
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

Cost Effective Hybrid Fault Tolerant Scheduling
Model for Cloud Computing Environment

Hybrid Fault Tolerant Scheduling

Annabathula.Phani Sheetal1, K.Ravindranath2
Department of Computer Science and Engineering

Koneru Lakshmaiah Education Foundation
Green Fields, Vaddeswaram, Guntur-522502, Andhra Pradesh, India

Abstract—Cloud computing provides flexible and cost
effective way for end users to access data from multiplatform
environment. Despite of support by the features of cloud
computing, there are also chances of resource failure. Hence
there is a need of a fault tolerant mechanism to achieve
undisrupted performance of cloud services. The task reallocation
and duplication are the two commonly used fault tolerant
mechanisms. But task replication method results in huge storage
and computational overhead, when the number of tasks is
increasing gradually. If the number of faults is high, it incurs
more storage overhead and time complexity based on task
criticality. In order to solve these issues, we propose to develop a
Cost Effective Hybrid Fault Tolerant Scheduling (CEHFTS)
Model for cloud computing. In this model, the Failure
Occurrence Probability (FoP) of each VM is estimated by finding
the previous failures and successful executions. Then an adaptive
fault recovery timer is maintained during a fault, which is
adjusted based on the type of faults. Experimental results have
shown that CEHFTS model achieves 43% reduced storage cost
and 13% reduced response delay for critical tasks, when
compared to existing technique.

Keywords—Cloud computing; failures; fault tolerant; critical
tasks; scheduling; fault recovery; overhead

I. INTRODUCTION
Cloud computing is one of the new areas of technology

that has emerged recently. On-demand resource sharing can be
accomplished by utilizing internet and cloud services [1]. The
primary goal is to offer services or distribute resources at the
request of the customer with the lowest possible cost. There is
a huge amount of heterogeneous resources [2], a vast user
base, and a great range of application tasks in the cloud
computing system. They have to deal with numerous
individual activities, as well as big data. In terms of finance
and science, cloud computing is a very valuable service [3]. A
difficult challenge arises when deadlines are imposed on the
jobs, since the required resources may be unavailable due to
failures [4].

Along with missing project deadlines, fault tolerance is an
important cloud computing aspect. It is designed to handle
real-time tasks even if a failure occurs. Due to the higher
storage overhead of taking backups, it is vital to use
alternative approaches that have a high resource utilization
ratio. Even though cloud features are attractive and a fault

tolerant technique is required to guarantee uninterrupted cloud
service functioning [5].

Both internal and external factors contribute to some of the
flaws. The two most often utilized fault-tolerant strategies in
cloud computing are task reallocation and duplication. In task
reallocation, a task is reassigned after a fault occurs. This
method boosts the overall system resource usage. However,
failing to meet the deadline constraints [6] of jobs could cause
the response time to be prolonged. The rise in the amount of
electricity consumed while making resource allocations causes
resource requests to fail in data centers.

Both traditional application components and new
traditional application components may be heterogeneous in
their component composition, composed of scientific
techniques. With virtualization technology, these components
have their own specialized execution environment. Workflows
can also be implemented and run in cloud environments that
offer an ever-growing resource pool [7] that you pay just for
what you use. On-demand cloud resources can thus be
acquired and shared on workflows. Clouds serve as a favored
scientific process execution environment due to these
characteristics.

However, processes that operate in the clouds face
obstacles, because the complexity and dynamics of processes
and cloud breakdowns occur more frequently. Failures tend to
stop continuous implementation and have considerable
impacts on the performance of processes, particularly for big,
long-run workflows. It is crucial that scientific workflow
scheduling fault tolerants be achieved in order to provide
consumers with flawless experience.

