
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

484 | P a g e

www.ijacsa.thesai.org

An HC-CSO Algorithm for Workflow Scheduling in

Heterogeneous Cloud Computing System

Jai Bhagwan1, Sanjeev Kumar2

Department of Computer Science & Engineering

Guru Jambheshwar University of Science & Technology

Hisar, India

Abstract—Many scientists are using meta-heuristic techniques

for dynamic workflow task scheduling in the area of cloud

computing systems to get optimum solutions. Many swarm

intelligent algorithms have been designed so far which are having

many limitations as some get trapped in local optima, a few are

having low convergence speed, some are having poor global

search facilities, etc. Still, there is a requirement of designing a

new algorithm or modification of existing algorithms to overcome

the limitations of the existing techniques. A new Hybrid Cat

Swarm Optimization algorithm named H-CSO was designed

inspired by the HEFT algorithm and the initialization problem of

the Cat Swarm Optimization was overcome. Still, that algorithm

has a limitation of getting stuck in local minima. To overcome

this algorithm a part of the Crow Search Algorithm has been

integrated into H-CSO and described in this paper. After

simulation, it was found that the new hybrid algorithm named

HC-CSO outperforms CSO and H-CSO.

Keywords—Cloud computing; Crow Search Algorithm (CSA);

Cat Swarm Optimization (CSO); H-CSO; HC-CSO; HEFT; Self-

Motivated Inertia Weight (SMIW); Virtual Machines (VMs)

I. INTRODUCTION

Information Technology has been reshaped by the
evolution of cloud computing technology via big storage
facilities, high-performance computing, and other hardware
and software services. The current technology includes the
evolution of computing eras where computers were connected
via the internet that took the form of distributed computing.
This further transformed into cluster computing, cluster to grid
computing, and then cloud computing [1]. The major aim of
cloud computing technology is to provide high-performance
computing services at the minimum cost. The cloud
technology shifted the users’ data from client machines to
network-abled machines which are having high-powered
processors and hardware parts. Cloud computing provides
services in the form of Software as a Service (SaaS), Platform
as a Service (PaaS), and Infrastructure as a Service (IaaS)
[15]. Any end-user can pick up the services as per his
requirements. The main benefit of the cloud is that it doesn’t
include geographical boundaries to provide the services to the
end-users [2]. This means that the users need not to know the
physical locations of the service providers and computing
datacenters. Cloud technology is flexible because a user can
increase the number of services and drop whenever it is
required due to the pay-per-usage policy. Various cloud
service providers are Amazon Web Services, Microsoft,
Google, Rackspace, salesfornce.com, etc. The cloud system

can be classified into four categories such as private cloud,
public cloud, community cloud, and hybrid cloud [3].

The performance of the cloud can be improved at various
levels such as network level, scheduling level, database level,
etc. After studying various research papers, it can be seen that
numerous algorithms have been designed for workflow task
scheduling, load balancing, energy consumption management,
etc. in cloud computing. Workflow task scheduling is one of
the major areas where a lot of improvement is required. Task
scheduling can be of two types static and dynamic scheduling.
In static scheduling, the execution times of the tasks are pre-
estimated or known but in the case of dynamic scheduling, it
is not known. This era is of dynamic task scheduling. So,
dynamic task scheduling algorithms are required to be
improved. The optimization techniques play an important role
to improve the cloud scheduling problem nowadays. A few
famous techniques are Ant Colony Optimization, Particle
Swarm Optimization, and Cat Swarm Optimization, etc. Cat
Swarm Optimization belongs to Swarm Intelligent (SI) family
[4]. The algorithms used in this paper are as under:

1) Cat swarm optimization: This is an intelligent

algorithm originally developed in the year of 2006. This

algorithm is inspired by the behaviour of the original cat

which is having to two modes known as seeking (resting

mode) and tracing (attacking mode). Here, N numbers of cats

are generated randomly and each cat denotes a solution, its

position, a flag, and fitness value. M dimensions in the search

space represent the position, and each dimension in the search

space is having its self-velocity. The flag is used to identify

that the cat is in either seeking mode or in tracing mode and

this flag is set by a parameter known as Mixing Ratio (MR).

