
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol 12, No. 6, 2021

UIP2SOP: A Unique IoT Network applying Single
Sign-On and Message Queue Protocol

Lam Nguyen Tran Thanh1, Nguyen Ngoc Phien2∗, The Anh Nguyen3, Hong Khanh Vo4,
Hoang Huong Luong5, Tuan Dao Anh6, Khoi Nguyen Huynh Tuan7, Ha Xuan Son8

VNPT Information Technology Company, Ho Chi Minh city, Vietnam1

Center for Applied Information Technology, Ton Duc Thang University,
Ho Chi Minh City, Viet Nam2

Faculty of Information Technology, Ton Duc Thang University,
Ho Chi Minh City, Vietnam2

Department of Computer Science, Faculty of Electrical Engineering and Computer Science,
VSB-Technical University of Ostrava, Ostrava, Czech Republic2

FPT University, Can Tho City, Viet Nam3,4,5,6,7

University of Insubria, Varese, Italy8

Corresponding Author: Ton Duc Thang University, Ho Chi Minh City, Vietnam∗

Abstract—Internet of Things (IoT), currently, plays an 
importance role in our life, also, this is one of the most rapidly 
developing technology trends. However, the present structure has 
some limitation - one of these is the communication via client-
server model - the users, devices, and applications using IoT 
services where all the connection/requirement is managed at IoT 
service providers. On the one hand, the IoT service providers 
(e.g., individual, organization) have different method to manage 
their devices, services, and users. Thus, the unique standard (i.e., 
communication method among the service providers and between 
client server) is still the challenge for the developers. On the other 
hand, Message Queuing Telemetry Protocol (MQTT) that is one 
of the most popular protocols in IoT deployments, has signif-
icant security and privacy issues by itself (e.g., authentication, 
authorization, as well as privacy problem). Therefore, this paper 
proposes UIP2SOP - an unique IoT network by using Single Sign-
On (SSO) and message queue to improve the MQTT protocol’s 
security problem. Besides, this model allows the organizations 
to provide the IoT services to connect into a single network 
but does not change the architecture of organization at all. 
The evaluation section proves the effectiveness of our proposed 
model. In particular, we consider the number of concurrent 
users publishing messages simultaneously in the two scenarios
i) internal communication and ii) external communication. In
addition, we evaluate recovery ability of system when occurred
broken connection. Finally, to engage further reproducibility and
improvement, we share a complete code solution is publicized on
the GitHub repository.

Keywords—Internet of Things (IoT); MQTT; OAuth; Single 
Sign-On; Kafka; message queue

I. INTRODUCTION

The Internet of Thing (IoT) services/applications grown
and play a vital role in our life such services/applications
have applied in most fields such as smart cities, healthcare,
supply chains, industry, and agriculture. In fact, by 2025, the
whole world have approximately 75.44 billion IoT-connected
devices [1], [2]. However, these devices is own by the different
individuals or organizations, its characteristic (e.g., capacity,
communication, compuation ability) is totally different. There-
fore, the ability to connect IoT service providers as well as

the security issues are still an open problem and need more
considerable from the developers.

The most of IoT systems, currently, are a centrally designed
according to a client-server architecture [3], [4], the individ-
ual/organization requires all devices and users to authenticate
exchange information through one or more of the its servers.
This architecture is suitable when the number of devices is
limited - one advantage can easily aware is this model can
easily setup and deploy in the real environment. However,
when the system is extended with a millions of users/devices
join the IoT network, these may create a billion transaction
among them in the short time, we should consider the latency
or even the deadlock issues.

For the IoT devices, the current architecture have the lim-
ited network connectivity, power, and processing capabilities
[5], [6], so there is a specific requirement for separate machine-
to-machine (M2M) protocols, unlike traditional communica-
tion protocols. The five most prominent protocols used for
IoT devices (i.e., communicate among them and communi-
cate with the upper layers) are Hypertext Transfer Protocol
(HTTP), Constrained Application Protocol (CoAP), Extensible
Messaging and Presence Protocol (XMPP), Advanced Message
Queuing Protocol (AMQP), and Message Queuing Telemetry
Protocol (MQTT) [7], [8]. For the communication require-
ments in limited networks (constrained networks), MQTT
and CoAP are more reasonable to be used [9]. Besides, we
found that the MQTT protocol has faster creation time, and
transmission time of the packet is twice as fast as the CoAP
protocol [10]. Furthermore, for developers of low bandwidth
and memory devices, MQTT is the most preferred protocol
[11]. Therefore, this paper applies the MQTT protocol to
develop UIP2SOP platform.

Nevertheless, the current MQTT model has some drawback
especially in security and privacy issues, namely data confi-
dentiality, availability, integrity, and privacy [12]. This model
only provides identity, authentication, and authorization for the
security mechanism [13] but it is very simple. Lundgren et al.
[14] indicate that a simple ruby script is used to subscribe

www.ijacsa.thesai.org 19 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol 12, No. 6, 2021

to topic # of any random MQTT server that is public on the
Internet, and the obtained result reveals the data, including the
device’s GPS location, without any authentication, which is
a severe security risk. In the MQTT protocol, the Client ID
is unique, and MQTT Broker uses this Client ID to identify
the client and its status. From this feature, an attacker can take
advantage of performing a denial-of-service (DoS) attack. This
is considered a risk in terms of the availability of the MQTT
protocol. As the studies in [12], [15] show, if the attacker
subscribes to topics with the client ID, the victim encounters
denial of service status, and all information sent to the victim
is forwarded to the attacker.

Regarding the authentication mechanism, MQTT supports
authentication by username and password pairs, but the au-
thentication mechanism is optional and not encrypted. The
MQTT client authenticates itself by sending the username
and password plaintext in the CONNECT package. Attacker
attacks are made quickly by blocking packets [10]. Besides,
the MQTT protocol allows any user to subscribe to a broadcast
topic without any authentication, and anyone who has it can
easily subscribe to any MQTT server available on the Internet
[13]. According to a survey of article [16] about Shodan
- the world’s first IoT search engine for Internet-connected
devices shows that there are 67,000 MQTT servers on the
public Internet, with most of them without authentication.
MQTT does support an authorization mechanism to access
a specific topic based on the access list (ACL). This access
list must be predefined in the MQTT broker config file1 and
we must restart the MQTT broker service to apply a new
access-list configuration. This is inconvenient and difficult to
expand, especially for systems with billions of devices, and
these devices can only have the right to act for a specified
period on specific topics. The problem of access control and
authorization is a significant challenge [17].