Due to the time-consciousness of many scientific
procedures, their successful completion does not depend
exclusively upon the correct results but also on the time when
those results are available. For a workflow that must complete
the working phase and generate the computer results, a
deadline is specified for the workflow. Failures lead to
deadline conscious workflows that cannot be concluded on
time without an appropriate faults-tolerant schedule. In that
circumstance, QoS is badly damaged, although beyond the
deadline[8] the results may be acquired. Therefore, it is
required and crucial to plan a defect tolerant workflow since
processes can be successfully completed before the deadline.

416 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

This paper is organized as follows. Section 2 presents the
motivation and objectives. Section 3 presents the proposed
methodology. Section 4 presents the simulation results.
Section 5 presents the conclusion.

II. MOTIVATION AND OBJECTIVES
In fault-tolerant workflow scheduling [6], task replication

method is used. Here duplicate multiple copies of tasks [9] can
execute simultaneously. But it results in huge storage and
computational overhead, when the number of tasks is growing.
Moreover, it did not present the strategy for finding the exact
number of duplicate copies.

The Power, memory, and other network elements were
addressed in order to enhance the reliability of resources. In
task scheduling, the VM with the greatest level of reliability is
picked. Hussein El Ghor et al. [8] has presented two
scheduling algorithms. The first approach uses energy-
efficient fault-free scheduling and the second approach
provides essential slack time for fault recovery. The proposed
model is limited in handling small group of tasks that cannot
improve the performance levels.

Redundancy is a common way to protect against errors
that can be done quickly or in space. Any additional resources
required to perform the identical duplication or resilience
replication process are designated as spatial redundancy.
When considered in depth, an example of spatial redundancy
may be parallel execution. There are considerable space
expenses when you simultaneously run many jobs on different
resources. In the case of redundancy, the task that was missed
with respect to initial resources does not have to be redone
because the clock was reset.

With Fault Tolerance Algorithm utilizing Selective
Mirrored Tasks Approach (FAUSIT), they proposed a
selective mirrored task method to ensure the correct balance
between parallelism and topology for applications. DAG-
based application fault tolerance is dealt with by limiting the
number of make spans and minimizing computation costs.

For important jobs or tasks with permanent failures, the
dynamic fault-tolerant workflow scheduling [10] uses spatial
re-execution (SRE) and temporal re-execution (TRE) schemes
in unison. However, as the number of issues detected for
important operations is greater, the SRE strategy consumes
more disc space. If the number of faults for non-critical tasks
is excessive, then it has an adverse effect on time complexity.
Additionally, the backups' odds of failure are not examined.

In FESTAL [11], for each primary task, a backup task is
created and VMs are allocated for both. When the primary
task is completed successfully within the execution time, then
the execution of back task is terminated. But in this approach
also, it results in huge storage and computational overhead
[12], when the number of tasks becomes high. The
performance levels are not satisfactory as the model causes
overhead in the system.

In [13], a fault tolerant technique to ensure task completion
deadline, has been proposed. But it does not check the types of
tasks and storage overhead also is more that improves the
delay levels in the system.

In [15], a trust based scheduling technique is proposed. For
selecting the trusted computation service, set-based particle
swarm optimization (S-PSO) and for selecting the storage
service, ser covering problem (SCP) tree search are applied.
The task scheduling concept in [16] is built on trust
mechanisms. This model uses the Bayesian cognitive
technique to determine the trustworthiness of computer nodes
by examining the trust relationships that exist between them.

A research paper [17] outlines a trust-based Meta heuristic
workflow scheduling technique called TMWS. The manual
offers strategies and procedures to avoid the hazards
associated with workflow scheduling.

Hence the fault tolerant algorithm should meet the
following objectives:

• To reduce storage overhead.

• To reduce time complexity.

• To reduce the chances of backup VM failures.

• To meet deadline of critical tasks.

• To reduce the response delay.

• To reduce the fault recovery time.

• To increase the CPU utilization.

In order to solve these issues, we propose to develop a cost
effective hybrid fault tolerant scheduling scheme for cloud
computing.

