimates its different characteristics. 

• Spectrum management and handoff: at this stage, CR 
chooses the best spectrum white space, determines the 
transmission parameters, and hops among different 
bands based on the channel characteristics and user 
requirements [3,21]. 

• Spectrum allocation and sharing: through these 
functions, CR can share and coordinate the spectrum 
access with other users. The coexistence with licensed 
users is restricted by their allowable interference level. 
Thus, secondary users should adjust their transmission 
parameters accordingly. As for sharing spectrum access 
with CR users, efficient spectrum access coordination is 
required so as to avoid collisions and interferences [21]. 
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Fig. 3. Cognitive Cycle [21]. 

With respect to the layer they are in, the aforesaid functions 
can be classified into three groups namely physical layer 
(PHY) functions, the medium access control layer (MAC) 
functions, and network layer functions as shown in Fig. 4 [22]: 

 
Fig. 4. Key Functions of the PHY, MAC, and Network Layers in a CR [22]. 

1) Physical layer functions: CR PHY layer is responsible 
for many tasks, including, but not limited to, identifying 
spectrum holes through spectrum sensing and acquiring 
advanced radio environment knowledge, such as the channel 
gain from the CR transmitter to the primary receiver and 
channel-state information (CSI), via environmental learning 
[22]. Based on the gathered information, cognitive spectrum 
access is performed by using transceiver optimization and 
reconfiguration. 

2) Medium access control layer functions: CR MAC layer 
incorporates two key functions that allow to control and 
manage spectrum sensing operations as well as access to the 
identified spectrum opportunities. The first function is known 
as sensing scheduling, whereas the second is referred to as 
spectrum-aware access control. The operations of these 
functions are controlled by the sensing-access coordinator, on 
a time basis, by taking into consideration the compromise 
between the sensing requirement and the availability of the 
spectrum access opportunity. 

In comparison with the conventional wireless 
communications MAC layer, the CR MAC layer is more 
complicated to implement because of the dynamic nature of the 
radio environment and the constant adaptation process that the 
CR should perform. More detailed information about the CR 
MAC layer can be found in [23,24]. 

3) Network layer functions: CR network layer provides 
three main functions: network tomography, quality of service 
(QoS) and error control, and spectrum-aware routing [22]. 

Network tomography refers to the operation by which the 
CR nodes sense the traffic patterns of the primary and the 
coexisting networks. The output of this operation provides 
important baseline data that allows a better understanding of 
the routing design and the network utilization at the packet 
level. 

Quality of service (QoS) control and error control are of 
paramount importance to build a successful CR network. 
Statistical control can be used to address these tasks over 
CRNs that are characterized by opportunistic links. 

Furthermore, In CR networks, data routing is a challenging 
problem due to varying link quality, frequent topology 
changes, and sporadic connectivity caused by the movement of 
PUs in the network [25]. In such a changing environment, the 
spectrum-aware routing function should be enabled in order to 
find optimal routes and paths while avoiding PUs. This 
function has two problems to handle [21]: the first problem 
relates to the fact that routing algorithms and protocols should 
be aware of the various network characteristics such as 
spectrum availability, PU activity, channel switching delay, 
and link qualities and take them into consideration while 
executing their different operations. The second problem deals 
with the setting up of interaction between routing algorithms 
and dynamic spectrum allocation routines so as to select 
routing paths with minimum interferences. 

Moreover, the optimization of the energy consumption, the 
desired QoS, and the spectrum management should be 
considered while designing routing algorithms and protocols 
for CR networks. Routing protocols are further detailed in [26]. 

Finally, the spectrum manager serves as the means of 
establishing a connection between the three aforementioned 
layers and ensuring dynamic and efficient access to the 
available spectrum. 

C. Cognitive Radio Networks 
A Cognitive Radio Network (CRN) consists of a number of 

CR nodes with or without a secondary base station. 

Based on the presence of infrastructure support, CRNs can 
be classified as either an Infrastructure-based network 
(centralized) or an Ad-Hoc network (distributed). Moreover, 
CRNs can be also deployed in another architecture known as 
Mesh architecture that combines Infrastructure-based and Ad-
Hoc modes. A brief description of these architectures is given 
below. 

1) Infrastructure-based CR network: It is a centralized 
architecture which contains a CR base station that is 
responsible for controlling and coordinating the transmission 
activities of the CR nodes. In this architecture, the CR base 
station retrieves the spectrum related information from all the 
SUs in the network and on the basis of the gathered 
information, it makes decisions on spectrum access and 
sharing for all CR nodes. 

103 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 6, 2021 

Compared to Ad-hoc network, infrastructure-based network 
provides many advantages including, the reliability of the 
sensing process, collision avoidance, and a high data right for 
SUs. However, an infrastructure is required to build such a 
network. 

Some examples of centralized networks include: 

• The IEEE 802.22 network: it is the first wireless 
regional area network standard that defines 
specifications for broadband wireless access using CR 
technology in TVWS bands [27]; 

• Spectrum Efficient Uni and Multi-cast Services Over 
Dynamic Radio Network in Vehicular Environments 
(Over DRiVE) [28]; 

• European Dynamic Radio for IP services in Vehicular 
Environment (DRiVE) [29]; 

• Wi-Fi (IEEE 802.11) [30]. 

2) Ad-hoc mode CR network: In Ad-hoc CRNs, there is no 
need for base stations or access points to coordinate the SUs. 
Thus, in the absence of a central controlling entity, SUs in 
such a distributed network, make independent decisions 
concerning spectrum access and transmission parameters. 
Additionally, SUs must use distributed DSA protocols so as to 
manage the spectrum access operation. Designing distributed 
DSA protocols for Ad-hoc CRNs is a challenging task because 
of the absence of central control entities and the completely 
distributed networking architecture [12]. These protocols 
should support a set of functions including, transparency for 
PUs, collision avoidance, accurate spectrum sensing, and 
efficient dynamic spectrum allocation [12]. 

III. SOFTWARE DEFINED RADIO: OVERVIEW 
Given that SDR is considered as an enabling technology 

that handles the implementation of Cognitive Radio, this 
section will be dedicated to a brief overview of SDR. 

A. Definition of SDR 
Software Defined Radio [31,32] is referred to as a 

programmable radio transceiver where digital signal processing 
functions, such as modulation/demodulation, coding/decoding, 
error control, interleaving/deinterleaving, and 
scrambling/descrambling are implemented by means of 
software instead of hardware as it has been used in traditional 
radio communication systems. That enables the 
implementation of different waveform standards in a single 
platform and switching between them without any change in 
the hardware components. In some cases, there is just the need 
of a simple software upgrade to support other modes, bands, 
and functions. 

Many hardware platforms are used to implement the 
software part of SDR, mainly, General Purpose Processor 
(GPP), Digital Signal Processor (DSP), Field Programmable 
Gate Arrays (FPGA), and Application Specific Integrated 
Circuit (ASIC) [33]. 

Each of the above-mentioned platforms has its own 
challenges, limitations, and strengths in terms of computational 
power, power consumption, implementation cost, flexibility 
and reconfigurability, and complexity of design (See Table I). 

B. SDR Architecture 
Joseph Mitola proposed the architecture of an ideal 

software radio transceiver that includes three components, 
namely an antenna, a Digital-to-Analog/Analog-to-Digital 
converter, and a processing unit as illustrated in Fig. 5. The 
processing unit allows performing, in software, all the digital 
signal processing functions, including 
modulation/demodulation, coding/decoding, and error control 
[3]. 

 
Fig. 5. Ideal Software Radio [16]. 

Many factors impede the real implementation of this 
proposed architecture such as the technology limitations, more 
particularly those related to ADC’s performance, computing 
power, and power consumption of the processing unit. 

Unlike the ideal software radio transceiver, the SDR 
transceiver is feasible. Indeed, the general architecture of SDRs 
contains more components that make its real implementation 
possible. 

As shown in Fig. 6, the SDR transceiver includes mainly 
four parts which are an antenna, an analog RF front end, a 
digital RF front end, and the signal processing unit. 

1) Antenna: One of the main tasks expected from an SDR 
platform is its ability to cover multiple frequency bands. Thus, 
SDR platforms often use Intelligent/Smart antennas so as to 
fulfill the aforementioned task. 

A smart antenna consists of an antenna array combined 
with signal processing blocks that allow to smartly exploit the 
spatial diversity in order to select the appropriate frequency 
band and adapt with interference nulling, and mobile tracking 
[34,35]. 

An antenna for SDR should ideally integrate some features 
such as self-adaptation, self-alignment and self-healing [35]. 
These characteristics can be defined as follows: 

• Self-adaptation: it is the capability of an antenna to 
adapt its parameters according to the selected band and 
the system requirements (gain…); 

• Self-alignment: it is the capability of an antenna to 
control its radiation pattern; 

• Self-healing: it is the capability of an antenna to avoid 
interferences. 
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2) Analog RF front end: The RF front end part [34] 
represents an analog circuitry where the following operations 
are performed: 

In the transmission path, Digital-to-Analogue Converter 
(DAC) converts digital samples into an analog signal which 
represents the input of the RF Front End. After that, the analog 
signal is mixed with high frequency carriers, modulated to a 
preset RF frequency, and then transmitted. 