The security problems in the MQTT protocol are also in the
internet connection systems aspect. In particular, due to user
behavior, the MQTT’s security flaws are generally vulnerable
to attack by the malicious users. Users often ignore this aspect,
especially privacy, until the loss of critical data [18]. Statistics
from [19] show that a significant proportion of the users are
not fully aware of where their pieces of information are shared.
Hence, with IoT systems having a huge number of users and
devices (e.g., a millions), it is quite challenging to manage
all user’s behavior, especially when users among IoT systems
exchange information with each other.

To address the risk of security and availability of MQTT,
UIP2SOP manages users, things and channels (topic). This
model allows the users to own, use, and exchange messages
through ensuring precisely on which channels they are sharing
information. To improve the Authentication and Authorization
protocol of the MQTT protocol, we propose a combination of
MQTT and OAuth protocol by adding a centralized authenti-
cation management system (Single Sign-On system). Finally,
we use Kafka to build a message queue system that connects
discrete IoT systems. To engage further reproducibility or
improvement, we share the completely code solution which
is publicized on the our Github2.

1https://mosquitto.org/man/mosquitto-conf-5.html
2https://github.com/thanhlam2110/uip2sop platform

The rest of the paper is organized as follows. We provide
the background and the related work in the next two sections.
Section 4 introduces architecture of UIP2SOP and its prototype
system in Section 5. In Section 6, we discuss our evaluation
in the different scenarios. Finally, we conclude the key points
paper and discuss further work directions.

II. BACKGROUND

A. MQTT Protocol

MQTT (Message Queue Telemetry Transport) is a mes-
saging protocol in a publish-subscribe model, using low band-
width and high reliability. MQTT architecture consists of two
main components: Broker and Client. MQTT Broker is the
central server. It is the intersection point of all the connections
coming from the client. The broker’s main task is to receive
messages from all clients and then forward them to a specific
address. Clients are divided into two groups: publisher and
subscriber. The publisher is the client that publishes messages
on a specific topic. Subscribers are clients that subscribe to
one or more topics to receive messages going to these topics.

B. OAuth Protocol and Single Sign-On

Oauth is an authentication mechanism that enables third-
party applications to be authorized by the user to access the
user’s resources located on another application. OAuth version
2, an upgrade of OAuth version 1, is an authentication protocol
that allows applications to share a portion of resources without
authenticating via username and password as the traditional
way. Thereby limiting the hassle of having to enter the
username, password in too many places or register too many
accounts for many applications that they cannot remember.

According to the OAuth document3, there are four basic
concepts, namely, Resource owners, Resource server, Clients,
and Authorization server.

• Resource owners: are users who have the ability
to grant access, the owner of the resource that the
application wants to get.

• Resource server: a place to store resources, capable
of handling access requests to protected resources.

• Clients: are third-party applications that want to ac-
cess the resource shared by the resource owner, and
before accessing, the application needs to receive the
user’s authorization.

• Authorization server: authenticates, checks the infor-
mation the user sent from there, grants access to the
application by generating access tokens. Sometimes
the same authorization server is the resource server.

A token is a random code generated by the Authorization
server when a request comes from the client. There are two
types of tokens, the access token, and the refresh token. The
access token is a code used to authenticate access, allowing
third-party applications to access user data. This token is sent
by the client as a parameter during the request when it is
necessary to access the resource in the Resource server. The

3https://oauth.net/2/

www.ijacsa.thesai.org 20 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol 12, No. 6, 2021

Fig. 1. The Activity Sample of Kafka [21]

access token has a reasonable time (30 minutes, 1 hour). When
it expired, the client had to request the Authorization Server
to get the new access token. The Authorization server also
generates the refresh token simultaneously as the access token
but with a different function. The refresh token is used to get
the new access token when it expires, so the validity period is
more extended than the access token.

Single Sign-On (SSO) is a mechanism that allows users
to access multiple applications with just one authentication.
SSO simplifies administration by managing user information
on a single system instead of multiple separate authentication
systems. It makes it easier to manage users when they join or
leave an organization [20]. SSO supports many authentication
methods such as OAuth, OpenID, SAML, and so on.

C. Kafka

Kafka is a distributed messaging system. Kafka is capable
of transmitting a large number of messages in real-time. In
case the kernel has not received the message, this message is
still stored on the message queue and on the disk to ensure
safety. Fig. 1 show a sample of Kafka [21].

Kafka includes the four components: producer, consumer,
topic, and partition. Kafka producer is a client to publish
messages to topics. Data is sent to the partition of the topic
stored on the broker. Kafka consumers are clients that sub-
scribe and receive messages from the topic. Group names
identify consumers, whereas many consumers can subscribe
to the same topic. Data is transmitted in Kafka by topic. Once
it is necessary to transmit data for various applications, it can
create many different topics. Partition is the data storage on
a topic. Each topic can have one or more partitions. For each
partition, the data is stored permanently and assigned an ID
called offset. Besides, Kafka servers are also called a broker,
and the zookeeper is a service to manage the brokers.

III. RELATED WORK

A. OAuth and MQTT

Paul Fremantle et al. [17] used OAuth to enable access
control in the MQTT protocol. The paper results show that
IoT clients can fully use OAuth token to authenticate with
an MQTT broker. The article demonstrates how to deploy the
Web Authorization Tool to create the access token and then
embed it in the MQTT client. However, the article does not
cover the control of communication channels, so when the
properly authenticated MQTT client is able to subscribe to
any topic on the MQTT broker, this creates the risk of data

disclosure. The paper presents the combined implementation of
OAuth and MQTT for internal communication between MQTT
broker and MQTT client in the same organization, but not the
possibility of applying for inter-organization communication.
Therefore, in our article, we implement a strict management
mechanism for users, devices, and communication channels.
We also present the mechanism of combining MQTT and
OAuth protocols to authenticate users when communicating
among organizations.