III. COST-EFFECTIVE HYBRID FAULT TOLERANT
SCHEDULING (CHFTS) MODEL

A. Overview
In this paper, Cost-effective Hybrid Fault Tolerant

Scheduling (CHFTS) model is proposed. Figure 1 shows the
block diagram of the CHFTS model.

The CHFTS model uses previous failures and successful
executions to calculate the VM failure occurrence probability
(FoP). The anticipated execution time (EET) is estimated for
each job Ti. At this point, the projects with deadlines of less
than one week are classed as high-priority activities. The
designation of some VMs as fault-tolerant based on FoP. A
fixed number of primary and backup VMs are assigned to
each task. A recovery timer is initiated if a failure occurs in
any VM. A notification will be delivered to the failed VM,
and the VM will continue execution from the point in time
that the failure occurred.

B. System Model
Virtualization divides each server in the Cloud system into

a series of heterogeneous virtual machines (VMs). The fact is
that a VM is an essential component of a cloud system.

Suppose that a cloud system offers a set of VM resources,
as given by.

VM={VM(1),...,VM(k),....,VM(k)}

to users.

417 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

Fig. 1. Block Diagram of CHFTS Model.

The model represents the system structure, as seen in
Figure 2. Processing capacity and cost per hour are
particularly important for selecting VM(k) because of
processing capacity and cost per hour, respectively (k). Users
can access an endless number of VMs on cloud computing
platforms that utilize virtualization. In addition, all VMs are
hosted in one cloud data center to provide consistent
bandwidth for all the VMs.

C. Fault Model
If a task is incomplete because of internal or external

issues, it may be considered as a task failure.

Faults may occur during the execution of scientific work
flows in cloud computing environments. There are various
reasons behind these faults. The most common reason for task
failure is the failure of corresponding VM. The other reasons
for faults include unavailability of enough resources, resource
overloading, delayed execution time etc.

There are two cases of faults that may occur in cloud,
during execution. The first one is a permanent fault and other
one is a temporary fault. In temporary faults, the faults may be
recovered within short span of time whereas in permanent
faults, the faults cannot be rectified until the failed element is
repaired or replaced. Fail-signal or acceptance test is a fault
detection mechanism, commonly used.

Fig. 2. System Model.

Due to task failures, the make span time of work flows will
be increased and the service-level agreement (SLA) will be
violated. Re-execution is one of the commonly used less
expensive fault tolerant technique, which improves the
reliability of workflows. Re-execution can be implemented in
two methods: Spatial re-execution on other resources (SRE)
and Temporal re-execution on the same resources, after fault
recovery (TRE).

1) Estimation of FoP: The exponential probability density
function for a specified mean time (M) between failures, is
given by.

e m
t

M
tf

−
=

1)(
 (1)

Then, the probability of a failures, that occurs before time
Δ𝑡𝑡 for a VM is given by.

e m
t

t
e m

t dt
M

ttP ∆−
∫
∆

− −==∆≤ 11)(
0

 (2)

Hence the probability of successful completion during the
time Δ, is given by.

e m
t

ttPttP
∆−

=∆≤−=∆>)(1)((3)

Let 𝑇𝑇𝑐𝑐 be the computation time for a subtask executing on
a VM and 𝜑𝜑 be the computation interval between two check
points.

Then, the average number of attempts (𝑁𝑁𝑜𝑜A) required to
finish 𝑇𝑇𝑐𝑐 is given by.

ϕ
ϕ e M

tT cT c

ttP
NoA

∆

=
∆>

=
)((4)

The number of success is given by

NoS = ϕ
cT

 (5)

Hence the number of failures NoF, during Δ𝑡𝑡 is given by

(ie) NoF = NoA – NoS (6)

)1(−=−
∆

∆

eTTeT M
tcc

M
t

c

ϕϕϕ (7)

Hence

FoP = NoF / Tc, =)1(1 / −∆ Mte
φ

 (8)

Note: It is assumed that only single failure occurs during
one computation interval.

