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Abstract—Cloud computing provides flexible and cost 
effective way for end users to access data from multiplatform 
environment. Despite of support by the features of cloud 
computing, there are also chances of resource failure. Hence 
there is a need of a fault tolerant mechanism to achieve 
undisrupted performance of cloud services. The task reallocation 
and duplication are the two commonly used fault tolerant 
mechanisms. But task replication method results in huge storage 
and computational overhead, when the number of tasks is 
increasing gradually. If the number of faults is high, it incurs 
more storage overhead and time complexity based on task 
criticality. In order to solve these issues, we propose to develop a 
Cost Effective Hybrid Fault Tolerant Scheduling (CEHFTS) 
Model for cloud computing. In this model, the Failure 
Occurrence Probability (FoP) of each VM is estimated by finding 
the previous failures and successful executions. Then an adaptive 
fault recovery timer is maintained during a fault, which is 
adjusted based on the type of faults.  Experimental results have 
shown that CEHFTS model achieves 43% reduced storage cost 
and 13% reduced response delay for critical tasks, when 
compared to existing technique.  

Keywords—Cloud computing; failures; fault tolerant; critical 
tasks; scheduling; fault recovery; overhead 

I. INTRODUCTION 
Cloud computing is one of the new areas of technology 

that has emerged recently. On-demand resource sharing can be 
accomplished by utilizing internet and cloud services [1]. The 
primary goal is to offer services or distribute resources at the 
request of the customer with the lowest possible cost. There is 
a huge amount of heterogeneous resources [2], a vast user 
base, and a great range of application tasks in the cloud 
computing system. They have to deal with numerous 
individual activities, as well as big data. In terms of finance 
and science, cloud computing is a very valuable service [3]. A 
difficult challenge arises when deadlines are imposed on the 
jobs, since the required resources may be unavailable due to 
failures [4]. 

Along with missing project deadlines, fault tolerance is an 
important cloud computing aspect. It is designed to handle 
real-time tasks even if a failure occurs. Due to the higher 
storage overhead of taking backups, it is vital to use 
alternative approaches that have a high resource utilization 
ratio. Even though cloud features are attractive and a fault 

tolerant technique is required to guarantee uninterrupted cloud 
service functioning [5]. 

Both internal and external factors contribute to some of the 
flaws. The two most often utilized fault-tolerant strategies in 
cloud computing are task reallocation and duplication. In task 
reallocation, a task is reassigned after a fault occurs. This 
method boosts the overall system resource usage. However, 
failing to meet the deadline constraints [6] of jobs could cause 
the response time to be prolonged. The rise in the amount of 
electricity consumed while making resource allocations causes 
resource requests to fail in data centers. 

Both traditional application components and new 
traditional application components may be heterogeneous in 
their component composition, composed of scientific 
techniques. With virtualization technology, these components 
have their own specialized execution environment. Workflows 
can also be implemented and run in cloud environments that 
offer an ever-growing resource pool [7] that you pay just for 
what you use. On-demand cloud resources can thus be 
acquired and shared on workflows. Clouds serve as a favored 
scientific process execution environment due to these 
characteristics. 

However, processes that operate in the clouds face 
obstacles, because the complexity and dynamics of processes 
and cloud breakdowns occur more frequently. Failures tend to 
stop continuous implementation and have considerable 
impacts on the performance of processes, particularly for big, 
long-run workflows. It is crucial that scientific workflow 
scheduling fault tolerants be achieved in order to provide 
consumers with flawless experience. 

Due to the time-consciousness of many scientific 
procedures, their successful completion does not depend 
exclusively upon the correct results but also on the time when 
those results are available. For a workflow that must complete 
the working phase and generate the computer results, a 
deadline is specified for the workflow. Failures lead to 
deadline conscious workflows that cannot be concluded on 
time without an appropriate faults-tolerant schedule. In that 
circumstance, QoS is badly damaged, although beyond the 
deadline[8] the results may be acquired. Therefore, it is 
required and crucial to plan a defect tolerant workflow since 
processes can be successfully completed before the deadline. 
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This paper is organized as follows. Section 2 presents the 
motivation and objectives. Section 3 presents the proposed 
methodology. Section 4 presents the simulation results. 
Section 5 presents the conclusion. 