In the receiving path, the RF signal captured by the antenna 
is fed to the RF Front end section through a matching circuitry 
which allows achieving an optimum signal power transfer. 
Then, in order to amplify very low-power signals while 
guaranteeing a minimum noise level, the RF signal passes 
through a Low Noise Amplifier (LNA) which is often mounted 
very close to the antenna. Afterward, the output of the LNA is 
mixed with a signal from the Local Oscillator (LO) so as to 
shift to a lower fixed frequency known as intermediate 
frequency (IF). 

The frequency generated by the Local Oscillator is 
adjustable to ensure that the mixer produces a lower fixed 
intermediate frequency independent of the incoming RF signal. 

The intermediate frequency presents several advantages: it 
improves the selectivity due to the fact of being fixed and it 
increases the performance of the processing unit and the global 
gain of the receiver owing to be lower than the incoming 
frequency. 

3) Digital front end: The Digital Front end section [34] 
contains a set of blocks that are responsible for performing all 
of the succeeding functions: 

In the transmission path, the digital baseband signal (near-
zero frequency range) is shifted into the IF frequency by the 
Digital Up Converter (DUC) then it passes through the Digital 
Analog Converter (DAC) that converts it to the analog IF 
signal. The analog IF signal is later up-converted to RF signal. 

In the receiving path, the analog IF signal is converted to 
digital IF samples by the Analog to Digital Converter (ADC). 
Next, the Digital Down Converter (DDC) changes the IF 
samples to a baseband signal which is then resampled and 
filtered before being processed by the signal processing unit. 

These above-mentioned tasks can be divided into two 
principal functions which are Resampling and Channelization. 
Resampling or Sample Rate Conversion (SRC) is the process 
of converting samples from one sample rate to another. As for 
Channelization, it involves up/down conversion and channel 
filtering. 

4) Signal processing unit: This block is regarded as the 
main part of SDR architecture which is designed to perform 
Digital Signal Processing functions such as 
modulation/demodulation and encoding/decoding. 

As already mentioned in this paper many hardware 
platforms are used to implement this section, namely DSP, 
GPP, GPU, ASIC, and FPGA [36–39]. The real challenge is 
determining which of these platforms is best to achieve SDR 
goals and which design approach is appropriate to meet the 
requested quality of service. 

Table I shows the strengths and weaknesses of some 
hardware platforms and highlights certain techniques used to 
improve their performance. 

 
Fig. 6. SDR Transceiver. 
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TABLE I. COMPARISON OF SDR HARDWARE PLATFORMS 

Hardware Strengths Weaknesses Performance improvement 

GPP [36–38] 

Extremely flexible. 
Easily programmable.  
Reconfigurable. 
Use of high-level languages.  
Cost reduction. 
Functions portability. 
Extremely flexible. 
Easily programmable. 
Reconfigurable. 
Use of high-level languages 
(C++…).  
Cost reduction. 
Functions portability. 

Real time applications. are not supported. 
Power inefficient. 

Use of multi-core GPPs to enable the parallelism 
and perform more operations per clock cycle. 
Use of GPU for intensive computing task (Turbo 
code, Fast Fourrier Transform…). 

DSP [39] 

Extremely flexible. 
Easily programmable. 
Power efficient. 
Faster than GPP. 
Use of high-level languages (C…). 

Lack of the required processing speeds for 
wideband transmissions. 
Consuming more power than FPGA. 

Running two DSPs in parallel. 

ASIC [38] 

Computationally powerful. 
Performing at higher speed than 
FPGA. 
Smaller in size. 
More power efficient than GPP. 

Not reprogrammable. 
Very expensive (Each chip is designed for a 
specific application). 

_ 

FPGA [38] 

Computationally powerful. 
Capability to implement any design 
or function. 
Power efficient.  
Programmability.  
Seamless switching between. modes 
and functions. 
High speed performance. 
Cheaper than ASIC. 

Difficulty to implement new modules.  
Prior Knowledge of the hardware architecture is 
required for an efficient module 
implementation. 
The implementation task takes a lot of time.  
Limited portability (HDL code). 
Consuming more power than ASIC. 
Taking more area than ASICs. 

Use of High-Level Synthesis that enables the rapid 
implementation of new functions with no prior 
experience with hardware design. 

Several metrics are used to compare the performance of 
hardware platforms, the most used are computing power, 
energy consumption, flexibility and reconfiguration, 
adaptability, cost, and complexity. 

To exploit the advantages of each platform, researchers 
have proposed the co-design (hybrid) approach as a solution. 
This approach consists of regrouping design schemes that 
employ hardware techniques, such as FPGAs and ASICs, and 
those that use software solutions including GPPs, into one 
platform. 

This approach presents some issues, the most known are 
the problem related to the shared access of the internal memory 
by different units (FPGAs, Processors ...) and the very 
expensive cost of the whole implementation. 

One of the interesting readings that give a detailed review 
of the aforementioned platforms, can be found in [35]. 

C. SDR Advantages 
Software Defined Radio technology has brought a lot of 

advantages to the world of wireless communications, such as 
reconfigurability and flexibility, interoperability, and cost 
reduction [34,37]: 

• Reconfigurability and Flexibility: The main feature of 
SDR is its capacity to handle wireless standards newly 
developed by simply changing or upgrading the 
reconfigurable software instead of replacing the 
hardware platform or its analog components. 

• Interoperability: One of the most important benefits of 
SDR is its ability to resolve interoperability problems 
between incompatible radios that work with different 
wireless standards. 

• Cost reduction: Several expensive hardware 
components disappeared due to the fact that in SDR 
many digital signal processing functions are 
implemented by means of software. 

In addition to the forenamed benefits, SDR allows to test 
and study several communication standards by using the same 
platform. Furthermore, SDR is regarded as the block building 
of a Cognitive Radio system and as already mentioned in this 
paper, SDR enables the reconfigurability of Cognitive Radio. 

D. SDR Tools 
There are different commercial and open-source tools that 

can be used for SDR development. Choosing the more 
appropriate development tool for a specific design 
methodology requires prior knowledge of the available tools’ 
features. Examples of these tools include GNU Radio, 
Universal Software Radio Peripheral (USRP), MATLAB, 
LabVIEW, and CUDA. 

GNU Radio and USRP are the most widely used tools to 
develop SDR systems [40]. A brief description of these two 
tools is given below: 

GNU Radio: GNU Radio is a free & open-source software 
toolkit for building software radios [35]. It runs on host 

106 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 6, 2021 

computers and it provides many signal processing blocks such 
as filters, decoders, and demodulators which are required to 
implement software radios. These blocks are programmed in 
C++ and they are often connected using Python script that has 
the advantage of allowing the data flow to be at the maximum 
rate, without being interpreted [41]. In addition, this tool offers 
the possibility of easily programming and adding new blocks 
for supporting unavailable functions. GNU Radio can be used 
jointly with Universal Software Radio Peripheral systems or 
other alternatives to set up complete SDR platforms. 

USRP: Universal Software Radio Peripheral is the most 
commonly used transceiver for SDR platforms, developed by 
Ettus2 Research under GPL license. USRPs are available in 
several series and versions, differentiated by their hardware 
performances and their connection method to a host computer. 
Generally, USRP is a board that integrates the following 
components: ADC/ DAC, an FPGA board, an RF front end, 
and a PC host interface [42]. Based on the USRP series, a 
certain number of daughterboards can also be held. 
Daughterboards perform functions such as filtering and 
conversion between RF and baseband signals (up/down 
conversions) and may support applications operating up to 6 
GHz due to being modular. Concerning the other signal 
processing functions, the majority of them are performed at the 
host machine and only some operations are processed by the 
FPGA board [42]. USRP platforms offer several advantages, 
including ease-of-use, affordability, and flexibility. However, 
bandwidth limitations of USRP components have an impact on 
system throughput. That makes USRP platforms only suitable 
for research experiments and rapid prototyping [35,42]. 

E. SDR Challenges 
In this subsection, the challenges that still remain to be 

addressed for implementing efficient and practical SDR 
systems are presented. 

1) Security and attack issues: Although SDR has brought 
many powerful advantages to the field of wireless 
communication, it has introduced new types of security threats 
and attack issues. Indeed, in addition to the known threats that 
exist in conventional wireless communication systems such as 
denial of service attacks, misconfiguration issues, listening 
and capturing data that can be used to perform malicious 
actions, there are several threats that are specific to SDR, 
including downloading and running malicious software. 