418 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

D. Estimation of Expected End Time (EET)
Let P(k) is considered as processing capacity of VMk,
k=,1,2...K.

Let S(ti) and W(ti) be the workload size of given input task ti.

If and only if all the input data has been received from all
prior tasks, then the task is started (ti).

start time of ti is signified by Eq. (9).

)}({)(max)(tTtT jendtipretjistart ∈
=

 (9)

Note that if ti=tenrty, then Tstart(ti)= 0. Then, the transmission
time is computed by,

BW
tSti i

transT)()(=
 (10)

where BW is the bandwidth between two VMs.

Then, the execution time is given by,

)(
)())(,(kP

tiWkVMtiT exec =
 (11)

Thus, the end time of task ti is given by.

))(,()()()(kVMtitititi TTTT exectransstartend ++=
 (12)

Hence the make span of workflow is given by.

)(tT exitendmakespan =
 (13)

E. Fault Tolerant Scheduling
Let {FVM} be the set of fault tolerant VMs with

maximum FoP.

The type of each task is categorized into CRITICAL and
NON-CRITICAL based on the values of EET. (ie) The tasks
with shorter EET are considered as CRITICAL and others are
considered as NON-CRITICAL.

For each task, a pair of VMs <VMp, VMb> from the k
VMs, are allocated, where VMp and VMb are primary and
backup VMs. If there is a fault occurs in VMp, then a fault
recovery timer (TFR) will be started.

Case-1: If the task is a critical task, then TFR is fixed such
that.

TFR < EET-FOT, where FOT is the time of fault
occurrence.

Case-2: If the task is a non-critical task, then TFR is fixed
such that.

TFR < (EET-FOT)* δ , where δ is a scaling factor
ranges between (2, 4).

The total cost of the Hybrid Fault Tolerant Scheduling
Model is calculated as.

𝐶𝐶 = 𝑁𝑁𝑜𝑜𝑆 ∗ min � NoA� + TEnd−Texec
count(VM)

+ t∆ ∗ φ (14)

If the fault cannot be recovered within TFR, (ie) If fault
recovery time (FRT) is more than TFR, then immediately, a
notification will be sent to VMb, which will resume the
execution from that point.

Algorithm - Fault Tolerant Scheduling

 Input : List of VMs and Tasks
Output: fault tolerant scheduling

1. foreach VMj
2. Estimate FoPj using (5)
3. If FoPj >= Max(FoP) , then
4. Include FoPj in {FVM}
5. End if
6. End for
7. foreach task ti
8. Estimate EETi using (11)
9. if EETi <= EETmin, then
10. Type(ti) = CRITICAL
11. else
12. Type(ti) = NON-CRITICAL
13. end if
14. end For
15. foreach incoming task tj
16. Allocate (VMp, VMb) ∈{FVM}
17. if fault occurs at time FOT, then
18. if Type(ti) = CRITICAL, then
19. Set TFR < EET-FOT
20. else
21. Set TFR < (EET-FOT)*δ
22. end if
23. if FRT<TFR, then
24. Resume ti at FRT
25. else
26. Send notification to VMb

27. Resume ti at VMb
28. end if
29. end if
30. end For

Special outcomes of this approach

1) Since fault free VMs are selected, the chances of faults
are less.

2) It does not result in huge storage since the VMs are
allocated only when the fault is not recoverable (permanent
fault) within a time span.

3) The time critical tasks will be executed within their
deadlines since the tasks are migrated to backup VM, within
the deadline.

419 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

4) The non critical tasks can be executed in the same VMs
if the fault is recovered within tolerable time span (which is an
even multiple of its deadline).

5) If the task could not be recovered beyond the tolerable
time span, then only the non critical task are migrated to
backup VMs, thereby reducing the storage overhead
significantly.

6) Since the execution of tasks starts in the backup VM
only from the time of fault, the time complexity will be less.