II. MOTIVATION AND OBJECTIVES 
In fault-tolerant workflow scheduling [6], task replication 

method is used. Here duplicate multiple copies of tasks [9] can 
execute simultaneously. But it results in huge storage and 
computational overhead, when the number of tasks is growing. 
Moreover, it did not present the strategy for finding the exact 
number of duplicate copies. 

The Power, memory, and other network elements were 
addressed in order to enhance the reliability of resources. In 
task scheduling, the VM with the greatest level of reliability is 
picked. Hussein El Ghor et al. [8] has presented two 
scheduling algorithms. The first approach uses energy-
efficient fault-free scheduling and the second approach 
provides essential slack time for fault recovery. The proposed 
model is limited in handling small group of tasks that cannot 
improve the performance levels. 

Redundancy is a common way to protect against errors 
that can be done quickly or in space. Any additional resources 
required to perform the identical duplication or resilience 
replication process are designated as spatial redundancy. 
When considered in depth, an example of spatial redundancy 
may be parallel execution. There are considerable space 
expenses when you simultaneously run many jobs on different 
resources. In the case of redundancy, the task that was missed 
with respect to initial resources does not have to be redone 
because the clock was reset. 

With Fault Tolerance Algorithm utilizing Selective 
Mirrored Tasks Approach (FAUSIT), they proposed a 
selective mirrored task method to ensure the correct balance 
between parallelism and topology for applications. DAG-
based application fault tolerance is dealt with by limiting the 
number of make spans and minimizing computation costs. 

For important jobs or tasks with permanent failures, the 
dynamic fault-tolerant workflow scheduling [10] uses spatial 
re-execution (SRE) and temporal re-execution (TRE) schemes 
in unison. However, as the number of issues detected for 
important operations is greater, the SRE strategy consumes 
more disc space. If the number of faults for non-critical tasks 
is excessive, then it has an adverse effect on time complexity. 
Additionally, the backups' odds of failure are not examined. 

In FESTAL [11], for each primary task, a backup task is 
created and VMs are allocated for both. When the primary 
task is completed successfully within the execution time, then 
the execution of back task is terminated. But in this approach 
also, it results in huge storage and computational overhead 
[12], when the number of tasks becomes high. The 
performance levels are not satisfactory as the model causes 
overhead in the system. 

In [13], a fault tolerant technique to ensure task completion 
deadline, has been proposed. But it does not check the types of 
tasks and storage overhead also is more that improves the 
delay levels in the system. 

In [15], a trust based scheduling technique is proposed. For 
selecting the trusted computation service, set-based particle 
swarm optimization (S-PSO) and for selecting the storage 
service, ser covering problem (SCP) tree search are applied. 
The task scheduling concept in [16] is built on trust 
mechanisms. This model uses the Bayesian cognitive 
technique to determine the trustworthiness of computer nodes 
by examining the trust relationships that exist between them. 

A research paper [17] outlines a trust-based Meta heuristic 
workflow scheduling technique called TMWS. The manual 
offers strategies and procedures to avoid the hazards 
associated with workflow scheduling. 

Hence the fault tolerant algorithm should meet the 
following objectives: 

• To reduce storage overhead. 

• To reduce time complexity. 

• To reduce the chances of backup VM failures. 

• To meet deadline of critical tasks. 

• To reduce the response delay. 

• To reduce the fault recovery time.  

• To increase the CPU utilization. 

In order to solve these issues, we propose to develop a cost 
effective hybrid fault tolerant scheduling scheme for cloud 
computing. 

III. COST-EFFECTIVE HYBRID FAULT TOLERANT 
SCHEDULING (CHFTS) MODEL 

A. Overview 
In this paper, Cost-effective Hybrid Fault Tolerant 

Scheduling (CHFTS) model is proposed. Figure 1 shows the 
block diagram of the CHFTS model. 