In the absence of authentication and verification 
techniques, unauthorized software can easily be installed and 
activated on SDR terminals. The challenge of implementing 
protection techniques and security mechanisms, to prevent this 
issue, has been addressed by many researchers. For instance, in 
[43] a framework for establishing secure download for SDR is 
presented. This framework uses a public/private key scheme to 
verify the authenticity of the software. The digital signature is 
considered as a good solution to keep malicious and 
unauthorized software from being activated on SDR nodes, 
nevertheless, it greatly increases the complexity of the 

2 https://www.ettus.com/ 

framework due to the fact that for each combination of 
waveform and terminal, a digital signature should be created. 

Furthermore, the data configuration of SDR components 
can be prone to extraction, alteration, or destruction. Those 
issues can be prevented by guaranteeing the integrity of the 
security administrative module (SAM) and implementing data 
integrity and protection techniques [44]. 

2) Energy efficiency: Addressing the power consumption 
issue is of primary importance especially when designing 
solutions that are intended for battery-powered devices and 
low power objects in an IoT network. Several reasons are 
behind the importance of addressing power consumption 
management, including limited size and battery, ensuring a 
longer lifetime of IoT objects, and enabling Green Computing 
[17,45]. In SDR, many factors contribute to the loss of energy 
efficiency, namely signal processing complexity and the 
increased hardware requirements. To alleviate this loss, the 
authors of [46] proposed a cooperative wireless network 
scheme that is based on resource sharing (Battery, processing 
unit, memory…). 

3) Antenna requirements for SDR: One of the major 
challenges in SDR is to design wideband antennas that support 
different technologies and standards. Although smart and 
reconfigurable antennas are used to resolve this concern, 
several constraints still hamper the SDR implementation in 
portable handsets and other systems, such as bandwidth and 
gain limitations, which are imposed by the antenna size, and 
the complexity of a design that meets all the antenna 
requirements for SDR [47]. 

4) Hybrid design: Implementing an optimal SDR design, 
that meets the real-time requirements at low power and cost 
while maintaining flexibility and programmability, represents 
a great challenge. Researchers address this issue by using the 
hybrid approach which enables the use of hardware schemes 
(ASICs…) along with software schemes (GPP...) in the same 
platform in order to take advantage of their different benefits. 

The hybrid design has also its own challenges in both 
physical and MAC layers, including partitioning and 
scheduling problems [35]. 

5) ADC and DAC limitations: The concept of an ideal 
software defined radio transceiver consists in placing the 
ADC/DAC as close as possible to the antenna. That requires a 
very high-speed ADC/DAC with sampling capability up to 
Giga Samples per second which is actually not feasible. To 
overcome this issue, an RF front end block is placed right after 
the antenna so as to shift the incoming frequency to an 
intermediate frequency that can be supported by the currently 
available ADC/DAC. 

IV. SPECTRUM SENSING 
Sensing is considered as the most important and critical 

phase in the Cognitive Radio cycle. It refers to the operation by 
which the CR users can be aware of the channel occupancy, the 
presence of the primary user, the quality of the radio channel, 
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and other parameters such as transmission power, bandwidth, 
modulation, etc. Based on this gathered information, the CR 
users can determine the vacant portion of the spectrum and 
choose the white spaces which meet its QoS. 

This section gives a detailed view of sensing spectrum 
function in Cognitive Radio Networks. 

A. Multi-dimensional Spectrum Sensing 
Through the sensing function, Cognitive radio can identify 

the existing spectrum opportunities in its surrounding 
environment by using different sensing techniques. Spectrum 
opportunity is conventionally defined as “a band of frequencies 
that are not being used by the primary user of that band at a 
particular time in a particular geographic area” [48,49]. This 
definition takes into consideration only three dimensions, 
namely frequency, time, and space. However, there are other 
dimensions that can be exploited to create new opportunities 
such as code dimension and angle dimension. Developing 
sensing algorithms that take into account all those dimensions 
encounters more complex and challenging issues. 

A radio environment in which all the aforementioned 
dimensions are exploited to share spectrum access among 
multiple users is known by several names including, 
hyperspace, electro space, and radio spectrum space. Table II 
shows parameters that are needed to be sensed for each 
dimension and highlights its main idea [49]. 

B. Types of Spectrum Sensing 
Spectrum sensing approaches can be divided into several 

types on the basis of specific aspects, including the cooperation 
between secondary users, the bands of interest, the sensing 
execution time, and the number of sensed channels at a time 
(See Fig. 7) [50]: 

Based on the bands of interest for the Cognitive Radio 
system, spectrum sensing falls into two groups: in-band 
sensing and out-of-band sensing. In-band sensing consists in 
sensing the channel that is already transmitting, in the aim of 
detecting primary user signals and avoiding harmful 
interferences [51,52]. As to out-of-band sensing, CR senses 
bands other than the band on which it is transmitting so as to 
discover new spectrum holes [51]. 

Based on the sensing execution time, two classes of 
spectrum sensing can be distinguished: reactive (on-demand) 
and proactive(periodic) sensing. The reactive sensing takes 
place when the secondary user intends to transmit or as a result 
of radio environmental changes. In proactive sensing, CR users 
sense the radio environment persistently so as to detect 
spectrum opportunities. Reactive sensing is more energy 
efficient but the time to identify an unoccupied channel may be 
longer than proactive sensing. 

Among the types of spectrum sensing, we also find 
synchronous sensing and asynchronous sensing. In 
synchronous sensing, all CRs respect the same schedule to 
sense a frequency band. In that case, a high synchronization 
between CRs represents a challenging task. 

TABLE II. MULTI-DIMENSIONAL SPECTRUM SENSING 

Dimension Parameters to sense Idea and remarks 

Frequency Available frequency bands 

The available frequency band is segmented into disjoint sub-
bands. Identifying opportunities in the frequency domain consists 
in determining the unoccupied sub-bands. It is unlikely that all the 
bands can be used concurrently at the same time.  

Time Available time slots in a specific band For a given frequency band, there will be times when it is 
unoccupied and available for opportunistic usage.  

Geographic Space PU’s location (latitude, longitude, an elevation) 
Distance of primary users 

At a specific time, certain channels may be available for 
opportunistic usage in some geographical zones while being 
entirely occupied in other zones. The path loss in space enables 
secondary users to identify the presence or the absence of a 
primary user in a given local area by just looking at the 
interference level. If there is no interference, then the primary 
user is absent otherwise it is present. However, the risk of creating 
harmful interferences to a hidden primary user is possible. This 
issue is discussed later in this article. 

Angle PU’s beam directions (azimuth and elevation angle). 
PU’s location. 

By leveraging advanced antenna technologies (e.g., Beamforming 
technology), identifying PU’s location, and determining PU’s 
beam directions, new spectrum holes in the angle domain might 
be available for opportunistic usage. Indeed, the secondary user 
can transmit in the same frequency band along with the primary 
user at the same time in the same location by choosing a different 
direction without causing interferences to the licensed user. 

Code 

PU’s spreading code, time hopping (TH), or frequency hopping 
(FH) sequences. 
Awareness of timing information is needed so that SU can 
synchronize its transmission with PU. 

By being aware of code sequences that primary users are using at 
a given time, secondary users can transmit simultaneously along 
with primary users over the available spectrum by choosing 
different code sequences in such a way as to avoid creating 
interferences on primary users. It is important to note that 
simultaneous transmission is possible by using orthogonal codes. 
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In the case of asynchronous sensing, each CR has its own 
schedule to sense a frequency band. Distinguishing between 
SU signals and PU signals is a challenging problem. 

In respect to the cooperation aspect, there are two classes of 
spectrum sensing: cooperative and non-cooperative (local) 
Sensing. In non-cooperative sensing, each CR settles for its 
own sensing data and independently decides on the channel 
state, i.e. the presence or the absence of the primary user. 
Decisions that are made through this sensing type are 
unreliable and error prone under bad channel conditions, 
multipath fading and shadowing effects, and hidden node 
issues [53]. 

The aforementioned issues can be avoided by using 
cooperative sensing [21,53]. Indeed, when cooperative sensing 
is enabled, CR users share their local observations and sensing 
data with others and exploit the shared sensing outcomes of 
other users to decide on the presence or absence of the primary 
user. Several works have been carried out on this topic and it 
has been shown that cooperative sensing contributes to the 
improvement of detection accuracy and reliability on the cost 
of increased latency and traffic overhead. It has also been 
proven that cooperation between secondary users can solve 
hidden primary user problem and decrease sensing time [53]. 

There are two types of cooperative sensing: centralized 
sensing and distributed sensing [3,54]. In centralized sensing 
[55], a central unit gathers local sensing information from CR 
users through a control channel, fuses them by means of one of 
the fusion decision rules [56], identifies spectrum holes by 
performing binary hypothesis testing algorithm such as 
Neyman-Pearson test or Bayesian test, and shares the result 
among other cognitive users or directly controls the cognitive 
radio traffic. In distributed sensing [54], cognitive nodes 
exchange their local observations among each other and make 
their own decisions on channel state. Distributed sensing 
doesn’t require a backbone infrastructure or a centralized base 
station. 