IV. EXPERIMENTAL RESULTS
The proposed CEHFTS model is compared with the

Spatial-Temporal Re-Execution method (SRE) [10]. The
NASA workload [14] has been used as the emulator of Web
users requests to the Access Point (AP). This workload
represents realistic load deviations over a period time. It
comprises 100960 user requests sent to the Web servers
during a day. Table 1 shows the experimental parameters
assigned in this work.

TABLE I. EXPERIMENTAL PARAMETERS

Parameter Value

Work load NASA traces

Resource Utilization Thresholds 𝑈𝑙𝑜𝑤−𝑡ℎ𝑟 = 20%𝑎𝑛𝑑𝑈ℎ𝑖𝑔ℎ_𝑡ℎ𝑟 = 80%

Response Time Thresholds 𝑅𝑇𝑇𝑙𝑜𝑤−𝑡ℎ𝑟 = 200𝑚𝑠𝑎𝑛𝑑𝑅𝑇𝑇ℎ𝑖𝑔ℎ_𝑡ℎ𝑟

= 1000𝑚𝑠

Scaling Intervals ∆𝑡𝑡 = 10𝑚𝑖𝑛

Desired Response Time DRT = 1000ms=1s

Fault rate 1 to 2

Configuration of VMs Medium and Large

Maximum On-demand VM
Limitation MaxVM=10VM

Task and Resources Scheduling
Policy Time-Shared

A. Results for Critical Tasks
In this section, work flows with strict deadlines are

considered (critical tasks) and allocated to VMs. The FoP of
each task is increased in terms of fault rate. The performance
metrics response delay, percentage of missed deadlines, CPU
utilization and storage overhead of server are considered for
evaluation.

Table 2 Performance Results of CEHFTS and SRE
schemes for fault rate of critical tasks.

Figure 3 shows the response delay measured for the
critical tasks when the fault rate is increased from 1 to 2. Since
in the case of time bound critical tasks, backup VM migration
is mostly supported, the response delay will be high. Hence,
CEHFTS has the delay in the range of 1.4 to 2.8 seconds
whereas SRE has delay in the range of 1.7 to 3.1 seconds.
However, in case of CEHFTS, the failed tasks are resumed
when the recovery time is less than EET. Hence it has 13%
reduced response delay, when compared to SRE scheme.

TABLE II. SHOWS THE PERFORMANCE RESULTS OF BOTH CEHFTS AND
SRE SCHEMES FOR VARYING THE FAULT RATE OF CRITICAL TASKS

 Fault
rate
(Critic
al)

Response
Delay (sec)

% of Missed
Deadlines

CPU
Utilization
(%)

Storage cost
of Server

 CEHF
TS

SR
E

CEHF
TS

SR
E

CEHF
TS

SR
E

CEHF
TS

SR
E

25 1.472 1.7
82 18 25 57 47 150 27

0

50 1.573 1.8
93 26 32 52 43.

1 178 35
6

75 2.069 2.2
45 31 38 45.3 38.

2 287 45
2

100 2.275 2.6
28 35 44 44.2 34 368 62

8

Fig. 3. Response Delay for Critical Tasks.

Figure 4 shows the missed deadlines for the critical tasks
when the fault rate is increased from 1 to 2. Since in the case
of time bound critical tasks, if the recovery time is higher than
EET or if the fault is permanent fault, the chances of deadline
miss are high. As depicted from the figure, CEHFTS has the
missed deadlines in the range of 18% to 41% whereas SRE
has missed deadlines in the range of 25% to 47%. However, in
case of CEHFTS, the failed tasks are resumed when the
recovery time is less than EET. Hence it has 19% reduced
missed deadlines, when compared to SRE scheme.

Fig. 4. Missed Deadlines for Critical Tasks.