The CHFTS model uses previous failures and successful 
executions to calculate the VM failure occurrence probability 
(FoP). The anticipated execution time (EET) is estimated for 
each job Ti. At this point, the projects with deadlines of less 
than one week are classed as high-priority activities. The 
designation of some VMs as fault-tolerant based on FoP. A 
fixed number of primary and backup VMs are assigned to 
each task. A recovery timer is initiated if a failure occurs in 
any VM. A notification will be delivered to the failed VM, 
and the VM will continue execution from the point in time 
that the failure occurred. 

B. System Model 
Virtualization divides each server in the Cloud system into 

a series of heterogeneous virtual machines (VMs). The fact is 
that a VM is an essential component of a cloud system. 

Suppose that a cloud system offers a set of VM resources, 
as given by. 

VM={VM(1),...,VM(k),....,VM(k)} 

to users. 
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Fig. 1. Block Diagram of CHFTS Model. 

The model represents the system structure, as seen in 
Figure 2. Processing capacity and cost per hour are 
particularly important for selecting VM(k) because of 
processing capacity and cost per hour, respectively (k). Users 
can access an endless number of VMs on cloud computing 
platforms that utilize virtualization. In addition, all VMs are 
hosted in one cloud data center to provide consistent 
bandwidth for all the VMs. 

C. Fault Model 
If a task is incomplete because of internal or external 

issues, it may be considered as a task failure. 

Faults may occur during the execution of scientific work 
flows in cloud computing environments. There are various 
reasons behind these faults. The most common reason for task 
failure is the failure of corresponding VM. The other reasons 
for faults include unavailability of enough resources, resource 
overloading, delayed execution time etc. 

There are two cases of faults that may occur in cloud, 
during execution. The first one is a permanent fault and other 
one is a temporary fault. In temporary faults, the faults may be 
recovered within short span of time whereas in permanent 
faults, the faults cannot be rectified until the failed element is 
repaired or replaced. Fail-signal or acceptance test is a fault 
detection mechanism, commonly used. 

 
Fig. 2. System Model. 

Due to task failures, the make span time of work flows will 
be increased and the service-level agreement (SLA) will be 
violated. Re-execution is one of the commonly used less 
expensive fault tolerant technique, which improves the 
reliability of workflows. Re-execution can be implemented in 
two methods:  Spatial re-execution on other resources (SRE) 
and Temporal re-execution on the same resources, after fault 
recovery (TRE). 

1) Estimation of FoP: The exponential probability density 
function for a specified mean time (M) between failures, is 
given by. 
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Then, the probability of a failures, that occurs before time 
Δ𝑡𝑡 for a VM is given by. 
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Hence the probability of successful completion during the 
time Δ, is given by. 
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Let 𝑇𝑇𝑐𝑐 be the computation time for a subtask executing on 
a VM and 𝜑𝜑 be the computation interval between two check 
points. 

Then, the average number of attempts (𝑁𝑁𝑜𝑜A) required to 
finish 𝑇𝑇𝑐𝑐 is given by. 
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The number of success is given by 
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              (5) 

Hence the number of failures NoF, during Δ𝑡𝑡 is given by 

(ie) NoF = NoA – NoS             (6) 
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Hence 

FoP = NoF / Tc,  = )1(1 / −∆ Mte
φ

            (8) 

Note: It is assumed that only single failure occurs during 
one computation interval. 
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D. Estimation of Expected End Time (EET) 
Let P(k) is considered as processing capacity of VMk, 
k=,1,2...K. 

Let S(ti) and W(ti) be the workload size of given input task ti. 

If and only if all the input data has been received from all 
prior tasks, then the task is started (ti). 

start time of ti is signified by Eq. (9). 

)}({)( max )( tTtT jendtipretjistart ∈
=

           (9) 

Note that if ti=tenrty, then Tstart(ti)= 0. Then, the transmission 
time is computed by, 

BW
tSti i

transT )()( =
           (10) 

where BW is the bandwidth between two VMs. 

Then, the execution time is given by, 

)(
)())(,( kP

tiWkVMtiT exec =
          (11) 

Thus, the end time of task ti is given by. 