On the basis of interference detection, spectrum sensing is 
categorized as primary transmitter detection, primary receiver 
detection, and interference temperature [51]. In primary 
transmitter detection approaches, spectrum holes are identified 
by processing received signals at the PU receiver. This class 
includes several techniques such as energy detection and 
matched filter detection. In primary receiver detection, the 
status of primary channels is detected based on the local 
oscillator leakage power of the PU receiver [57]. This power is 
emitted by the PU receiver’s RF front end while receiving the 
data from the PU transmitter [58]. As for interference 
temperature, secondary users transmit simultaneously with 
primary users as long as the interference caused by the SU at 
the PU receiver remains under a specified interference limit. In 
this case, the underlay DSA model is considered. 

In regard to the requirement of the PU’s information, 
spectrum sensing schemes can be categorized into two classes: 
blind and feature detection techniques [50]. The blind detection 
techniques serve to blindly determine the channel state without 
any prior knowledge about the primary user signals. This type 

includes, among others, energy detection and Higher-Order-
Statistics detection. The feature detection techniques allow 
performing signal classification to the detected signal. They are 
more advantageous than blind detection techniques in the sense 
that it is possible to distinguish between PU and SU signals and 
to characterize the different types of PU and SU signals. 
Matched filter and cyclostationarity detection techniques are 
examples of feature detection techniques. 

Depending on the bandwidth (number of sensed channels at 
a time), spectrum sensing schemes are classified into two broad 
groups which are narrowband and wideband sensing 
techniques [59]: in the narrowband sensing, only one channel 
is analyzed at a time to detect available opportunities. The most 
widely and commonly known narrowband methods are energy 
detection, matched filter detection, cyclostationary feature 
detection, covariance-based detection, and waveform detection 
[59]. 

As for wideband sensing, multiple frequency bands are 
explored at a time so as to discover spectrum holes. In this 
case, the available spectrum is usually divided into narrower 
sub-bands which are sensed either concurrently or sequentially 
by using narrowband sensing techniques. Wideband sensing 
techniques contain two groups: Nyquist-based and Sub-
Nyquist wideband sensing. The former type processes digital 
signals at the rate equal to or greater than the Nyquist rate, 
whereas the latter type processes the signals with a sampling 
rate lower than the Nyquist rate [59]. 

Wideband sensing allows to exploit the available spectrum 
more efficiently but it brings about new challenges related to 
its implementation. 

On the basis of the latest mentioned classification of 
spectrum sensing schemes (Narrowband sensing/ Wideband 
sensing), the next subsection will review some of the most 
common spectrum sensing methods as well as the recent 
advanced spectrum sensing techniques. 

 
Fig. 7. Types of Spectrum Sensing. 
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C. Spectrum Sensing Techniques 
Before reviewing in detail spectrum sensing techniques, 

more particularly narrowband sensing techniques, the system 
model for spectrum sensing is given below. 

1) System Model for spectrum sensing: The fundamental 
objective of spectrum sensing is to make a choice between two 
hypotheses: 

• H0: Channel is temporarily available for opportunistic 
usage i.e. no primary user signal is present; 

• H1: Channel is occupied i.e. a primary user signal is 
present. 

These hypotheses can be expressed as under: 

H0: Y(n)= N(n) when PU’s signal is absent           (1) 

H1: Y(n)= h.X(n)+ N(n) when PU’s signal is present          (2) 

Where Y(n) represents the received signal by SU, X(n) 
represents the transmitted PU signal, N(n) denotes Additive 
White Gaussian Noise (AWGN) with mean zero and variance 
𝜎𝜎2.h represents the channel gain, n= 1,2,3…N where n is the 
sample index, and N is the number of samples. 

Generally, a test statistic of Y(n) is compared against a 
decision threshold value 𝜆𝜆 in order to decide between the two 
hypotheses. If the test statistic is greater than the threshold, H1 
is assumed to be true and thus PU’s signal is declared present. 
in contrast, if the test statistic is less than the threshold, H0 is 
assumed to be true and then PU’s signal is declared absent. Fig. 
8 presents the general model of spectrum detection. 

 
Fig. 8. Spectrum Sensing Model. 

Sensing accuracy is typically evaluated using the Receiver 
Operating Characteristic (ROC) curves. These curves are the 
plot of the detection probability versus the false alarm 
probability or plot of the probability of miss detection against 
the probability of false alarm [60,61]. These probabilities are 
defined as: 

Probability of detection (Pd): It is the probability that the 
SU declares the presence of PU signal when it is actually 
present. 

Pd = Pr(H1/H1)               (3) 

A high Probability of detection allows avoiding 
interference impact on primary receivers. Hence a high Pd is 
eminently desirable. 

Probability of false alarm (Pfa): It is the probability that the 
SU declares the presence of PU signal when it doesn’t truly 
exist. 

Pfa= Pr(H1/H0)               (4) 

A high Probability of false alarm decreases the efficiency 
spectral due to the loss of spectrum access opportunities. In 

addition, the QoS may be negatively affected as a result of this 
loss. Thus, Pfa should be low to avoid the under-use of 
potential spectrum holes. 

Probability of miss detection (Pm): It is the probability of 
missing a PU signal when it is present. 

Pm= Pr(H0/H1)               (5) 

A high Probability of miss detection causes a harmful 
interference on primary users because, in the case of a miss 
detection, SUs may transmit simultaneously with PUs in the 
same band. So, to avoid interference to and from license holder 
users, Pm should be low. 

2) Narrowband sensing techniques: In this subsection, we 
discuss several narrowband sensing techniques, focusing on 
their functions, mathematical models, strengths, and 
drawbacks. 

a) Energy detection scheme: Energy detection [1,62–64] 
called also Radiometry or Periodogram, is the most widely 
used sensing scheme due to its low computational complexity, 
the simplicity of its implementation, and the absence of need 
for PU signal information. 

In this sensing technique, the received signal energy is 
computed and compared with a threshold value. If the 
measured energy is higher than the threshold, the target 
frequency band is considered to be occupied by a PU; 
otherwise, the target frequency band is considered to be vacant. 
The block diagram of the energy detection method is illustrated 
in Fig. 9 and its decision metric can be written as: 

T= 1
N
∑ (Y(n))N
n=1 ⁿ              (6) 

Despite its aforementioned advantages, energy detection 
has several drawbacks, including the degradation of detection 
accuracy as a result of noise uncertainty (NU). The latter refers 
to the noise power fluctuations with time caused by the effects 
of various factors such as thermal noise, filtering effects, radio-
frequency circuits, and interference from other signals [65]. 
Authors of [65] analyzed the impact of NU on energy detection 
performance using different OFDM system designs. The 
results of their analyses show that, for all OFDM system 
designs, the probability of detection is higher for signals, with 
lower NU and higher SNR, which are transmitted at higher PU 
transmit power and detected with a higher number of samples. 

Moreover, energy detection is unreliable at low SNR values 
[66], ineffective in detecting spread signals [60], and unable to 
distinguish between PU signals from other signals. 

To enhance the performance and the accuracy of energy 
detection, several methods based on the use of dynamics 
thresholds are investigated in [67–70]. 

 
Fig. 9. Block Diagram of Energy Detection [1,62–64]. 
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b) Matched filter detection: The matched filter detection 
technique is viewed as the best method for identifying the 
unutilized bands when the PU transmission characteristics are 
known a priori, e.g., bandwidth, operating frequency, the 
modulation type and order, packet format, and pulse shaping 
[70–72]. In this technique, the received signal is correlated 
with the known PU signal and the result is compared with a 
threshold to decide on the presence of the PU. The block 
diagram of matched filter detection is shown in Fig. 10 and its 
test statistic is given by: 
T=∑ Y(n)X∗(n)N

n=1 23T             (7) 

 
Fig. 10. Block Diagram of Matched Filter Detection [70–73]. 

The main advantage of this sensing scheme is that it 
requires only a small number of samples and thus less sensing 
time to achieve good detection performance due to its 
resilience against noise uncertainty [73]. Nevertheless, it has 
several drawbacks. First, there is a need for precise and 
accurate prior information about the primary user signal, which 
may not always be available [65]. Second, the performance of 
the matched filter technique drops when the prior information 
is incorrect. Third, to detect different types of PUs, a dedicated 
matched filter structure for each type must be used, which 
increases the complexity of the system. 

c) Cyclostationary Feature Detection: Cyclostationary 
Feature Detection [74–76] depends on cyclostationary 
characteristics of the received signals. Indeed, in wireless 
communications, the transmitted signals are typically 
characterized by the periodicity of some of their statistics such 
as mean and autocorrelation[76,77].This periodicity results 
from the fact that signals are modulated and coupled with 
cyclic prefixes, hopping sequences, pulse trains, sinusoidal 
wave carrier, and other features before being transmitted 
[76,77]. Furthermore, additive noise signals are stationary 
with no correlation. Therefore, Cyclostationary Feature 
Detection schemes are very robust to noise uncertainties and 
can distinguish between the signal and noise by calculating 
and analyzing the cyclic autocorrelation of the received 
signals. 