0

0.5

1

1.5

2

2.5

3

3.5

1 1.25 1.5 1.75 2

Re
sp

on
se

 D
el

ay
 (s

ec
)

Fault Rate (Critical tasks)

CEHFTS

SRE

0

10

20

30

40

50

1 1.25 1.5 1.75 2Pe
rc

en
ta

ge
 o

f m
is

se
d

de
ad

lin
es

Fault Rate (Critical tasks)

CEHFTS

SRE

420 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

Fig. 5. CPU Utilization (%) for Critical Tasks.

Figure 5 shows the CPU utilization for the critical tasks
when the fault rate is increased from 1 to 2. In case of
permanent failures, the CPU utilization of primary VMs will
be affected for the critical tasks. As it can be seen, from the
figure, the utilization of CEHFTS reduces from 57% to 41%
and the utilization of SRE reduces from 47% to 33%.
However, CEHFTS has 18% higher CPU utilization than SRE
scheme, since it minimizes the use of backup VMs.

Fig. 6. Storage Cost for Critical Tasks.

Figure 6 shows the storage cost of servers in case of
critical tasks. Since in case of time bound critical tasks, if the
recovery time is higher than EET or if the fault is permanent
fault, the tasks are migrated to backup VMs, leading to
increased storage cost. As depicted from the figure, CEHFTS
has cost in the range of 150 to 470 whereas SRE has cost in
the range of 270 to 840. However, in case of CEHFTS, the
failed critical tasks are resumed when the recovery time is less
than EET. Hence it has 43% reduced storage cost, when
compared to SRE scheme.

B. Results for Non-Critical Tasks
In this section, work flows with elastic (flexible) deadlines

are considered (critical tasks) and allocated to VMs. The FoP
of each task is increased in terms of fault rate. The
performance metrics response delay, CPU utilization and
storage overhead of server are considered for evaluation.

Table 3 Performance Results of CEHFTS and SRE
schemes for fault rate of non-critical tasks

TABLE III. SHOWS THE PERFORMANCE RESULTS OF BOTH CEHFTS AND
SRE SCHEMES FOR VARYING THE FAULT RATE OF CRITICAL TASKS

Fault
rate
(Non-
critical)

Response
Delay (sec)

CPU
Utilization (%)

Storage cost of
Server

 CEHFTS SRE CEHFTS SRE CEHFTS SRE

25 2.672 3.582 52 45 120 165

50 3.573 4.813 46 42.7 138 228

75 5.069 7.145 44.2 36.4 187 280

100 5.755 7.628 41.5 33.1 228 355

Figure 7 shows the response delay measured for the non-
critical tasks when the fault rate is increased from 1 to 2. Since
in case of non-critical tasks, the fault response timer is set as
high, the response delay will be higher than that of critical
tasks. Hence, CEHFTS has the delay in the range of 2.6 to 6.4
seconds whereas SRE has delay in the range of 3.5 to 8.3
seconds. However, in case of CEHFTS, the failed tasks are
resumed when the recovery time is less than EET. Hence it
has 25% reduced response delay, when compared to SRE
scheme.

Figure 8 shows the CPU utilization for the non-critical
tasks when the fault rate is increased from 1 to 2. In case of
permanent failures, the CPU utilization of primary VMs will
be affected for the non-critical tasks also. As it can be seen,
from the figure, the utilization of CEHFTS reduces from 52%
to 40% and the utilization of SRE reduces from 45% to 30%.
However, CEHFTS has 16% higher CPU utilization than SRE
scheme, since it minimizes the use of backup VMs.

Figure 9 shows the storage cost of servers in case of non-
critical tasks. Since, if the fault is permanent fault, the tasks
are migrated to backup VMs, leading to increased storage
overhead. As depicted from the figure, CEHFTS has cost in
the range of 120 to 270 whereas SRE has cost in the range of
165 to 472. However, in case of CEHFTS, the failed non-
critical tasks are resumed when the recovery time is less than
EET. Hence it has 35% reduced storage cost, when compared
to SRE scheme.