Benjamin Aziz et al. [22] investigated OAuth to manage
the registration of users and IoT devices. These papers also
introduce the concept of Personal Cloud Middleware (PCM)
to perform internal communication between the device and a
third-party application on behalf of the user. PCM is an MQTT
broker that isolates and operates on a Docker or operating
system. Each user has their PCM, and this can help limit data
loss. However, Benjamin Aziz et al. also said that they do not
have a mechanism for revoking PCM when users are no longer
using IoT services, nor have they clearly stated the mechanism
to ultimately connect PCMs to form a network for users of
various organizations to communicate with each other.

B. Kafka and MQTT

A.S. Rozik et al. [21] found that the MQTT broker does
not provide any buffering mechanism and cannot be extended.
When large amounts of data come from a variety of sources,
both of these features are essential. In the Sense Egypt IoT
platform, A.S. Rozik et al. have used Kafka as an intermediary
system to transport messages between the MQTT broker
and the rest of the IoT system, which improves the overall
performance of the system as well as provides easy scalability.

Moreover, in the previous studies [23], the authors pre-
sented Kafka Message Queue and MQTT broker’s combined
possibilities in Intelligent Transportation System. The deploy-
ment model demonstrates the ability to apply to bridge MQTT
with Kafka for low latency and handle messages generated by
millions of vehicles. They used MQTT Source Connector to
move messages from MQTT topic to Kafka Topic and MQTT
Sink connector to move messages from Kafka topic to MQTT
topic as shown in Fig. 2.

Lam et al. [24] presented an architecture that combines
MQTT broker and kafka message queue to connect different
IoT service providers. This architecture allows individual ser-
vice providers to communicate with each other easily without
changing the existing architecture too much. In addition,
Lam et al. [25] also evaluates power consumption, transfer
speed, communication reliability, and security when using a
combination of MQTT broker and kafka message queue. With
Kafka’s capabilities, we don’t need to trade off transmission
speed and reliability for power consumption (this is related to
QoS-0 and QoS-2 levels).

In the implementation of the IoT Platform, we also adopt
and extend this technique by building APIs that allow users to
map their topics.

IV. UIP2SOP PLATFORM

The UIP2SOP Platform is a set of APIs combined with
system architecture such as Single Sign-On system, Kafka

www.ijacsa.thesai.org 21 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol 12, No. 6, 2021

Fig. 2. Communication between MQTT Borker and Kafka [23].

Message Queue, and MQTT broker that provide the following
capabilities:

• Authenticate information verifies the user info by
granting OAuth access token and refresh token for the
user.

• Management information exploits the tree model and
the unlimited number of user levels created.

• Management of physical devices/ applications and
communication channels participates in an IoT system.

• Sending and receiving messages locally defines a user,
a thing, and a specific communication channel.

• Sending and receiving messages globally combines
two various organizations through the Kafka message
queue.

A. System Architecture

Fig. 3 presents an architectural proposal model of the IoT
framework. Let’s consider Organization A and Organization
B are two separate organizations in the system. Each organi-
zation is a set of MQTT brokers that are interconnected to
form a cluster MQTT broker. These MQTT brokers play two
roles as follows: i) Internal MQTT broker is responsible
for transporting messages communicating between users, IoT
devices; ii) External MQTT broker is in charge of transport-
ing messages communicating between two organizations The
UIP2SOP Platform system includes the Single Sign-On server
and the Single Sign-On service’s database cluster to perform
the following tasks: i) authenticate user according to OAuth
protocol; ii) manage user registration information, channels
(public and local), and things. Finally, the UIP2SOP Platform

system uses the Kafka Message Queue to transport messages
between two organizations’ external brokers.

B. UIP2SOP Architecture

To meet the goals set out by the UIP2SOP Framework, we
provide several definitions of the components involved in the
system and the interaction of these components.

1) Users::
Users participate in an organization and use IoT services
provided by that organization. They have two types (corre-
sponding to the parameter field “usertype” in the database): a
representation user and a normal user.

Each organization has only one representation user that
created when an organization registers information of the
organization with the UIP2SOP Platform. Representation users
are not allow to send or receive messages through the MQTT
broker or Kafka message queue. A representation user only
creates an organization’s public channel and the normal users
use this channel to communicate with other organizations in
the IoT network. Also, they manage the normal users of the
organization.

The purpose in creating a representation user concept is to
efficiently manage (e.g., send or receive) messages as well
as the organization’s (e.g., join or leave) the IoT network.
All normal users have to send and receive public messages
on the public channel that created and not allowed to create
a public channel. Besides, the UIP2SOP Platform manager
efficiently manages the entry and exit of an organization’s IoT
network via the organization’s status (i.e., the userstatus
parameter field in the database). When an organization leaves
the IoT network or may be attacked, the UIP2SOP Platform
administrator switches the userstatus from ACTIVE to
DISABLE, which results in isolating the entire organization
from the IoT network, and all normal users and devices within
the organization cannot communicate with other organizations
but can still communicate internally within the same organi-
zation.

Similarly, after the problem is resolved or wants to re-
join the IoT network, through a representation user, the orga-
nization can request the manager of the UIP2SOP Platform
to change his or her state to ACTIVE. By constructing a
user hierarchy model tree with the child’s user_parent_id
value equal to the parent user’s username, our UIP2SOP Plat-
form allows the creation and management of multiple users’
levels and is not restricted depending on the characteristics
of the organization. This tree-modeled hierarchy of users
makes the UIP2SOP platform more suitable for companies,
especially when it comes to authorize a specific user. The user
hierarchical management model is shown in Fig. 4.

A normal user registers to use the IoT services of a
particular organization. They can create things, channels and
assign things to channels to manage which things allowed to
send and receive messages on a predefined channels. Each
user has a unique user_id value, conforming to the UUID4

standard created by the API and managed by the UIP2SOP
Platform (user is not aware of this value). When publishing
or subscribing, the user must pass his access token obtained

4https://tools.ietf.org/html/rfc4122

www.ijacsa.thesai.org 22 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol 12, No. 6, 2021

Fig. 3. UIP2SOP Platform.