After finding the fitness, the best cat is stored in the memory

at each iteration and finally, the best solution or cat is

identified at the end of the final iteration. The two modes of

Cat Swarm Optimization are described below [1][21]:

i) Seeking mode: This mode represents the resting mode

of a cat and four parameters play an important role in it: SMP

(Seeking Memory Pool), SRD (Seeking range of the Selected

Dimension), CDC (Counts of Dimension to change), and SPC

(Self Position Consideration). In SMP, one position is selected

by a cat randomly for moving to the next position. Let’s say,

the SMP is set to 10, now for every cat 10 new random

positions will be generated and one among them will be

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

485 | P a g e

www.ijacsa.thesai.org

selected randomly for movement. SRD and CDC will decide

the randomization of the new positions. How many

dimensions need to be mutated that is decided by the CDC

factor which is in the interval between [0 to 1]. The amount of

mutation is defined by SRD for the dimensions selected by

CDC. The Boolean value SPC will consider the candidate cats

for the next iteration from the current position. Let’s assume,

if SPC is true then for each cat SMP-1 candidates will be

generated instead of SMP because the current position will be

decided from them. Seeking Mode steps are given as:

a) Generate S Copies of Seeking CatK equal to the SMP

value.

b) For each copy, change at a random dimension of Cats

as per CDC by applying SRD operator as:

𝐶𝑎𝑡 𝑛𝐷𝑛𝑒𝑤 = (1 + 𝑟𝑎𝑛𝑑 ∗ 𝑆𝑅𝐷) ∗ 𝐶𝑎𝑡 𝑛𝐷𝑜𝑙𝑑 (1)

Where, 𝐶𝑎𝑡 𝑛𝐷𝑜𝑙𝑑 is the current position and 𝐶𝑎𝑡 𝑛𝐷𝑛𝑒𝑤 is
the next new position, n is the numbers of Cats and D is the
dimension, rand is a random variable between [0, 1] interval.

c) Evaluate fitness of all candidate/ changed Cats and

find Best Cats (CatBest,D).

d) Replace the position of S Cats by picking up the Best

Cats randomly.

ii) Tracing Mode: This mode follows the tracing

behaviour of real cats.

a) At first, velocity values are computed and assigned to

all the dimensions of a CatK position by the following

equation 2.

𝑉𝐾,𝐷 = 𝑉𝐾,𝐷 + (𝑐1 ∗ 𝑟1 ∗ (𝑋𝐵𝑒𝑠𝑡,𝐷 − 𝑋𝐾,𝐷)) (2)

Where, 𝑉𝐾,𝐷 is the velocity, c1 is an acceleration

coefficient, r1 is a random variable between [0, 1], 𝑋𝐵𝑒𝑠𝑡,𝐷 is

the best cat position, 𝑋𝐾,𝐷 is the current cat position and D is

the dimension.

b) If velocity is going beyond the upper range set it

within the range.

c) Update the position of the CatK by using the

following equation 3.

𝑋𝐾,𝐷 = 𝑋𝐾,𝐷 + 𝑉𝐾,𝐷 (3)

2) Crow search algorithm: Crow family is treated as one

of the most intelligent bird groups. Their brain is considered

slightly lower than a human being, based on their body-to-

brain ratio. Crow is a very well famous thief as to watches

other bird’s food and steals it after the victim bird leaves its

place of food. This intelligent behaviour of the crow can be

used to solve and optimize real-world problems. The CS

Algorithm can be described with the help of a pseudo-code in

Fig. 1 [22].

 Crow Search Algorithm

1. Randomly initialize the positions of a group of N crows, fl (flight

length), ri, rj and max. iterations

2. Evaluate the position of all the crows

3. Initialize the memory of every crow in the group
4. While itr < itrmax

5. For i = 1 to N

6. Randomly choose one of the crows to follow, let it be Crowj
7. Define the awareness probability

8. If 𝑟𝑗 ≥ 𝐴𝑃𝑖,𝑖𝑡𝑟 Then

9. 𝑥𝑖,𝑖𝑡𝑟 = 𝑥𝑖,𝑖𝑡𝑟 + 𝑟𝑖 ∗ 𝑓𝑙𝑖,𝑖𝑡𝑟 ∗ (𝑚𝑗,𝑖𝑡𝑟 − 𝑥𝑖,𝑖𝑡𝑟) (4)

10. Else

11. 𝑥𝑖,𝑖𝑡𝑟 = a random position of a crow in search space

12. End If

13. End For
14. Check the fitness of new positions
15. Evaluate the new position of the crows

16. Update the memory of crows

17. End while

Fig. 1. Pseudo-Code of Crow Search Algorithm.