Fig. 7. Response Delay for Non-critical Tasks.

0

10

20

30

40

50

60

1 1.25 1.5 1.75 2

CP
U

 U
til

iz
at

io
n

(%
)

Fault Rate (Critical tasks)

CEHFTS

SRE

0

200

400

600

800

1000

1 1.25 1.5 1.75 2

St
or

ag
e

Co
st

 o
f s

er
ve

r

Fault Rate (Critical tasks)

CEHFTS

SRE

0

1

2

3

4

5

6

7

8

9

1 1.25 1.5 1.75 2

Re
sp

on
se

 D
el

ay
(s

ec
)

Fault Rate (Non-critical tasks)

CEHFTS

SRE

421 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

Fig. 8. CPU Utilization (%) for Non-critical Tasks.

Fig. 9. Storage Overhead for Non-critical Tasks.

V. CONCLUSION
In this research, a new hybrid fault tolerant scheduling

approach, called Cost Effective Hybrid Fault Tolerant
Scheduling (CEHFTS), is proposed for cloud computing. For
this model, the prior failures and successful executions are
used to estimate the VM failure probability (FoP). Estimated
anticipated execution time (EET) is calculated for each task.
At this point, the projects with deadlines of less than one week
are classed as high-priority activities. An adaptive fault
recovery timer is kept running until a fault occurs, which is
then increased as a function of the various fault types.
Experiments are conducted for critical and non-critical tasks
by varying the fault rate. Experimental results have shown that
CEHFTS model achieves 43% reduced storage cost and 13%
response delay for critical tasks, when compared to existing
technique. Future work focus on grouping the tasks based on
its type and requirements so that the CPU utilization and
battery power can be further reduced. The task deadline and
time scheduling can still be improved to enhance the
performance levels.

REFERENCES
[1] Priti Kumari and Parmeet Kaur,” A survey of fault tolerance in cloud

computing”, Journal of King Saud University – Computer and
Information Sciences, Elsevier, 2018.

[2] Vinay K and S M Dilip Kumar,” Fault-Tolerant Scheduling for
Scientific Workflows in Cloud Environments”, IEEE 7th International
Advance Computing Conference (IACC) , 2017.

[3] J.Soniya,J.Angela Jennifa Sujana and T.Revathi, "Dynamic Fault
Tolerant Scheduling Mechanism for Real Time Tasks in Cloud
Computing", IEEE International Conference on Electrical, Electronics,
and Optimization Techniques (ICEEOT),2016.

[4] Pengze Guo and Zhi Xue, "Real-Time Fault-Tolerant Scheduling
Algorithm with Rearrangement in Cloud Systems", IEEE 2nd
Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC),2017.

[5] Sreelekshmi S and K R Remesh Babu, "Synchronized Multi-Load
Balancer with Fault Tolerance in Cloud", International Journal of
Computer Information Systems and Industrial Management
Applications,Vol-10,pp:107-114,2018.

[6] Zhongjin Li, Jiacheng Yu, Haiyang Hu, Jie Chen, Hua Hu, Jidong Ge
and Victor Chang, "Fault-Tolerant Scheduling for Scientific Workflow
with Task Replication Method in Cloud", IEEE 3rd International
Conference on Internet of Things, Big Data and Security,2018.

[7] Diptee H. Devmurari and Kashyap Raiyani, "Resource Reliability using
Fault Tolerance aware Scheduling in Cloud", International Journal of
Innovative Research in Computer and Communication Engineering,
Vol-5,No-4,2017.

[8] Hussein El Ghor, Julia Hage, Nizar Hamadeh And Rafic Hage Chehade,
"Energy-Efficient Real-Time Scheduling Algorithm For Fault-Tolerant
Autonomous Systems", Scalable Computing: Practice and Experience,
Volume 19, Number 4, pp. 387–400,2018.