Fig. 4. Management user as a Model Tree.

from the Single Sign-On server, which contains the user_id
information and is used as the MQTT protocol’s clientID
value. In this way, we have enhanced the authentication and
authorization mechanisms for the user and minimize the risk
of a denial-of-service attack when a hacker subscribes to a
topic with the user’s clientID affects the availability of the
UIP2SOP Platform as we mentioned in Section I.

2) Things:
The things represent the physical devices info or the appli-
cations. To create the things, the owners need to call the
API provided by the UIP2SOP Platform and pass in his/her
valid OAuth token. If the user owns a valid token, the API
generates the device’s management information. The device’s
info includes two values thing_id and thing_key, corre-
sponding to the device just created and return to the user. These
two values are unique, created according to the UUID standard
and used respectively with the username and password values
used in the MQTT protocol. In practice, these two values
are embedded in the physical device or application. Only the
things that own the valid pair of thing_id and thing_key,
can communicate with the MQTT broker since the other ones
are not able to publish or subscribe directly to the MQTT
broker. Instead, the things must go through the API layer. This
layer API validates thing_id and thing_key sent by the
things. Similarly, the user can create device management info
to reduce the risk of denial-of-service attacks.

3) Channels and Assign Things to Channels:
In the UIP2SOP Platform, we propose, channels are the logical
concept that governs topics where users and things publish and
subscribe to messages. There are two types of channels: public
channel and local channel.

The local channel is an MQTT topic that is created and
managed by a normal user. Each normal user can create one or
more local channels. Similarly, when creating a thing, the user
who wants to create a channel must call the UIP2SOP Plat-
form’s API and pass in his valid Oauth token. If the user owns
a valid token, the API generates the management information
of the channel. This information includes value channel_id
corresponding to the channel just created and return to the user.
The channel_id value is unique, and according to the UUID
standard, channel_id are returned to the user who created
this channel. Each user only has his channel’s informations and
does not know the channel information of other users. Besides,
the user has to assign things to this channels by calling the API
and pass in thing_id, channel_id and his valid OAuth
token. The purpose of this process is to only allow a thing with
a valid thing_id and thing_key to publish and subscribe
to messages on a predefined channel. From there, this help to
avoid the client can subscribe to any topic. This enormously
increases the authorization mechanism, which is a flexible way
that the original MQTT protocol did not support. The assign
things to channels mechanism also enhance security because,
through our API, only things are mapped to the channel are
allowed to publish and subscribe to messages on this channel.

The public channel is a Kafka topic are created by the
representation user. Each organization has a unique public
channel. All of the normal users of the organization have
to communicate with another organization through the public
channel.

4) Publish and Subscribe Message Locally: : After cre-
ating the things, the users (owners) have enough information
including channel_id, thing_id and thing_key gen-
erated by the API layer of UIP2SOP Platform Proposal and
returned to the user. Users embed three values thing_id,
thing_key and their refresh token into the things (physical
device or application). The process of embedding the above

www.ijacsa.thesai.org 23 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol 12, No. 6, 2021

information into a thing is out of this article’s scope, so we are
not able to elaborate on it here. The things with the necessary
information embedded performs the API that provided by the
UIP2SOP Platform Proposal to publish the message within the
organization.

1 {
2 "token":"access token of publisher",
3 "thingid":"1960ff8f-ec57-4d81-b6d2-cb1

7e83016ad",
4 "thingkey":"3415e387-1b3b-49aa-8113-40

799005f3bc",
5 "chanelid":"b7cd662c-7d15-4d6b-a8f0-d4

51e2f368ea",
6 "message":"Message local communication

"
7 }

The information of token, thing_id, thing_key and
channel_id are validated by the API services. If all infor-
mation is correct, the message is sent to the MQTT broker; oth-
erwise, the message is discarded. Similarly, for the Subscribe
process, things also send information of token, thing_id,
thing_key, channel_id to connect to the MQTT Broker
through the API. If the information is not valid, the API are
not allow the things to connect to the MQTT Broker.

5) Publish and Subscribe message publicly: : The process
of publishing and subscribing to the message is described in
Figure 5.

To support the communication among the users in the
different organizations, our platform applies a public channel
(or Kafka topic). In particular, we assign a local topic (MQTT
topic) with a public channel (Kafka topic). For instance, orga-
nization A has a public channel with channel ID “95ce1a32-
2136-417e-85b4-46b432f1c9ad”. A user of organization A,
called ‘‘user-a’’, wants to send a message to any user
of another organization, called ‘‘user-b’’, he must go
through this public channel and perform two steps as follows:

• Step 1: ‘‘user-a’’ creates a dedicated local chan-
nel to send messages to the public, assuming it is
called ‘‘send-public-a". This channel is created
via the API that creates a local channel, as shown in
Section 4.2.3. In fact, the API uses channel_id, but
for brevity, we cover the channel’s name.

• Step 2: ‘‘user-a’’ uses the UIP2SOP Platform’s
API to assign the local channel just created above
to the public channel. This process is equivalent cre-
ate the MQTT Source Connector. After the mapping
complete, ‘‘user-a’’ publishes the message to the
‘‘send-public-a" channel. Finally, the message
is automatically routed to the public channel. The
body structure to call API are as follows:

1 {
2 ‘‘name": ‘‘mqtt-source-for-user-a",
3 ‘‘config": {
4 ‘‘connector.class": ‘‘io.confluent.

connect.mqtt.MqttSourceConnector",
5 ‘‘tasks.max": ‘‘1",
6 ‘‘name": ‘‘mqtt-source-for-user-a",

7 ‘‘mqtt.server.uri": ‘‘tcp://13.212.194.
253:1883",

8 ‘‘mqtt.topics": ‘‘send-public-a",
9 ‘‘kafka.topic": ‘‘95ce1a32-2136-417e-85

b4-46b432f1c9ad",
10 ‘‘mqtt.clean.session.enabled": ‘‘true",
11 ‘‘mqtt.connect.timeout.seconds": ‘‘30",
12 ‘‘mqtt.keepalive.interval.seconds": ‘‘3

0",
13 ‘‘confluent.topic.bootstrap.servers":

‘‘localhost:9092",
14 ‘‘confluent.topic.replication.factor":