))(,()()()( kVMtitititi TTTT exectransstartend ++=
      (12) 

Hence the make span of workflow is given by. 

)(tT exitendmakespan =
          (13) 

E. Fault Tolerant Scheduling 
Let {FVM} be the set of fault tolerant VMs with 

maximum FoP. 

The type of each task is categorized into CRITICAL and 
NON-CRITICAL based on the values of EET. (ie) The tasks 
with shorter EET are considered as CRITICAL and others are 
considered as  NON-CRITICAL. 

For each task, a pair of VMs <VMp, VMb> from the k 
VMs, are allocated, where VMp and VMb are primary and 
backup VMs. If there is a fault occurs in VMp, then a fault 
recovery timer (TFR) will be started. 

Case-1: If the task is a critical task, then TFR is fixed such 
that. 

TFR < EET-FOT, where FOT is the time of fault 
occurrence. 

Case-2: If the task is a non-critical task, then TFR is fixed 
such that. 

TFR < (EET-FOT)* δ , where δ is a scaling factor 
ranges between (2, 4). 

The total cost of the Hybrid Fault Tolerant Scheduling 
Model is calculated as. 

𝐶𝐶 = 𝑁𝑁𝑜𝑜𝑆 ∗  min � NoA� +   TEnd−Texec 
count(VM)

+ t∆ ∗ φ         (14) 

If the fault cannot be recovered within TFR, (ie) If fault 
recovery time (FRT) is more than TFR, then immediately, a 
notification will be sent to VMb, which will resume the 
execution from that point. 

Algorithm - Fault Tolerant Scheduling 

      Input : List of VMs and Tasks 
Output: fault tolerant scheduling 

1. foreach VMj 
2.     Estimate FoPj using (5) 
3.     If FoPj >= Max(FoP) , then 
4.            Include FoPj in {FVM} 
5.     End if 
6. End for 
7. foreach task ti 
8.    Estimate EETi using (11) 
9.    if EETi <= EETmin, then 
10.         Type(ti) = CRITICAL 
11.    else 
12.        Type(ti) = NON-CRITICAL 
13.    end if 
14. end For 
15. foreach incoming task tj 
16.    Allocate (VMp, VMb) ∈{FVM} 
17.    if fault occurs at time FOT, then 
18.         if Type(ti) = CRITICAL, then 
19.                   Set TFR < EET-FOT   
20.         else 
21.                   Set TFR < (EET-FOT)*δ  
22.         end if 
23.        if FRT<TFR, then 
24.                    Resume ti at FRT 
25.        else 
26.                   Send notification to VMb

 
27.                   Resume ti at VMb 
28.       end if 
29.   end if  
30. end For 

Special outcomes of this approach 

1) Since fault free VMs are selected, the chances of faults 
are less. 

2) It does not result in huge storage since the VMs are 
allocated only when the fault is not recoverable (permanent 
fault) within a time span. 

3) The time critical tasks will be executed within their 
deadlines since the tasks are migrated to backup VM, within 
the deadline. 
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4) The non critical tasks can be executed in the same VMs 
if the fault is recovered within tolerable time span (which is an 
even multiple of its deadline). 

5) If the task could not be recovered beyond the tolerable 
time span, then only the non critical task are migrated to 
backup VMs, thereby reducing the storage overhead 
significantly. 

6) Since the execution of tasks starts in the backup VM 
only from the time of fault, the time complexity will be less. 

IV. EXPERIMENTAL RESULTS 
The proposed CEHFTS model is compared with the 

Spatial-Temporal Re-Execution method (SRE) [10]. The 
NASA workload [14] has been used as the emulator of Web 
users requests to the Access Point (AP). This workload 
represents realistic load deviations over a period time. It 
comprises 100960 user requests sent to the Web servers 
during a day. Table 1 shows the experimental parameters 
assigned in this work. 