First of all, the positions of all crows in a group and other
parameters have been initialized. N is the number of crows, ri
and rj are random variables between 0 to 1. After evaluation of
the positions of all crows, the memory of each crow is
initialized. As described earlier, the behavior of the crow is to
chase a bird to steal its food. So, a random crow from the
search space is selected say it be a Crowj. Crowi will follow it
and will steal its food whenever the Crowj will leave its place
after hiding its food. If the random variable rj will be greater
than awareness probability the position of the current Crowi
will be updated by using equation 4 otherwise the position will
be updated randomly from the search space. Flight Length (fl)
of the crow will decide the local or global search. If the fl is
less than 1 then it will work for local search otherwise the
global search will take place. Then the new positions or
solutions will be stored in the memory and this process will be
continued till the termination condition will not be satisfied
[22].

In this paper, the limitation of getting stuck in the local
minima of the H-CSO algorithm has been improved by
integrating the local search part of the CSA. The details are
given in the coming sections.

The rest of the paper is structured as follows: Section II
covers the related work. In Section III, the proposed
methodology is described. Section IV is having a description
of the simulation setup and simulation results and discussion
are covered in Section V. Section VI is summarizing the
conclusion and future scope. In the end, the research papers’
references are given.

II. RELATED WORK

Existing work in the area of workflow and task scheduling
can be found in the following literature review: In [1] the
scientists proposed multi-objective Cat Swarm Optimization
based on the Simulated Annealing technique. The Simulated
Annealing (SA) technique is incorporated in the local search
of the proposed algorithm and the SA is enhanced by the
Orthogonal Taguchi approach. The parameters like execution
time and execution cost are considered for performance

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

486 | P a g e

www.ijacsa.thesai.org

measurement. The proposed technique worked better as
compared to Multi-Objective Ant Colony Optimization,
Multi-objective Genetic Algorithm, and Multi-Objective
Particle Swarm Optimization. The authors [2] proposed a
Multi-Objective Cat Swarm Optimization algorithm and after
comparison with the existing Multi-Objective PSO technique,
the proposed approach was found better in the account of
energy consumption, execution cost, and execution time. The
researchers in [3] introduced a Cat Swarm Optimization-based
technique for workflow scheduling. The results were
compared with PSO (Particle Swarm Optimization) and found
that the CSO reduces the processing cost, made a good load
balance, and gave the optimum results in less iteration. In [5] a
Hybrid Particle Swarm Optimization algorithm using the Hill-
Climbing technique was proposed by the scientists. The
proposed algorithm was found effective in terms of makespan
after experiments. The scientists [6] introduced a Binary
Hybrid Particle Swarm Optimization and Gravitational Search
algorithm for load balancing of virtual machines (VMs). The
experimental results showed that the proposed algorithms
worked better than the existing Binary PSO load balancing
algorithm in terms of load balancing. In [7] the researchers
offered a new HPSOGWO algorithm that is a combination of
Particle Swarm Optimization and Grey Wolf Optimization.
The idea behind this algorithm was to improve the
exploitation of PSO and exploration of GWO for making the
better strength of the proposed algorithm. The results
concluded that the HPSOGWO is better than standard PSO
and GWO variants concerning solution stability, convergence
speed, and quality. The authors in [8] proposed an IPSO
(Improved Particle Swarm Optimization) algorithm to
improve the allocation of large-length tasks. The introduced
algorithm outperformed despite Ant Colony, Honey Bee, and
Round-Robin algorithm in accounts of load balance,
makespan, and degree of imbalance. In [9] authors presented a
Particle Swarm Optimization based technique for workflow
scheduling and found that the Particle Swarm Optimization
based technique saved the cost equal to 3 times as compared
to BRS (Best Resource Selection) algorithm. Also, the
presented technique balanced the load efficiently. The authors
of the paper [10] proposed a PSO (Particle Swarm
Optimization) based scheduling technique for independent
tasks. The proposed technique was improved using a load
balancing strategy. The newly introduced method was
compared with Improved PSO, Round-Robin, and existing
load balancing techniques. The experimental results showed
that the proposed technique is better than the above said three
algorithms for resource utilization and makespan. The scientist
[11] introduced the MPSO (Modified Particle Swarm
Optimization) algorithm for the reduction of cost as compared
to the existing Particle Swarm Optimization algorithm. The
simulation results showed that the proposed technique worked
better. In paper [12] the authors modified Particle Swarm
Optimization by modifying the parameters like MIPS and
Bandwidth for effective load balancing. The simulation results
showed that the proposed model resulted in a reduction of
execution time. The researchers of the paper [13] compared a