‘‘1",
15 ‘‘mqtt.qos": ‘‘0".
16 }
17 }

The UIP2SOP Platform builds the Kafka consumer service,
which receive the message sent by ‘‘user-a’’, check
the destination address (defined in body of public message),
then forward it to the public channel of the ‘‘user-b’’.
At that time, the message is on the public channel (Kafka
topic) of ‘‘user-b’’. Therefore, to receive the message,
the ‘‘user-b’’ must previously create a local channel
(MQTT topic), called ‘‘receive-public-b’’ and map
it to the public channel of ‘‘user-b’’. This is equivalent
create an MQTT sink connector. The ‘‘user-b’’ uses an
API provided by UIP2SOP Platform to create MQTT sink
connector. The body structure creates MQTT sink connector
is shown follow:

1 {
2 ‘‘name": ‘‘receive-public-b",
3 ‘‘config": {
4 ‘‘connector.class": ‘‘io.confluent

.connect.mqtt.
MqttSinkConnector",

5 ‘‘tasks.max": ‘‘1",
6 ‘‘mqtt.server.uri": ‘‘tcp://172.31

.46.150:1883",
7 ‘‘topics": ‘‘receive-public-b",
8 ‘‘mqtt.qos": ‘‘2",
9 ‘‘key.converter": ‘‘org.apache.

kafka.connect.storage.
StringConverter",

10 ‘‘value.converter": ‘‘org.apache.
kafka.connect.storage.
StringConverter",

11 ‘confluent.topic.bootstrap.servers
": ‘‘localhost:9092",

12 ‘‘confluent.topic.replication.
factor": ‘‘1".

13 }
14 }

The body structure when using API public publishing is as
follows:

1 {
2 ‘‘token": ‘‘access token of publisher"

,
3 ‘‘source": ‘‘user-a",

www.ijacsa.thesai.org 24 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol 12, No. 6, 2021

Fig. 5. Process Publish a Message to the Public.

4 ‘‘destination": ‘‘user-b",
5 ‘‘message": ‘‘Hello user-b"
6 }

V. IMPLEMENTATION

To demonstrate the practical implementation of the pro-
posal platform, we have built a prototype of the system. We
do this to answer the following research questions:

• Can UIP2SOP Platform be realizable?

• Are there any specific problems with the implementa-
tion?

• How does this performance compare to an existing
system?

A. Database

As explained in Section V, the IoT Platform allows to
manage the information of users, things, channels and imple-
ment assign things to channel. In practical implementation, we
use MongoDB as a database management system belonging to
NoSQL. To realize the model tree (select, update, delete), we
have used the Aggregation technique provided by MongoDB5.

In the prototype system implementation we have seven data
collections with the following roles:

Collection of users: store information of normal user and
representation user. This collection of users are configured for
the Single Sign-On system to read the information and authen-
ticate with the parameters username and password. Our
API layer (SSO proxy) also checks parameter user_status,
if user_status is ACTIVE then API return Oauth access
token and refresh token for user. We have designed the API that
does not allow the users to change his or her user_status,

5https://docs.mongodb.com/manual/reference/operator/aggregation/graph-
Lookup/

only his or her parent user can do this. Thanks to the user
management design as tree model, the parent user can quickly
change the status of its entire child user’s status, which helps
to quickly isolate all users when something goes wrong. The
parameter user_parent_id is used to indicate the parent
of the user. In our design the child user has information
user_parent_id equal the username of its parent user.

Collection of things: store information of physical devices
or applications managed by a normal user. The API layer
(MQTT proxy) checks the parameter thing_status, if
thing_status is ACTIVE then the things is allowed to
connect to the MQTT broker. User can change the status of
things which is managed by the himself. We have also designed
an API that allows to change the status of the user resulting
in changing the status of all of the user’s things.

Collection of local channel: store local channel informa-
tion (MQTT topic) managed by the normal user. API layer
(MQTT proxy) checks the parameter channel_status, if
channel_status is active then the thing is allowed to
publish messages to the MQTT broker on this channel. User
can change the status of a channel managed by the himself.
We have also designed an API that allows to change the status
of the user resulting in changing the status of all of the user’s
channels.

Collection of things_map_channel: stores informa-
tion of thing that has been assigned to channels by a normal
user to the channel. API layer (MQTT proxy) checks the
parameter map_status, if map_status is active then
the thing is allowed to publish the message to the MQTT
broker on this channel. A user can change the status of
things_map_channel, which is managed by himself. We
have also designed an API that allows to change the status of
the user resulting in changing the status of all of the user’s
things_map_channel.

Collection MQTT_source_connector: stores informa-
tion MQTT source connector created by normal user. API layer
(MQTT proxy) checks parameter mqtt_source_status,

www.ijacsa.thesai.org 25 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol 12, No. 6, 2021

if mqtt_source_status is active then the message can
be transfered from MQTT topic to Kafka topic. User can
change the status of MQTT_source_connector managed
by himself. We have also designed an API that allows to
change the status of the user resulting in changing the status
of all of the user’s MQTT_source_connector.

Collection MQTT_sink_connector: stores the MQTT
sink connector information generated by a normal user. API
layer (MQTT proxy) check parameter mqtt_sink_status,
if mqtt_sink_status is active then user will receive
message from MQTT topic sent by Kafka topic. User can
change the status of MQTT_sink_connector managed by
himself. We have also designed an API that allows to change
the status of the user resulting in changing the status of all of
the user’s MQTT_sink_connector.

B. Single Sign-On

In the prototype system, we use the open source CAS
Apereo6 to provide the Single Sign-On service. CAS Apereo
supports many protocols for implementing Single Sign-On
services such as OAuth, SAML, OpenID, etc. The protocol
that UIP2SOP Platform used to communicate with the Single
Sign-On server is OAuth. In our implementation, the clients are
not allowed interact directly with the CAS server but instead
we provide the API for request OAuth token. For example, the
API request token has the following body:

1 {
2 ‘‘clientid": ‘‘exampleOauthClient",
3 ‘‘clientsecret": ‘‘

exampleOauthClientSecret",
4 ‘‘username": ‘‘thanhlam",
5 ‘‘password": ‘‘12345678".
6 }

Fig. 6 describes an example of a the User with DISABLE
status unable to request an Access token.