The periodicity of the mean and the autocorrelation, of a 
cyclostationary signal y(t), can be expressed mathematically 
by: 

my(t) = E[y(t)] = my(t + T0)            (8) 

Ry(t, τ) = Ry(t + T0, τ)             (9) 

Where T0 represents the period of the signal 𝑦𝑦 (𝑡𝑡), 𝜏𝜏 
represents the time offset, 𝐸𝐸 denotes the expectation operator, 
and 𝑅𝑅𝑦𝑦 is the autocorrelation function of 𝑦𝑦 (𝑡𝑡) and it is given 
by: 

R𝑦𝑦 (𝜏𝜏) = 𝐸𝐸 [𝑦𝑦 (𝑡𝑡 + 𝜏𝜏) 𝑦𝑦∗(𝑡𝑡 − 𝜏𝜏)𝑒𝑒𝑗𝑗2𝜋𝜋𝛼𝛼𝑡𝑡]          (10) 

The block diagram of Cyclostationary Detection scheme is 
illustrated in Fig. 11, in which The Analog-to-Digital 
Converter (ADC) digitizes the received analog signal y(t) into 
digital samples and then it is fed into the N-point FFT block 
which computes its Fast Fourier Transform. Next, these FFT 
values are correlated with themselves and then averaged over 
the number of samples. Finally, in the feature detection block, 
the sensing decision is obtained by detecting the features of the 
average outcome. 

This scheme has also the advantage of being able to 
distinguish between various types of PU signals that are 
characterized by different transmit features [78]. 

However, this detector also presents some limitations such 
as the need for a large number of samples and high sampling 
rate which results in an increase in sensing time, power 
consumption, and complexity [76,78]. 

In order to reduce computation complexity while 
maintaining sufficient detection sensitivity, authors of [79] 
proposed an improved Cyclostationary Detector with SLC 
Diversity over Nakagami-m Fading channels, where the test 
statistic of conventional Cyclostationary detector is reliably 
simplified. For the same purpose, in [80], an improved 
Cyclostationary Feature Detection Algorithm is presented, in 
which authors proved that the cyclic spectrum is conjugate 
symmetry about the relevant axis, which decreases the 
computational complexity. 

 
Fig. 11. Block Diagram of Cyclostationary Feature Detection [74–76]. 

d) Covariance Based Detection: Covariance-based 
detection methods exploit the correlation structure inherent in 
the received data and the noticeable differences between the 
statistical covariances of signal and noise to decide on the 
presence of primary signals in background noise without the 
need for prior knowledge about signal, channel, or noise 
power [81]. 

Different statistical tests can be extracted from the 
covariance matrix of the received signal and used to detect the 
presence of the signal like the ratio of the maximum eigenvalue 
to minimum eigenvalue in the case of Eigenvalue-Based 
Detection Method [82]. The steps of the latter can be 
summarized as follows: First, the sample covariance matrix of 
the received signal is built from the received signal samples. 
Then, the eigenvalues of this matrix are computed using 
techniques such as singular value decomposition (SVD). 
Finally, a decision on the presence of the signal is taken by 
comparing the ratio between the maximum eigenvalue and the 
minimum eigenvalue with a threshold. The block diagram of 
this method is shown in Fig. 12. 

 
Fig. 12. Block Diagram of Covariance-Based Detection [82]. 
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The sample covariance matrix of the received signal can be 
expressed as [82]: 

Ry (Ns)=
1
Nₛ
∑ ŷ(n) ŷH(n) L−2+Nₛ
n=L−1           (11) 

Where Ns is the number of collected samples, L is a 
positive integer called “smoothing factor", ŷ(n) is the received 
signal vector at sampling instance n, and ŷH(n) is its conjugate-
transpose. 

The test statistic can be written as: 

T= λ𝑚𝑖𝑛
λ𝑚𝑎𝑥

             (12) 

Where 𝜆𝜆max and 𝜆𝜆min are respectively the maximum and 
minimum eigenvalues of Ry (Ns); 

Using a predefined threshold 𝜆𝜆, the decision can be made as 
follows: if T> 𝜆𝜆, H1 is considered to be true, otherwise, H0 is 
considered to be true. 

It is noteworthy that, despite the robustness of covariance 
techniques against noise uncertainty, they have a high 
computational complexity due to two factors, namely 
covariance matrix computation and eigenvalue decomposition 
[82]. 

e) Waveform-based detection: Waveform-based 
detection method, also known as coherent detection [49], can 
be considered as a simplified version of the matched filter 
scheme. Although, unlike the latter, this method doesn’t need 
complete information about the PU signals. It simply exploits 
known patterns, that are used in wireless communication 
systems to support many functions such as synchronization, 
control, and equalization so as to execute coherent detection. 
These patterns involve but not limited to the following: 

• Preambles: a preamble is a known sequence that is sent 
before each burst; 

• Midambles: a midamble is a known sequence that is 
sent in the middle of a slot or burst; 

• Pilot symbols: pilot symbols are an extra overhead 
added to the transmitted signal. 

When such patterns are available, the received signal is 
correlated with a known copy of itself to perform signal 
detection. As such, the test statistic can be expressed as: 

T=R [∑ y(n)x(n)∗N
n=1 ]           (13) 

where R[.] denotes the real part, y(n) is the received signal 
by SU, x(n)* is the complex conjugate of the signal transmitted 
by PU, and n= [1,2…. N] is the sample index. 

In the absence of the primary user’s signal, the given 
expression can be written as follows: 

T=R [∑ n(n)x(n)∗N
n=1 ]           (14) 

Whereas in the presence of the primary user, the test static 
can be simplified as under: 

T= ∑ (|x[n]|)2𝑁
𝑛=1 +R [∑ n(n)x(n)∗𝑁

𝑛=1 ]         (15) 

Where n(n) denotes Additive White Gaussian Noise 
(AWGN) with mean zero and variance 𝜎𝜎2. 

The value of the test statistic T is compared to a fixed 
threshold 𝜆𝜆 in order to decide on the presence of a primary user 
signal. H1 is considered to be true if T > 𝜆𝜆, and H0 is 
considered to be true otherwise. 

It is noteworthy that the waveform-based sensing scheme 
can only be applied to wireless systems having known signal 
patterns, such as Wi-Fi (IEEE 802.11b) [83] and WIMAX [84]. 

In [85], it is demonstrated that compared to energy detector 
technique, this method is more reliable and has less sensing 
time. In addition, it is demonstrated that the accuracy of this 
sensing scheme increases with the length of the known primary 
signal pattern. 

In [86], the authors have opted for waveform-based sensing 
scheme to analyze the sensing performance of the simultaneous 
transmission-and-sensing (TS) mode, which has proven its 
effectiveness under imperfect self-interference signal (SIS), 
unlike energy detection that cannot differentiate between a PU 
signal and a residual SIS. 

In spite of the aforementioned advantages, there are some 
downsides to this scheme, mainly the need for complete and 
accurate information concerning waveform patterns as well as 
high synchronization between PU and SU, which is not always 
possible to attain. 

Concerning the implementation complexity, coherent 
detection is more complex than Energy detection method and 
has a lower complexity compared to match filter detection 
technique. 

Table III provides a performance comparison of the 
previously described narrowband sensing methods based on a 
set of performance criteria, namely detection accuracy, 
complexity, need for prior information about the primary user, 
robustness against noise uncertainty, and sensing time required 
to achieve a good performance. 

3) Wideband sensing techniques: Wideband spectrum 
sensing enables detecting spectral opportunities that lie within 
frequency bands greater than the coherence bandwidth of the 
channel. One application of this class of sensing is to exploit 
the available spectrum holes in the UHF (ultra-high-
frequency) TV band ranging from 300 MHz to 3 GHz. 

As have been discussed earlier, narrowband sensing 
schemes make a single binary decision for the whole frequency 
band. That makes these schemes incapable to perform directly 
wideband sensing, since the latter intends to determine the 
occupancy of several sub-channels that are involved in a given 
wideband spectrum at a time. 

The two types of wideband sensing techniques (Nyquist / 
Sub-Nyquist) will be briefly reviewed in this subsection. 
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TABLE III. PERFORMANCE COMPARISON OF NARROWBAND SENSING TECHNIQUES 

Criteria Energy detection  Matched filter 
detection  

Cyclostationary 
feature detection  

Covariance-based 
detection  

Waveform-based 
detection 

Detection accuracy Weak performance at 
low SNRs 

Optimal performance at 
all SNRs  

Very good performance 
at all SNRs 

Moderate performance 
at all SNRs 

Very good performance 
at all SNRs 

Complexity Low  High  High High Moderate 

Need for prior 
information about 
primary user 

No Yes  Yes No Yes 

Robustness against 
noise uncertainty No Yes Yes Yes Yes 

Sensing time required 
to achieve good 
performance 

Low Low High High Low 

a) Nyquist wideband sensing: Nyquist wideband 
sensing is carried out using a standard ADC operating at 
Nyquist rate to digitize the wideband signal and digital signal 
processing methods to detect spectral opportunities. It 
includes, among other, wavelet-based detection, multi-band 
joint detection, and filter bank detection: 

Wavelet-based detection [87] determines spectrum holes 
over a wide frequency band, which is assumed to be composed 
of a multitude of sub-bands whose locations and power spectral 
densities are unknown, by using the wavelet transform. The 
latter serves to identify discontinuities that are located at the 
boundaries (edges) of each sub-band. The discontinuous 
changes on the edges correspond to irregularities in power 
spectral density. As such, information about the locations and 
intensities of the sub-bands can be retrieved through the 
wavelet transform and then their status (occupied or 
unoccupied) can be deduced. 