task scheduling strategy based on Ant Colony Optimization
with FCFS and RR (Round-Robin). The simulation results
proved that the ACO outperforms traditional FCFS and
Round-Robin algorithms. The authors [14] developed a hybrid
optimization technique using Flower Pollination and Grey
Wolf Optimization. The PEFT algorithm was used for the
initialization of the proposed method for workflows. The
simulation resulted that the proposed method is effective as
compared to Flower Pollination with Genetic Algorithm in
terms of cost and reliability. In [16] the researchers designed
an Improved Social Learning Optimization Algorithm by
introducing the Small Vector Position method for task
scheduling problems. After simulation, it was found that the
proposed approach worked well as compared to GA and PSO-
based techniques. In the paper [17], the researchers proposed
an Adaptive Cost-based Task Scheduling technique to
scheduling the tasks between virtual machines at minimum
cost. The simulation results concluded that the proposed
technique is performing well in terms of communication cost,
execution time, CPU utilization and execution cost rather than
cost-efficient task scheduling. In [18] research paper, the
scientists implemented a Dynamic Adaptive Particle Swarm
Optimization algorithm to enhance the efficiency of Particle
Swarm Optimization for better makespan, resource utilization.
The authors also proposed an algorithm named MDAPSO.
DAPSO and MDPSO worked better than the original Particle
Swarm Optimization. The authors of [19] research paper
proposed an Improved Particle Swarm Optimization based
technique to solve workflow scheduling problems in cloud
systems. The proposed method worked better as compared to
existing state-of-art methods. In [20], the scientists proposed a
cloud scheduling model named Task Scheduling System. The
proposed Genetic Algorithm-Chaos Ant Colony Optimization
worked better than ACO and GA algorithms in respect to cost
and convergence speed.

From the above study, it is found that the ACO, PSO, and
CSO algorithms are optimizing the scheduling of independent
as well as workflows tasks. The ACO algorithm is performing
well for local searching; the PSO and CSO algorithms are
good for global searching and get stuck in local optima easily.
Various researchers integrated a few techniques and formulae
in these algorithms to improve the performance of the cloud.
But, these techniques are old. The CSO algorithm is a good
performer among the ACO and PSO; the H-CSO is better than
the CSO.

So, a new method is required to integrate into the H-CSO
so that its limitation of getting trapped in local optima can be
overcome. Hence, the local searching part of the Crow Search
Algorithm has been integrated into the H-CSO algorithm. The
details are indicated in the proposed methodology section.