C. Mosquitto MQTT Broker

Mosquitto is an open source to implement MQTT broker
that allows to transmit and receive data according to MQTT
protocol. Mosquitto is also part of the Eclipse Foundation, the
project iot.eclipse.org7. Mosquitto is very light and has the
advantages of fast data transfer and processing speed, high
stability.

D. Prototype System Deployment Model

We deploy prototype system as shown in Fig. 7.

The Prototype system we deployed on Amazon EC2 in-
frastructure consists of seven servers as shown in Table I.

Please add the following required packages to your docu-
ment preamble:

In Table I, Organization 1 consists of two servers. The
first server deploys the MQTT Broker 1a service for local
communication. Second server, deploying MQTT Broket 1b

6https://apereo.github.io/cas/6.3.x/index.html
7https://iot.eclipse.org/

service for public communication. In addition, we deploy
MQTT Proxy API service and SSO Proxy to provide APIs
for users and devices to communicate with MQTT brokers
and SSO through APIs in the first server. The implementation
of organization 2 is similar to Organization 1.

Management Central is a single server deploying four
services: Kafka, Kafka Proxy, Single Sign-On and database.
Single Sign-On service creates access token and refresh token
for users according to OAuth protocol. The Kafka service acts
as the message queue to transport messages between Organi-
zation 1 and Organization 2. The Kafka Proxy service acts as
the Kafka consumer to receive messages from Organization
1’s public channel and forward it to the Organization’s public
channel 2. Database service to store information of users,
things, channels.

VI. EVALUATION

A. Environment

After completing the deployment of the prototype system
on the Amazon EC2 infrastructure, we conduct performance
test scenarios of the IoT Framework. We check the number of
concurent users that can publish messages simultaneously for
two cases of internal communication and external communica-
tion. We measure the time it takes to create a public channels.
The test tool we use is the Apache Jmeter8.

Apache Jmeter is an open source, written 100% in Java, us-
able for performance testing on both static resources, dynamic
resources and Web applications. It can be used to simulate
a large number of virtual users, large requests on a server
or a group of servers, a network or an object to test for load
capacity or analyze the response time. Apache Jmeter provides
the ability to test different applications, servers and protocols
such as: Web-HTTP, HTTPs, SOAP / REST Webservice, FTP,
LDAP, etc. Since our UIP2SOP Platform Protocol provides
API as REST, Jmeter is a perfect fit for system load testing.
Firstly, Jmeter makes requests and sends them to the server
according to the predefined method, in this case it is REST.
Then, it receives responses from the server, collects them and
displays information in the report. Jmeter has many report
parameters, but when performing system load test, we are
mainly interested in two parameters: throughput and error,
where the former is the number of requests processed by the
server in a second and the latter is the percentage of the number
of failed requests over the total number of requests. For our
UIP2SOP Platform, the system crashed because the API layer
is overload and can’t handle request lead to crash API service.

B. Local Communication Test Cases

For the local communication test scenario, we compare the
case where the user publishes the message through the MQTT
Proxy API, i.e., the authentication process with Single Sign-
On, checked by the MQTT Proxy and SSO Proxy, then passed
to the local MQTT broker and finally received by the MQTT
subscriber with case the user publishes the message directly to
the MQTT broker. For two cases in the internal communication
test scenario, we use Jmeter to call the API publish message
locally then record the number of concurrent users and the

8https://jmeter.apache.org/

www.ijacsa.thesai.org 26 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol 12, No. 6, 2021

Fig. 6. User with DISABLE status is not Able to Request an Access Token.

Fig. 7. Prototype System Deployment Model.

TABLE I. LIST OF INFRASTRUCTURE INFO IN THE PROTOTYPE

Zone Server Role Server
configuration

2*Organization A Broker 1a Deploy service MQTT broker for local communication
Deploy service API (MQTT Proxy & SSO Proxy)

CPU 1
RAM 1 GB

Broker 1b Deploy service MQTT broker to serve public
communication

CPU 1
RAM 1 GB

2*Organization B Broker 2a Deploy service MQTT broker for local communication
Deploy service API (MQTT Proxy & SSO Proxy)

CPU 1
RAM 1 GB

Broker 2b Deploy service MQTT broker for public
communication

CPU 1
RAM 1 GB

Management
Central

Management
Central

Deploy Single Sign-On service
Deploy the Kafka service
Deploy Kafka Proxy service
Deploy the Database service

CPU 2
RAM 8 GB

www.ijacsa.thesai.org 27 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol 12, No. 6, 2021

number of requests processed per second. For MQTT Broker
we use Mosquitto. The test model for internal communication
is shown in the Fig. 8 and the test results are shown in Table
II (via UIP2SOP Platform) and Table III (via MQTT Broker).

Through the results obtained, we found that with a server
configuration of 1GB RAM and 1 CPU, the UIP2SOP Platform
provides the ability to connect 450 concurrent users with a
processing speed of 23.9 requests/s without error. Correspond-
ingly, when publishing messages directly to the MQTT broker,
Mosquitto can provide the ability to connect 550 concurrent
users with a processing speed of 49.6 requests/s. This is
reasonable and the result is completely acceptable because our
UIP2SOP Platform has added the inspection and authentication
mechanisms in Section IV.

C. Public Communication Test Cases

For the test scenario for public communication between
organizations, we use Jmeter to call the API publish message
publicly then record the number of concurrent users and
the number of requests processed per second. Test model of
communication between two organizations is shown in Fig. 7
and detail process is shown in Fig. 5. Test results are shown
in Table IV.

According to aforementioned results, we found that with a
server configuration of 1GB RAM and 1 CPU, the UIP2SOP
Platform provides the ability to connect 170 concurrent users
with a processing speed of 33 requests/s without error. To
the best of our knowledge, we do not find any similar
implementation models, so in this section we only record
the measured parameters. This test result is reasonable and
this result is completely acceptable because when sending
messages between two organizations, the UIP2SOP Platform
must perform more processing and authentication steps as we
have presented in Section IV. The processing speed and the
number of concurrent users can be improved by deploying
the UIP2SOP Platform on a higher configuration server. In
fact, APIs of the UIP2SOP Platform such as MQTT Proxy,
SSO Proxy, SSO service and Kafka services should also be
deployed as cluster to enhance processing capacity and high
availability.