Concerning the multiband joint detection algorithm [88], it 
senses the primary signal over multiple frequency channels by 
performing the following procedures: first, sampling the 
wideband signal using a high sampling rate analog to digital 
converter. Second, dividing the sampled data into parallel data 
streams by a serial-to-parallel converter. Third, computing the 
Fast Fourier Transform (FFT) of the digital signal. Fourth, 
dividing the wideband spectrum into multiple sub-bands that 
are occupied by narrowband signals. Finally, detecting 
spectrum opportunities over each sub-band by using a 
narrowband sensing scheme such as energy detection. 
Furthermore, this technique allows to jointly determine the 
optimal threshold, that maximizes the accuracy of sensing for 
all the sub-channels, by formulating an optimization problem. 

As for filter bank detection [89], a filter bank, consisting of 
a set of bandpass filters, is used to separate the wideband signal 
into multiple sub-bands. The bandpass filters are realized 
through modulation (Poly-phase decomposition) of a prototype 
filter. The prototype filter is a lowpass filter that is used to 
implement the zeroth band of the filter bank. The obtained sub-
bands are then sensed separately via a narrowband sensing 
scheme. In this type of sensing, the sub-bands can be down-
converted and consequently re-sampled at a lower sampling 
rate. However, a large number of RF components will be 
added, resulting in a high implementation complexity [90]. 

While Nyquist wideband sensing allows to exploit 
efficiently the available spectrum, it has certain limitations, 
including the requirement of a high sampling rate (Wavelet-
based detection and multiband joint detection) and the high 
implementation complexity (Filter bank). 

b) Sub-Nyquist wideband sensing: Sub-Nyquist 
wideband sensing offers solutions to the challenges facing 
Nyquist-based sensing, more particularly high sampling rate 
and high implementation complexity concerns. Sub-Nyquist 
approaches aim to identify spectral opportunities by exploiting 
only a few measurements derived from processing wideband 
signals at sampling rates less than the Nyquist rate. 

Among the most important Sub-Nyquist wideband sensing 
types is compressive-based sensing [91–93]. The latter refers to 
the process of recovering a sparse signal from a few 
measurements by following a three-step procedure (sparse 
representation, measurement, and sparse recovery). In the first 
step, the sparsity of the signal is derived by projecting the 
signal on an appropriate basis. In second, only a reduced 
number of measurements are retrieved by multiplying the 
sparse signal by a measurement matrix. In third, the signal is 
recovered by using the few collected measurements. Finally, 
the sensing operation is performed to identify the spectral 
opportunities. 

It is noteworthy that the use of comprehensive sensing, in 
the context of wideband sensing, is enabled due to the sparsity 
feature that characterizes the wideband signal in the frequency 
domain. 

Furthermore, the reliability of sub-Nyquist wideband 
sensing schemes depends largely on the accuracy of sparsity 
level estimation. Although, the latter suffers from uncertainty 
because of various factors, mainly the dynamic nature of PUs 
transmission activities as well as wireless channel impairments. 

D. Machine Learning for Spectrum Sensing 
As pointed out earlier, CR is an intelligent radio system that 

incorporates the three main components which any intelligent 
system should have, namely perception, learning, and 
reasoning [94]. Perception refers to the ability of the system to 
sense its radio environment and it can be realized by means of 
sensing measurements of the spectrum. Learning refers to the 
ability of the system to convert the gathered information into 
knowledge and it can be achieved through classification and 
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generalization algorithms. Finally, knowledge is exploited by 
the system to attain its objectives via reasoning ability 
[94].Considering this intelligent design, machine learning 
based spectrum sensing presents itself as a good alternative to 
determine the channel occupancy in Cognitive Radio Networks 
by addressing two main issues which are classification and 
decision making [94]. 

Machine learning algorithms can be classified into two 
broad groups: supervised learning and unsupervised learning. 

In supervised learning, a classifier learns from a training 
dataset to make predictions on unforeseen data. According to 
the training dataset, supervised machine learning problems can 
be further grouped into classification and regression problems. 
If the input variables are mapped to discrete output values 
(categories, labels, classes…), then it is a classification 
problem. If the input variables are mapped to continuous 
output values, then it is a regression problem. Some examples 
of supervised algorithms include support vector machines 
(SVM), Random forest, and naive Bayesian classifier (NBC). 

As for unsupervised learning, its main function consists in 
finding patterns in a set of untagged data. K-means is one of 
the simplest and most widely used unsupervised machine 
learning algorithms. 

In the context of Cognitive Radio Networks, several papers 
have dealt with the use of machine learning algorithms to 
predict the availability of frequency channels. For instance, in 
[95], the authors performed a comparative analysis of different 
supervised and unsupervised machine learning algorithms 
based on computational time and classification accuracy. They 
also proposed a new method that combines support vector 
machines with the firefly algorithm. The authors of [96] 
proposed a deep learning approach to learn channel activities 
and predict its availability in future time slots. The ability to 
predict the channel occupancy in the next time slots may 
increase the efficiency of selecting the more appropriate 
channel at the instant t (For example, choosing the channel 
having the highest probability of being unoccupied in the next 
time slots). 

Generally, in the case of spectrum sensing, researchers 
adopt a two-phase machine learning approach [95,97]. In the 
first phase, an unsupervised learning technique, such as K-
means algorithm, is applied to discover the transmission 
patterns of primary users. In the second phase, the discovered 
clusters (channel busy or free) are used to train supervised 
learning classifiers like support vector machine (SVM) and 
then to assign the new input data to the suitable cluster. it is 
worth mentioning that in several works, the sensing clusters are 
assumed to be known and thus the first phase is omitted. In this 
case, the researchers adopt a one-phase machine learning 
approach in which supervised learning techniques are trained 
with the already known clusters [98,99]. 

In building machine learning models for spectrum sensing, 
several features are used, including energy statistic, probability 
vector, and occupancy over time. Obviously, the accuracy of 
detecting the primary users may be affected by the selected 
features. 

Finally, to evaluate the performance of a given model, a set 
of metrics can be used mainly, probability of detection, 
probability of false alarm, total error rate, sensing time, and 
accuracy. 

E. Sensing Challenges 
This subsection is devoted to discussing the various 

challenges related to the spectrum sensing process in Cognitive 
Radio Networks as well as highlighting some possible future 
research directions in this field. 

1) Hidden PU problem: As the Carrier Sense Multiple 
Accessing (CSMA), which is characterized by the presence of 
hidden node problem, spectrum sensing suffers also from 
hidden primary user problem. The latter refers to the situation 
in which the secondary user misses the primary user presence 
due to many issues, including severe multipath fading and 
shadowing effects experienced by primary signals, during 
propagation from PU transmitter to SU receiver. As such, the 
secondary user may induce undesirable interference to 
primary user receivers. In several research papers, cooperative 
sensing has been proposed as a successful approach to handle 
this issue by exploiting spatial diversity [49,100]. 

2) Challenges related to cooperative sensing: Cooperative 
sensing has proven to be effective in improving the reliability 
and accuracy of detection, especially in the case of the 
presence of channel impairments. Moreover, it has also been 
shown to be useful in decreasing individual sensing durations 
and local processing requirements [21,53]. 

Despite its different advantages, cooperation among CR 
users also brought many challenges and invoked significant 
researches. One of these challenges is mitigating the additional 
signaling overhead and reducing delays that are induced by the 
cooperation process [101]. 

Another challenge is to find a tradeoff between the number 
of users participating in cooperation and additional processing 
requirements. Indeed, a large number of cooperative nodes can 
ensure a high probability of detection, even in the presence of 
channel uncertainties and detectors with less sensitivity, but it 
introduces a considerable amount of extra overhead which 
leads to an increase in the sensing time and processing. Hence, 
there exists a compromise. 

Another challenge consists in developing asynchronous 
cooperative spectrum sensing algorithms [102,103]. In fact, CR 
nodes are located at different positions and may perform 
spectrum sensing at different times [104]. Therefore, CR nodes 
cannot report their local sensing results to the fusion center at 
the same time and thus some of the reported information may 
not be up to date [103]. Furthermore, there is always a time 
offset between the local observation and the final decision 
which may incur performance degradation. In addition, 
reporting channel uncertainties may impact negatively the 
sensing accuracy. 