TABLE I. EXPERIMENTAL PARAMETERS 

Parameter Value 

Work load NASA traces 

Resource Utilization Thresholds 𝑈𝑙𝑜𝑤−𝑡ℎ𝑟 = 20%𝑎𝑛𝑑𝑈ℎ𝑖𝑔ℎ_𝑡ℎ𝑟 = 80% 

Response Time Thresholds 𝑅𝑇𝑇𝑙𝑜𝑤−𝑡ℎ𝑟 = 200𝑚𝑠𝑎𝑛𝑑𝑅𝑇𝑇ℎ𝑖𝑔ℎ_𝑡ℎ𝑟

= 1000𝑚𝑠 

Scaling Intervals ∆𝑡𝑡 = 10𝑚𝑖𝑛 

Desired Response Time DRT = 1000ms=1s 

Fault rate  1 to 2 

Configuration of VMs Medium and Large  

Maximum On-demand VM 
Limitation MaxVM=10VM 

Task and Resources Scheduling 
Policy Time-Shared 

A. Results for Critical Tasks 
In this section, work flows with strict deadlines are 

considered (critical tasks) and allocated to VMs. The FoP of 
each task is increased in terms of fault rate.  The performance 
metrics response delay, percentage of missed deadlines, CPU 
utilization and storage overhead of server are considered for 
evaluation. 

Table 2 Performance Results of CEHFTS and SRE 
schemes for fault rate of critical tasks. 

Figure 3 shows the response delay measured for the 
critical tasks when the fault rate is increased from 1 to 2. Since 
in the case of time bound critical tasks, backup VM migration 
is mostly supported, the response delay will be high. Hence, 
CEHFTS has the delay in the range of 1.4 to 2.8 seconds 
whereas SRE has delay in the range of 1.7 to 3.1 seconds. 
However, in case of CEHFTS, the failed tasks are resumed 
when the recovery time is less than EET. Hence it has 13% 
reduced response delay, when compared to SRE scheme. 

TABLE II. SHOWS THE PERFORMANCE RESULTS OF BOTH CEHFTS AND 
SRE SCHEMES FOR VARYING THE FAULT RATE OF CRITICAL TASKS 

 Fault 
rate 
(Critic
al) 

Response  
Delay (sec) 

% of Missed 
Deadlines 

CPU  
Utilization 
(%) 

Storage cost 
of Server 

 CEHF
TS 

SR
E 

CEHF
TS 

SR
E 

CEHF
TS 

SR
E 

CEHF
TS 

SR
E 

25 1.472 1.7
82 18 25 57 47 150 27

0 

50 1.573 1.8
93 26 32 52 43.

1 178 35
6 

75 2.069 2.2
45 31 38 45.3 38.

2 287 45
2 

100 2.275 2.6
28 35 44 44.2 34 368 62

8 

 
Fig. 3. Response Delay for Critical Tasks. 

Figure 4 shows the missed deadlines for the critical tasks 
when the fault rate is increased from 1 to 2. Since in the case 
of time bound critical tasks, if the recovery time is higher than 
EET or if the fault is permanent fault, the chances of deadline 
miss are high. As depicted from the figure, CEHFTS has the 
missed deadlines in the range of 18% to 41% whereas SRE 
has missed deadlines in the range of 25% to 47%. However, in 
case of CEHFTS, the failed tasks are resumed when the 
recovery time is less than EET. Hence it has 19% reduced 
missed deadlines, when compared to SRE scheme. 

 
Fig. 4. Missed Deadlines for Critical Tasks. 
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Fig. 5. CPU Utilization (%) for Critical Tasks. 

Figure 5 shows the CPU utilization for the critical tasks 
when the fault rate is increased from 1 to 2.  In case of 
permanent failures, the CPU utilization of primary VMs will 
be affected for the critical tasks. As it can be seen, from the 
figure, the utilization of CEHFTS reduces from 57% to 41% 
and the utilization of SRE reduces from 47% to 33%. 
However, CEHFTS has 18% higher CPU utilization than SRE 
scheme, since it minimizes the use of backup VMs. 

 
Fig. 6. Storage Cost for Critical Tasks. 