[9] Hao Wu , Qinggeng Jin ,Chenghua Zhang and He Guo, "A Selective
Mirrored Task Based Fault Tolerance Mechanism for Big Data
Application Using Cloud", Wireless Communications and Mobile
Computing, Hindawi, Volume 2019,pp:1-12,2019.

[10] Na Wu , Decheng Zuo and Zhan Zhang, "Dynamic Fault-Tolerant
Workflow Scheduling with Hybrid Spatial-Temporal Re-Execution in
Clouds", Information, MDPI, Vol-10,No-169,2019.

[11] Ji Wang, Weidong Bao, Xiaomin Zhu, Laurence T. Yang and Yang
Xiang, “FESTAL: Fault-Tolerant Elastic Scheduling Algorithm for
Real-Time Tasks in Virtualized Clouds”, IEEE Transactions on
Computers, Volume: 64 , Issue: 9, Sept. 1 2015.

[12] Punit Gupta and S. P. Ghrera,” Power and Fault Aware Reliable
Resource Allocation for Cloud Infrastructure”, International Conference
on Information Security & Privacy (ICISP2015), Elsevier, December
2015, Nagpur, INDIA.

[13] Sheng Di, Cho-Li Wang, “Error-Tolerant Resource Allocation and
Payment Minimization for Cloud System”, IEEE Transactions On
Parallel And Distributed Systems, Vol. 24, No. 6, June 2013, pp 1097-
1106, DOI 10.1109/TPDS.2012.309.

[14] M. F. Arlitt and C. L. Williamson, "Internet web servers: Workload
characterization and performance implications," IEEE/ACM
Transactions on Networking (ToN), vol. 5, pp. 631-645, 1997.

[15] Y.L. YANG, X.G. PENG, J.F. CAO,"Trust-Based Scheduling Strategy
for Cloud Workflow Applications", INFORMATICA, 2015, Vol. 26,
No. 1, 159–180.

[16] Wei Wang, Guosun Zeng, Junqi Zhang and Daizhong Tang,"Dynamic
trust evaluation and scheduling framework for cloud computing",
Security and Communication Networks,2012, 5,311–318.

[17] G. Jeeva Rathanam and A. Rajaram,"Trust Based Meta-Heuristics
Workflow Scheduling in Cloud Service Environment", Circuits and
Systems, 2016, 7, 520-531.

0

10

20

30

40

50

60

1 1.25 1.5 1.75 2

CP
U

 U
til

iz
at

io
n(

%
)

Fault Rate (Non-critical tasks)

CEHFTS

SRE

0

50

100

150

200

250

300

350

400

450

500

1 1.25 1.5 1.75 2

St
or

ag
e

Co
st

 o
f S

er
ve

r

Fault Rate(Non-critical tasks)

CEHFTS

SRE

422 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Motivation and Objectives
	III. Cost-Effective Hybrid Fault Tolerant Scheduling (CHFTS) Model
	A. Overview
	B. System Model
	C. Fault Model
	1) Estimation of FoP: The exponential probability density function for a specified mean time (M) between failures, is given by.

	D. Estimation of Expected End Time (EET)
	E. Fault Tolerant Scheduling
	1) Since fault free VMs are selected, the chances of faults are less.
	2) It does not result in huge storage since the VMs are allocated only when the fault is not recoverable (permanent fault) within a time span.
	3) The time critical tasks will be executed within their deadlines since the tasks are migrated to backup VM, within the deadline.
	4) The non critical tasks can be executed in the same VMs if the fault is recovered within tolerable time span (which is an even multiple of its deadline).
	5) If the task could not be recovered beyond the tolerable time span, then only the non critical task are migrated to backup VMs, thereby reducing the storage overhead significantly.
	6) Since the execution of tasks starts in the backup VM only from the time of fault, the time complexity will be less.

	IV. Experimental Results
	A. Results for Critical Tasks
	B. Results for Non-Critical Tasks

	V. Conclusion