III. PROPOSED METHODOLOGY

From the related work, it is learned that a single algorithm
could not be able to give better results for workflow task
scheduling.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

487 | P a g e

www.ijacsa.thesai.org

 Proposed Algorithm

 Input (Tasks (T1, T2, T3 … Tn), Virtual Machines (VM1, VM2, VM3 … VMm)

 Output (Optimal Makespan and Cost of n Tasks on m VMs)

 BEGIN PROCEDURE

1. Initialize fl (flight length), rK, velocity factor VK, c, 𝛾𝑚𝑎𝑥, Coefficient c1, MR flag, and no. of iterations

 /* Calculate Rank of Workflows Tasks in DAG using HEFT Algorithm */

2. Feed workflows in HEFT

3. For Each Task in DAG Do

4. Calculate average execution time of all VMs
 5. If Task ti is the last Task Then

 6. Rank value of ti = its average execution time

 7. Else

 8. ranku (ti) = WAvgi + Max tj ͼ succ (ti) (CAvgi j + ranku (tj))

 Where WAvgi is average execution cost

 Succ (ti) is set of immediate successor of task ti
 CAvgi,j is average communication cost

 9. End If

 10. End For

 11. Assign Tasks to VMs according to HEFT Rank

 12. If Solution not Optimized Then

 13. Generate a set of Crows by the Population generated by HEFT of Size N
 14. While No. of Iterations not Exceeded Do

 15. For K=1 to N

 16. Update the positions by the following equation : // Do local search

 17. 𝑋𝐾,𝐷 = 𝑋𝐾,𝐷 + 𝑟𝐾 ∗ 𝑓𝑙𝐾,𝐷 ∗ (𝑀𝐿 ,𝐷 − 𝑋𝐾,𝐷)

 Where, 𝑋𝐾,𝐷 is current position of CrowK, 𝑟𝐾 is uniformly distributed random number [0, 1]

 𝑓𝑙𝐾,𝐷 is flight length (less than 1 i.e. 0.5) of the CrowK at current iteration

 𝑀𝐿 ,𝐷 is present best location of CrowK in Dimension D

 18. Feed the population generated by Local CSA in H-CSO // Do local and global search as given below

 19. Assign the velocity VK to each Cat
 20. According to Mixing Ratio (MR) flag Distribute Cats to Seeking and Tracing Modes

 21. If current CatK is in Seeking Mode Then

 22. Generate S (SMP) Copies of CatK and Spread them in D Dimensions where each Cat has a velocity (VK, D)
 23. Evaluate the Fitness value of all Copies and Discover Best Cats (XBEST, D)

 24. Replace Original CatK with the Copy of Best Cats (XBEST, D)

 25. Else If current CatK is in Tracing Mode Then
 26. Compute and Update CatK velocity by following equations:

 27. 𝛾 = 𝛾𝑚𝑎𝑥 ∗ exp (−𝑐 ∗ (
𝑖𝑡𝑟

𝑖𝑡𝑟𝑚𝑎𝑥
)

𝑐

)

 Where, 𝛾 is a weight factor calculated by Self-Motivated Inertia Weight method

 𝛾𝑚𝑎𝑥 and 𝑐 are constant factors greater than 1, both are set as 2.

 28. 𝑉𝐾,𝐷 = γ ∗ 𝑉𝐾,𝐷 + (𝑐1 ∗ 𝑟1 ∗ (𝑋𝐵𝐸𝑆𝑇,𝐷 − 𝑋𝐾,𝐷))

 Where, D = 1, 2, 3, …, M.

 c1 is acceleration coefficient, r1 is random number in the range of [0, 1]

 29. Update the position of every dimension of CatK by using following equation:

 30. 𝑋𝐾,𝐷 = 𝑋𝐾,𝐷 + 𝑉𝐾,𝐷

 31. Evaluate Fitness of all Cats and find out Best Cats (𝑋𝐵𝐸𝑆𝑇,𝐷) with Best Fitness

 32. End If

 33. Update Best Cats (XBEST, D) in Memory

 34. End For

 35. End While

 36. End If

 37. return (Optimal Solution)

 END PROCEDURE

Fig. 2. Pseudo-Code of Proposed HC-CSO Algorithm.

Many scientists advised improving the existing algorithms.
The H-CSO algorithm is a combination of the HEFT, Cat
Swarm Optimization algorithm, and Self-Motivated Inertia
Weight useful in overcoming the velocity outrange problem of
the standard CSO. As said earlier, this H-CSO algorithm gets
trapped in local minima in the case of a large search space and
complex workflows’ tasks environment. A few limitations of
the H-CSO algorithm are described below in short:

1) The H-CSO algorithm is having only a good global

searching capacity.