D. Broken Connection Test Cases

In addition, we also have taken test scenario with broken
connection between publisher and subscriber. We compare
number of receive messages in case with and without using
UIP2SOP platform when occured broken connection. The test
model is shown in the Fig. 9.

The test result show that, in case without using UIP2SOP
platform, subscriber only receive one message - the newest
message that publisher send when occurred broken connection.
This is the retain function of MQTT protocol. When we
enable retain flag, MQTT broker is ability to keep only newest
message that publish by publisher. This message is received
by subscriber after it reconnects to MQTT broker9. However,
when using UIP2SOP platform, subcriber can receive all
message that published by publisher. This is ability of kafka
message queue, therefore the system is guaranteed lost data.

9http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

E. Future Work

To develop a larger scenario and increase the number of
devices/users authorized quickly, other security issues such as
security, privacy, availability for objects are still the challenges.
For the security aspect, further works will be deployed in
different scenarios like healthcare environment [26], [27], [28],
cash on delivery [29], [30]. For the privacy aspect, we will
exploit attribute-based access control (ABAC) [31], [32] to
manage the authorization process of the IoT Platform via the
dynamic policy approach [33], [34], [35]. Finally, we will
apply the blockchain benefit to improve the availability issues
[36], [37], [38].

VII. CONCLUSION

The UIP2SOP Platform provides significant improvements
in the security capabilities of the MQTT protocol by combining
OAuth protocol (Single Sign-On), model of management user,
things and channels. The procedure of assigning things to
channels, strict management of local and public communi-
cation channels helps to minimize careless behavior of users
when sharing data. The Kafka message queue system not only
easily connects among the organizations providing IoT services
to the IoT network without changing too much of the available
IoT system architecture of each organization but also reduce
lost data when occurred broken connection.

REFERENCES

[1] T. Alam, “A reliable communication framework and its use in internet
of things (iot),” CSEIT1835111— Received, vol. 10, pp. 450–456, 2018.

[2] V. Morfino and S. Rampone, “Towards near-real-time intrusion de-
tection for iot devices using supervised learning and apache spark,”
Electronics, vol. 9, no. 3, p. 444, 2020.

[3] H. F. Atlam, A. Alenezi, M. O. Alassafi, and G. Wills, “Blockchain
with internet of things: Benefits, challenges, and future directions,”
International Journal of Intelligent Systems and Applications, vol. 10,
no. 6, pp. 40–48, 2018.

[4] O. Novo, “Blockchain meets iot: An architecture for scalable access
management in iot,” IEEE Internet of Things Journal, vol. 5, no. 2, pp.
1184–1195, 2018.

[5] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-
Zarate, “A survey on application layer protocols for the internet of
things,” Transaction on IoT and Cloud computing, vol. 3, no. 1, pp.
11–17, 2015.

[6] D. Weissman and A. Jayasumana, “Integrating iot monitoring for
security operation center,” in 2020 Global Internet of Things Summit
(GIoTS). IEEE, 2020, pp. 1–6.

[7] A. Niruntasukrat, C. Issariyapat, P. Pongpaibool, K. Meesublak,
P. Aiumsupucgul, and A. Panya, “Authorization mechanism for mqtt-
based internet of things,” in 2016 IEEE International Conference on
Communications Workshops (ICC). IEEE, 2016, pp. 290–295.

[8] B. Mishra and A. Kertesz, “The use of mqtt in m2m and iot systems:
A survey,” IEEE Access, vol. 8, pp. 201 071–201 086, 2020.

[9] S. P. Jaikar and K. R. Iyer, “A survey of messaging protocols for iot sys-
tems,” International Journal of Advanced in Management, Technology
and Engineering Sciences, vol. 8, no. II, pp. 510–514, 2018.

[10] B. H. Çorak, F. Y. Okay, M. Güzel, Ş. Murt, and S. Ozdemir, “Compar-
ative analysis of iot communication protocols,” in 2018 International
symposium on networks, computers and communications (ISNCC).
IEEE, 2018, pp. 1–6.

[11] G. C. Hillar, MQTT Essentials-A lightweight IoT protocol. Packt
Publishing Ltd, 2017.

[12] J. J. Anthraper and J. Kotak, “Security, privacy and forensic concern of
mqtt protocol,” in Proceedings of International Conference on Sustain-
able Computing in Science, Technology and Management (SUSCOM),
Amity University Rajasthan, Jaipur-India, 2019.

www.ijacsa.thesai.org 28 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol 12, No. 6, 2021

Fig. 8. Test Scenario for the Performance of Local Communication.

TABLE II. TEST RESULTS OF INTERNAL COMMUNICATION VIA UIP2SOP PLATFORM

50 CCU 150 CCU 250 CCU 350 CCU 450 CCU 550 CCU 650 CCU
Through put

(request/s) 14 24.7 26.3 25.5 23.9 21.6 -

Error 0% 0% 0% 0% 0% 5.2% -

TABLE III. TEST RESULTS OF INTERNAL COMMUNICATION VIA THE MQTT BROKER

50 CCU 150 CCU 250 CCU 350 CCU 450 CCU 550 CCU 650 CCU
Through put

(request/s) 38 48.3 49.1 50.6 50.1 49.6 45.4

Error 0% 0% 0% 0% 0% 0% 28.3%

TABLE IV. TEST RESULTS OF EXTERNAL COMMUNICATION

CCU 25 50 75 100 125 150 175 200
Through put

(request/s) 11 20.5 26.8 32.3 34.6 33.9 33 32.1

Error (%) 0 0 0 0 0 0 0 15.3

Fig. 9. Number of Receive Messages when System Recover after Broken
Connection Issue.

[13] D. Mendez Mena, I. Papapanagiotou, and B. Yang, “Internet of things:
Survey on security,” Information Security Journal: A Global Perspec-
tive, vol. 27, no. 3, pp. 162–182, 2018.

[14] L. Lundgren, “Light-weight protocol! serious equipment! critical impli-
cations!” Defcon 24, 2016.