3) Spectrum sensing duration: Admittedly, a long sensing 
duration can guarantee a higher accuracy for spectrum sensing 
results, but it can compromise with interference avoidance, 
energy efficiency, and throughput. 
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Regarding interference avoidance, secondary users must be 
aware promptly of the presence of the primary user and vacate 
the frequency band rapidly when the incumbent user resumes 
its transmission in that band. Thus, a real trade-off arises 
between the quickness with which the secondary user must 
perform the aforementioned tasks and the required sensing 
duration to ensure more reliable results. 

Concerning energy efficiency, the gain in accuracy 
achieved by a long sensing duration comes at the expense of 
energy. Hence, sensing duration and energy efficiency should 
be optimized. 

As for throughput, it is inversely related to sensing time. 
Therefore, there is a compromise between longer sensing 
duration for higher performance and lower sensing duration for 
good throughput. 

These trade-offs should be addressed jointly to find an 
optimum solution that ensure a higher performance under 
certain constraints. 

4) Noise uncertainty: Several spectrum sensing 
techniques rely on a threshold value to decide on the presence 
of primary user signals. Hence, selecting the optimum 
threshold is crucial and important to ensure high accuracy of 
sensing results. To determine the best threshold value, many 
parameters should be taken into consideration such as noise 
power. The latter is uncertain and developing techniques that 
are robust to noise uncertainty is still a challenging task. Some 
research papers have addressed this issue using different 
approaches. For instance, in [105] a blind spectrum sensing 
technique based on goodness of fit testing of t‐distribution 
has been proposed to cope with the noise uncertainty problem. 

5) Complexity and hardware requirements: Several issues 
need to be addressed to bridge the gap between the theory and 
the hardware implementation realities of spectrum sensing 
schemes from both types, narrowband and wideband sensing. 
These include the complexity of narrowband sensing 
techniques, mainly covariance-based and cyclostationary 
feature detection schemes, which require large processing 
power that is unsuitable for portable devices. Hence, 
Additional efforts are required to reduce the complexity of 
these techniques and take advantage of their various benefits 
in real-life application. Besides, meeting the hardware 
requirements of wideband sensing schemes, like high-
resolution ADCs and high-speed signal processors, while 
maintaining acceptable complexity and moderate computation 
power, is a challenging task. 

6) Sparsity level uncertainty: In wideband compressive 
sensing, estimating the accurate sparsity level is of paramount 
importance, since it is a prerequisite for determining the 
optimal number of measurements. However, achieving this 
result is very difficult, especially in rapidly changing 
environments, due to random changes in spectrum activities 
and time-varying fading channels. That may lead to calculate 
the number of measurements using the worst-case sparsity 
level assumption, resulting in high energy consumption and 
inefficient use of sub-Nyquist sampling technologies. 

Therefore, developing blind sub-Nyquist wideband sensing 
schemes, in which the estimation of sparsity level isn’t 
needed, still a challenging task [90]. 

In the literature, only a few papers have dealt with the issue 
of sparsity level uncertainty. For instance, the authors of [106] 
proposed an algorithm for estimating the sparsity level of the 
channel over a learned dictionary using Machine Learning 
algorithms. 

7) Security: As with any wireless network, Cognitive 
Radio Networks are vulnerable to various cybersecurity 
attacks that can be performed by selfish or malicious users and 
induce disruptive effects on network operation. Selfish users 
exploit network facilities for their interests, namely 
monopolizing the use of available spectrum opportunities and 
thus depriving legitimate Secondary users of their fair share of 
spectrum. As for malicious users, they abuse network facilities 
by exploiting the existing vulnerabilities and thereby 
hindering legitimate SUs from using the spectrum. 

Some of the cybersecurity attacks in Cognitive Radio 
Networks include most active band (MAB), primary user 
emulation (PUE), and spectrum sensing data falsification 
(SSDF) attacks. 

Most active band (MAB) attack aims at detecting and 
making the most active band, in a multi-band CR network, 
unavailable by targeting it via a denial of service (DoS) attack 
and consequently preventing the other users (PU and SU) from 
using it. The authors of [107] proposed a coordinated 
concealment strategy to counter this attack. In this strategy, a 
set of SUs cooperate and transmit useless data in a free band to 
make it the most active and therefore the attacker's target. 

Primary user emulation (PUE) attack is an attack where a 
selfish or malicious node adjusts its air interface to emulate 
primary user characteristics and thus mislead secondary users 
concerning the availability of the spectrum holes [108]. During 
the sensing process, SUs, under this attack, may detect attacker 
signals as primary user signals and then refrain from using the 
spectrum. A range of countermeasures against PUE attack has 
been investigated in the literature [109]. These 
countermeasures can be categorized into four types: 
countermeasures based on cryptography, countermeasures 
based on fingerprint, countermeasures based on game theory, 
and hybrid countermeasures that combine the three other types 
[109]. 

Spectrum sensing data falsification (SSDF) attack, also 
known as Byzantine attack, specially targets cooperative 
spectrum sensing and consists in compromising the fusion 
center with false spectrum sensing results to deceive decision-
making. In [110], a reputation-based approach, in which the 
fusion center recognizes the malicious attackers and eliminates 
them from the data fusion process, was proposed to counter 
SSDF attack. 

While significant efforts have been carried out to detect and 
cope with cybersecurity issues, there are still several challenges 
that need to be addressed, including developing advanced 
techniques that do not need prior knowledge about PU location 
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, as this is not always available in real-world scenarios, 
developing detection and counter-measures methods based on 
cryptography that take into account resource constraint (e.g., 
power and bandwidth), and developing spectrum sensing 
techniques capable of differentiating between PU signals and 
malicious user signals. 

V. CR-BASED IOT 
The wide variety of IoT technologies have led to a rapidly 

increasing number of networked devices that are expected to 
reach 51.11 billion by 2023, according to research from Cisco 
states (See Fig. 13). Such devices involve daily tech gadgets 
such as smartphones and smart home devices, as well as 
industrial devices like smart machines and robots. These smart 
connected devices are capable of gathering, sharing, and 
analyzing information and creating actions accordingly. By 
2023, global spending on IoT will reach 1.1 trillion U.S. dollar 
[111]. This puts IoT at the core of current and future social and 
economic transformation. 

Furthermore, with the massive proliferation of these 
connected objects, there is an increased demand for spectrum 
resources. Cognitive Radio proves to be a promising 
technology to cater to current and future IoT devices in terms 
of spectrum access. In this section, the integration of the 
Internet of Things and Cognitive Radio is explored. 

 
Fig. 13. IoT Connected Devices Installed base Worldwide from 2015 to 2025 

(in billions)3. 

A. Definition of IoT 
The term "Internet of Things" was coined by Kevin Ashton 

to depict “a system in which the Internet is connected to the 
physical world by ubiquitous sensors”4. 

Internet of Things (IoT) can be defined as a network of 
objects connected to the Internet and can communicate with 
each other using different communication technologies. These 
objects are equipped with sensors, that allow interaction with 
the environment, and communication modules [112–114]. 
Some of those sensors include temperature sensors, pressure 
sensors, proximity sensors, and humidity sensors. 

Today, the IoT enables the real world and the virtual/or 
digital world interconnection. Thanks to IoT, things will 

3 https://www.statista.com/statistics/668996/worldwide-expenditures-for-
the-internet-of-things/ 

4 https://www.historyofinformation.com/detail.php?id=3411 

communicate with each other and develop their own 
intelligence. Televisions, cars, kitchen appliances, surveillance 
cameras, smartphones, utility meters, cardiac monitors, 
thermostats, and almost anything that we can imagine will be 
connected every day, everywhere and every time. 

The idea of the IoT dates back to 1999 [115] and became a 
reality due to several technologies and protocols, including 
Machine to Machine (M2M), Wireless Sensor Networks 
(WSN), Radio frequency Dentification (RFID), Internet 
Protocol version 6 (IPv6), IPv6 Low power Wireless Personal 
Area Networks (6LoWPAN), Routing Protocol for Low-Power 
and Lossy Networks (RPL), Constrained Application 
Protocol(CoAP), and Cognitive Radio that comes to empower 
the IoT revolution. This revolution gives birth to the 
proliferation of small devices such as sensors and actuators, 
with low consumption at lower cost, and a large number of 
platforms allowing users to develop their own applications. 
Thus, the number of connected « things » is increasing 
exponentially in the world (See Fig. 13). 

B. Motivations behind the use of Cognitive Radio in the IoT 
Cognitive Radio has a great potential to address several 

issues and challenges related to the deployment of IoT 
networks, namely, resource scarcity, interferences problem, 
limited communication range, purchasing license, storing and 
analyzing the data generated by IoT objects, heterogeneity, and 
reconfigurability and autonomicity. Dealing with these issues 
presents the prime motivation behind the use of Cognitive 
Radio in IoT. 