Figure 6 shows the storage cost of servers in case of 
critical tasks. Since in case of time bound critical tasks, if the 
recovery time is higher than EET or if the fault is permanent 
fault, the tasks are migrated to backup VMs, leading to 
increased storage cost. As depicted from the figure, CEHFTS 
has cost in the range of 150 to 470 whereas SRE has cost in 
the range of 270 to 840. However, in case of CEHFTS, the 
failed critical tasks are resumed when the recovery time is less 
than EET. Hence it has 43% reduced storage cost, when 
compared to SRE scheme. 

B. Results for Non-Critical Tasks 
In this section, work flows with elastic (flexible) deadlines 

are considered (critical tasks) and allocated to VMs. The FoP 
of each task is increased in terms of fault rate. The 
performance metrics response delay, CPU utilization and 
storage overhead of server are considered for evaluation. 

Table 3 Performance Results of CEHFTS and SRE 
schemes for fault rate of non-critical tasks 

TABLE III. SHOWS THE PERFORMANCE RESULTS OF BOTH CEHFTS AND 
SRE SCHEMES FOR VARYING THE FAULT RATE OF CRITICAL TASKS 

Fault 
rate 
(Non-
critical) 

Response  
Delay (sec) 

CPU  
Utilization (%) 

Storage cost of 
Server 

 CEHFTS SRE CEHFTS SRE CEHFTS SRE 

25 2.672 3.582 52 45 120 165 

50 3.573 4.813 46 42.7 138 228 

75 5.069 7.145 44.2 36.4 187 280 

100 5.755 7.628 41.5 33.1 228 355 

Figure 7 shows the response delay measured for the non-
critical tasks when the fault rate is increased from 1 to 2. Since 
in case of non-critical tasks, the fault response timer is set as 
high, the response delay will be higher than that of critical 
tasks. Hence, CEHFTS has the delay in the range of 2.6 to 6.4 
seconds whereas SRE has delay in the range of 3.5 to 8.3 
seconds. However, in case of CEHFTS, the failed tasks are 
resumed when the recovery time is less than EET. Hence it 
has 25% reduced response delay, when compared to SRE 
scheme. 

Figure 8 shows the CPU utilization for the non-critical 
tasks when the fault rate is increased from 1 to 2.  In case of 
permanent failures, the CPU utilization of primary VMs will 
be affected for the non-critical tasks also. As it can be seen, 
from the figure, the utilization of CEHFTS reduces from 52% 
to 40% and the utilization of SRE reduces from 45% to 30%. 
However, CEHFTS has 16% higher CPU utilization than SRE 
scheme, since it minimizes the use of backup VMs. 

Figure 9 shows the storage cost of servers in case of non-
critical tasks. Since, if the fault is permanent fault, the tasks 
are migrated to backup VMs, leading to increased storage 
overhead. As depicted from the figure, CEHFTS has cost in 
the range of 120 to 270 whereas SRE has cost in the range of 
165 to 472. However, in case of CEHFTS, the failed non-
critical tasks are resumed when the recovery time is less than 
EET. Hence it has 35% reduced storage cost, when compared 
to SRE scheme. 

 
Fig. 7. Response Delay for Non-critical Tasks. 
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Fig. 8. CPU Utilization (%) for Non-critical Tasks. 

 
Fig. 9. Storage Overhead for Non-critical Tasks. 

V. CONCLUSION 
In this research, a new hybrid fault tolerant scheduling 

approach, called Cost Effective Hybrid Fault Tolerant 
Scheduling (CEHFTS), is proposed for cloud computing. For 
this model, the prior failures and successful executions are 
used to estimate the VM failure probability (FoP). Estimated 
anticipated execution time (EET) is calculated for each task. 
At this point, the projects with deadlines of less than one week 
are classed as high-priority activities. An adaptive fault 
recovery timer is kept running until a fault occurs, which is 
then increased as a function of the various fault types. 
Experiments are conducted for critical and non-critical tasks 
by varying the fault rate. Experimental results have shown that 
CEHFTS model achieves 43% reduced storage cost and 13% 
response delay for critical tasks, when compared to existing 
technique. Future work focus on grouping the tasks based on 
its type and requirements so that the CPU utilization and 
battery power can be further reduced. The task deadline and 
time scheduling can still be improved to enhance the 
performance levels. 
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