[15] S. Wang, K. Gomez, K. Sithamparanathan, M. R. Asghar, G. Russello,
and P. Zanna, “Mitigating ddos attacks in sdn-based iot networks
leveraging secure control and data plane algorithm,” Applied Sciences,
vol. 11, no. 3, p. 929, 2021.

[16] N. Zaidi, H. Kaushik, D. Bablani, R. Bansal, and P. Kumar, “A study
of exposure of iot devices in india: Using shodan search engine,” in
Information Systems Design and Intelligent Applications. Springer,
2018, pp. 1044–1053.

[17] P. Fremantle, B. Aziz, J. Kopeckỳ, and P. Scott, “Federated identity and
access management for the internet of things,” in 2014 International
Workshop on Secure Internet of Things. IEEE, 2014, pp. 10–17.

[18] L. Tawalbeh, F. Muheidat, M. Tawalbeh, M. Quwaider et al., “Iot
privacy and security: Challenges and solutions,” Applied Sciences,
vol. 10, no. 12, p. 4102, 2020.

[19] A. Subahi and G. Theodorakopoulos, “Detecting iot user behavior and
sensitive information in encrypted iot-app traffic,” Sensors, vol. 19,
no. 21, p. 4777, 2019.

[20] V. Radha and D. H. Reddy, “A survey on single sign-on techniques,”
Procedia Technology, vol. 4, pp. 134–139, 2012.

[21] A. Rozik, A. Tolba, and M. El-Dosuky, “Design and implementation
of the sense egypt platform for real-time analysis of iot data streams,”
Advances in Internet of Things, vol. 6, no. 4, pp. 65–91, 2016.

[22] P. Fremantle and B. Aziz, “Oauthing: privacy-enhancing federation for
the internet of things,” in 2016 Cloudification of the Internet of Things
(CIoT). IEEE, 2016, pp. 1–6.

www.ijacsa.thesai.org 29 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol 12, No. 6, 2021

[23] Å. Hugo, B. Morin, and K. Svantorp, “Bridging mqtt and kafka to
support c-its: a feasibility study,” in 2020 21st IEEE International
Conference on Mobile Data Management (MDM). IEEE, 2020, pp.
371–376.

[24] L. N. T. Thanh et al., “Toward a unique iot network via single sign-on
protocol and message queue,” in International Conference on Computer
Information Systems and Industrial Management. Springer, 2021.

[25] ——, “Toward a security iot platform with high rate transmission and
low energy consumption,” in International Conference on Computa-
tional Science and its Applications. Springer, 2021.

[26] H. X. Son and E. Chen, “Towards a fine-grained access control mecha-
nism for privacy protection and policy conflict resolution,” International
Journal of Advanced Computer Science and Applications, vol. 10, no. 2,
2019.

[27] N. Duong-Trung, H. X. Son, H. T. Le, and T. T. Phan, “Smart care:
Integrating blockchain technology into the design of patient-centered
healthcare systems,” in Proceedings of the 2020 4th International
Conference on Cryptography, Security and Privacy, ser. ICCSP 2020.
New York, NY, USA: Association for Computing Machinery, 2020, p.
105–109.

[28] ——, “On components of a patient-centered healthcare system using
smart contract,” in Proceedings of the 2020 4th International Confer-
ence on Cryptography, Security and Privacy. New York, NY, USA:
Association for Computing Machinery, 2020, p. 31–35.

[29] H. T. Le, N. T. T. Le, N. N. Phien, and N. Duong-Trung, “Introducing
multi shippers mechanism for decentralized cash on delivery system,”
money, vol. 10, no. 6, 2019.

[30] N. T. T. Le, Q. N. Nguyen, N. N. Phien, N. Duong-Trung, T. T. Huynh,
T. P. Nguyen, and H. X. Son, “Assuring non-fraudulent transactions in
cash on delivery by introducing double smart contracts,” International
Journal of Advanced Computer Science and Applications, vol. 10, no. 5,
pp. 677–684, 2019.

[31] N. M. Hoang and H. X. Son, “A dynamic solution for fine-grained
policy conflict resolution,” in Proceedings of the 3rd International

Conference on Cryptography, Security and Privacy, 2019, pp. 116–120.
[32] H. X. Son and N. M. Hoang, “A novel attribute-based access control

system for fine-grained privacy protection,” in Proceedings of the 3rd
International Conference on Cryptography, Security and Privacy, 2019,
pp. 76–80.

[33] S. H. Xuan, L. K. Tran, T. K. Dang, and Y. N. Pham, “Rew-xac: an
approach to rewriting request for elastic abac enforcement with dynamic
policies,” in 2016 International Conference on Advanced Computing
and Applications (ACOMP). IEEE, 2016, pp. 25–31.

[34] Q. N. T. Thi, T. K. Dang, H. L. Van, and H. X. Son, “Using json to
specify privacy preserving-enabled attribute-based access control poli-
cies,” in International Conference on Security, Privacy and Anonymity
in Computation, Communication and Storage. Springer, 2017, pp.
561–570.

[35] H. X. Son, T. K. Dang, and F. Massacci, “Rew-smt: a new approach
for rewriting xacml request with dynamic big data security policies,”
in International Conference on Security, Privacy and Anonymity in
Computation, Communication and Storage. Springer, 2017, pp. 501–
515.

[36] X. S. Ha, H. T. Le, N. Metoui, and N. Duong-Trung, “Dem-cod: Novel
access-control-based cash on delivery mechanism for decentralized
marketplace,” in 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom).
IEEE, 2020, pp. 71–78.

[37] X. S. Ha, T. H. Le, T. T. Phan, H. H. D. Nguyen, H. K. Vo,
and N. Duong-Trung, “Scrutinizing trust and transparency in cash on
delivery systems,” in International Conference on Security, Privacy and
Anonymity in Computation, Communication and Storage. Springer,
2020, pp. 214–227.

[38] H. X. Son, T. H. Le, N. T. T. Quynh, H. N. D. Huy, N. Duong-
Trung, and H. H. Luong, “Toward a blockchain-based technology
in dealing with emergencies in patient-centered healthcare systems,”
in International Conference on Mobile, Secure, and Programmable
Networking. Springer, 2020, pp. 44–56.

www.ijacsa.thesai.org 30 | P a g e