Regarding spectrum resources, it is difficult to allocate 
frequency bands to all the ever-increasing number of IoT 
objects. CR address this issue by enabling frequency reuse. 

 As for the interference problem, most IoT technologies 
such as RFID, IEEE 802.15.4 (ZigBee) operates in UHF and 
ISM frequency bands which are already saturated and can’t 
accommodate more applications. Thus, sharing these bands 
between a large number of objects creates inevitable 
interferences. CR deal with this issue by enabling dynamic 
spectrum access to interference-free channels. 

Concerning communication range, ISM unlicensed bands 
allow wireless technologies to operate only over a limited 
range. Acquiring a frequency spectrum, that ensures 
communications over long distances, requires the purchase of 
licenses which generates superfluous expenses. CR avoids the 
purchase of license and allows the opportunistic usage of 
unoccupied bands that enables long-distance communications. 

In terms of storing and analyzing the data generated by IoT 
objects, the objects must find communication links to transmit 
the generated information to numerous servers (Cloud servers). 
CR is a proper solution to resolve this issue. 

With respect to heterogeneity problems, IoT applications 
represent a wide range of design options (resources, 
deployment, connectivity, energy, communication modality, 
infrastructure, network size, network topology...). Thus, new 
communication paradigms should be designed to support this 
heterogeneity by providing environmental discovery, self-
organization, and self-management capabilities [116]. CR is 
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one of these paradigms that can be used to tackle heterogeneity 
issues. 

Another reason is related to reconfigurability and 
autonomicity. In fact, smart objects are expected to have the 
capacity to reconfigure. themselves without any external 
action. Thus, objects need to be able to recognize and analyze 
their environment, detect neighboring objects, and then 
reconfigure. themselves. CR proves to be a suitable solution to 
fit these circumstances. 

Taking into account all of the above, it can be concluded 
that Cognitive Radio is genuinely a promising enabler 
technology for IoT. 

C. IoT Applications and CR 
The deployment of IoT products and services will be 

present in all sectors and industries, from the smart home to the 
smart city, education, health care, manufacturing, energy, 
utilities, commerce, transportation, monitoring, supply chain, 
and logistics as illustrated in Fig. 14. In general, the 
opportunities offered by IoT are unlimited and its full impact 
and potential will be realized in the near future as more and 
more devices connect to the Internet. At present, there are few 
works in the literature dealing with potential applications of 
CR technology for IoT, including military applications, 
cognitive radio-vehicular ad hoc networks (CR-VANET), 
emergency networks, smart grids, smart metering, and medical 
applications [117–123]. Table IV describes some IoT 
applications while demonstrating how CR can be used to 
address a number of their concerns. 

D. Open Research Issues in CR-Based IoT 
Several open research issues need to be addressed in order 

to take advantage of the full potential of Cognitive Radio for 
IoT networks. In this subsection, some of these issues will be 
discussed. 

1) Optimization of network resources: Efficient spectrum 
utilization, in the context of a network composed of CR IoT 
nodes, requires the joint optimization of a set of parameters 

such as transmission power, energy efficiency, transmission 
delay, and transmission data rate, which is a challenging task. 
The authors of [125] formulated an optimization problem to 
converge to an optimal solution, in a constrained environment, 
by taking into account three variables namely; transmission 
power, transmission rate, and transmission delay. To solve this 
problem, they applied a branch-and-cut polyhedral approach. 
The results show that an increase in network and packet size 
leads to an increase in transmission delay, power, rate, and 
interference. 

Formulating and solving multi-objective optimization 
problems, considering a large number of factors, still need to 
be addressed. 

2) Energy efficiency: One of the main challenges that 
need to be addressed in CR-based IoT networks is energy 
efficiency. IoT objects with cognitive radio capabilities 
consume more energy due to performing additional functions 
mainly spectrum sensing, which intensifies the power 
consumption issue, especially for energy-constrained nodes 
and battery-powered devices. 

 
Fig. 14. Applications of IoT. 

TABLE IV. CR CONTRIBUTION IN IOT APPLICATIONS 

IoT application Description and CR contribution 

Smart Grids [120,121] 

Smart Grid is an electricity distribution network that allows the flow of information between producers and consumers in order to 
control and regulate the flow of electricity in real time and enable more efficient management of the electricity grid. The major 
challenge of this technology is the transmission of data through long distances without investing in the purchase of licenses or the 
installation of cable trays. Cognitive radio offers a good solution to this problem. 

Smart Homes [117] Homes will be equipped with smart objects, allowing to carry out all daily task, such as smart lamps and smart fridges. These 
objects will integrate sensors endowed with cognitive capabilities that help to avoid interference in the ISM band. 

Healthcare and Medical 
Applications [122,123] 

Smart sensors are deployed to monitor critical data like blood pressure, glucose levels, and temperature. With Cognitive Radio 
this information can be transmitted to medical staff in real time, over long distances without worrying about spectrum availability. 

Smart Cities [119] 
The smart city is a paradigm of urban development which integrates information and communication technology (ICT) and IoT 
systems. In this paradigm, continuous connectivity should be maintained. CRNs can be a good solution to support this 
requirement. 

Internet of Vehicles (IoV) 
[124] 

Today, the trends toward less dependence on human beings have led us to the IoV paradigm in which vehicle control is achieved 
through the integration of communications and embedded systems. The IoV is supposed to be an autonomous travel decision-
maker. Safe navigation may be possible in the future through vehicle-to-vehicle information exchange, vehicle-mounted sensors, 
and user intentions. The challenge in IoVs is the availability of spectrum for mobile vehicles. CRNs may be a good solution 
because of their long-range and interference-free spectrum sensing. 
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Among the solutions that have been introduced to deal with 
energy efficiency concerns are energy harvesting or scavenging 
and Cooperative Wireless Networks. Energy harvesting is 
defined as the process through which energy is extracted from 
external sources, such as wind and solar energies, and then 
stored so as to be used as a source of power [126]. Energy 
harvesting is considered as one of the most enabling 
technologies for Green Computing and real-world 
implementation of IoT. In [127] a differential game model has 
been proposed to resolve the resource allocation problem in 
cognitive WSN using energy harvesting. Optimal resource 
allocation strategies for all SUs are obtained by determining 
the loop Nash equilibrium and the feedback Nash equilibrium 
solutions of the proposed model. In [128], a CR-based energy 
harvesting approach has been used to extend the battery’s 
lifetime for unmanned aerial vehicles (UAVs) under reliability 
and secrecy constraints. To reduce energy consumption, the 
energy harvested is maximized and the transmission energy 
consumption is minimized by solving a formulated 
optimization problem. 

Currently, Cognitive Radio networks based on energy 
efficiency approaches are considered an important research 
direction. 

3) Security: Addressing security issues in CR-Based IoT 
networks is a prime concern and a challenging task as most 
IoT objects are inherently heterogeneous and have their proper 
uniform security standards. These standards are not adequate 
for all heterogeneous networks. Several privacy and security 
aspects should be taken into account in designing IoT systems, 
including authentication, security assurance, and intrusion 
soft-ware [117]. Worthy efforts have been done to tackle 
security issues in some IoT applications with cognitive radio 
capabilities. For instance, the authors of [129] proposed a 
distributed cooperative spectrum sensing approach to deal 
with the security problem in CR-VANETs. This approach uses 
a weighted consensus-based spectrum sensing technique with 
trust assistance to ensure the reliability of spectrum sensing 
operation in a hostile CR-VANET. The validity of the 
proposed approach was approved by extensive simulations. In 
[128], the proposed CR-Based energy management scheme for 
UAVs has been designed in such a way that the secrecy and 
reliability of the system are ensured. This is illustrated by 
considering the scenario for the eavesdroppers. 

Security remains an open issue to be addressed as 
cybersecurity attacks and threats are emerging and increasing 
in parallel with new technologies. Therefore, developing 
innovative countermeasures is demanded. 

VI. CONCLUSION 
Nowadays, wireless network devices are emerging at an 

unprecedented rate, which will further exacerbate spectrum 
shortages. Therefore, addressing the spectrum scarcity problem 
becomes more urgent. Cognitive Radio is a promising 
technology to overcome this issue for futuristic networks (IoT 
and 5G) by enabling an efficient, flexible, and opportunistic 
usage of the scarce frequency spectrum. This paper provides a 
review of Cognitive Radio with emphasis is put on SDR, 

spectrum sensing, and CR-Based IoT. Concerning SDR, this 
article highlights its architecture, tools, advantages, and some 
of its ongoing challenges. As for spectrum sensing, it is 
extensively reviewed: spectrum opportunities considering 
multiple dimensions are discussed, classification of spectrum 
sensing based on several aspects is presented, Narrowband and 
Wideband sensing techniques are analyzed, ML-based 
spectrum sensing is studied, and challenges and open research 
directions are reviewed. Regarding CR-Based IoT, the focus 
was on explaining the motivations behind the use of CR in IoT 
networks and reviewing some of the open issues related to CR-
Based IoT. 
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