2) The H-CSO algorithm gets trapped in local minima due

to a large number of cats is always residing in seeking Mode

as compared to tracing mode.

3) Due to a lack of balance between seeking and tracing

modes, optimal results could not be got using the H-CSO

algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

488 | P a g e

www.ijacsa.thesai.org

In the proposed algorithm named HC-CSO, a local search
part of a well-known Crow Search Algorithm is integrated
into the H-CSO for avoiding it getting trapped in the local
optima. The working of the HC-CSO algorithm is described
as:

First of all, the initialization of various parameters takes
place then pre-processing of workflows tasks is executed with
the HEFT method as shown in the pseudo-code of the
proposed algorithm. After the pre-processing of workflows,
the tasks are assigned to available VMs. If this solution is
getting optimized at the very first stage then the algorithm is
stopped and returns the optimized schedule otherwise the
initial solution generated by the HEFT algorithm is fed to the
CSA algorithm. Here, a number of N Crows are generated
using the population obtained by the local Crow Search
Algorithm. Then, the population got from the local CSA is fed
to the H-CSO algorithm. Now, N numbers of Cats are
generated and velocity value VK is assigned to each cat for
further processing. In the next phase, the cats are randomly
distributed into the seeking and tracing mode as per the
Mixing Ratio (MR) rate and flags are set to each cat. If the
current CatK is found in the seeking mode as per flag value,
this mode gets executed otherwise the tracing mode gets
executed. The position and velocities of the cats in the tracing
mode are updated using the equations given in the pseudo-
code in Fig. 2 and the best cats get stored in the memory in the
form of solution. This process is continued until the
termination condition is not matched and finally an optimal
solution is returned in the form of better makespan and cost.
The proposed algorithm has both the best local and global
searching capacity, so the results could be reached at an
optimum level. The proposed algorithm is also useful to avoid
the premature convergence of the H-CSO method. The
pseudo-code of the proposed algorithm named HC-CSO has
been described step by step in Fig. 2.

IV. SIMULATION SETUP

The simulation environment has been created in the
CloudSim tool for simulating the different workflows used in
this paper. Various experiments were carried out over a
computing machine having the configuration as Processor –
Intel ® Core ™ i3-5005U at a speed of 2.0 GHz, RAM – 4.0
GB, HDD – 1 TB, and OS – Windows 10.

A. Parameters

For simulation, a PowerDatacenter has been designed
having the configuration as RAM – 25 GB, MIPS per VM –
1000 MIPS, Storage – 1 TB, Bandwidth – 50000 bps. Rest
configurations of the heterogeneous cloud environment are
depicted in Table I. The scheduling policy was set as Time
Shared. The parameters of the CSO, the H-CSO and, the
proposed HC-CSO are also summarized in Table I.

TABLE I. SIMULATION PARAMETERS

PowerDatacenter

Parameters Values

Number of Hosts 1

System Architecture x86

VMM Xen

OS Linux

Number of Cloudlets

Cloudlets Length Type

1000 in Each Workflow

Random

Numbers of VMs 10, 20 and 30

CPU (PEs Number) 1

RAM per VM 512-1024 MB

Bandwidth 1000-1500 bps

Processing Elements per VM 500 – 1000 MIPS

Image Size 10000 MB

Policy Type Time Shared

Standard CSO and H-CSO

No. of Cats 100

Iterations 300

Weights (C1) 1.5

r1and rk (Random Variables) [0, 1]

Mixed Ratio Percentage Random Range [0, 1] i.e. 0.2-0.3

HC-CSO (Proposed Algorithm)

No. of Cats 100

Iterations 300

Weights (C1) 1.5

r1(Random Variable) [0, 1]

Mixed Ratio Percentage Random Range [0, 1]

fl (Flight Length) 0.5

B. Cost Plan

The cost plan (in Indian Rupees) of workflow scheduling
is depicted in Table II.

TABLE II. COST PLAN

Resource Processor RAM Storage Bandwidth

Size 500-1000 MIPS 512 MB Unlimited 1000 bps

Cost
Rs. 3.0 per

processor

Rs. 0.05 per

MB
Rs. 0.1

Rs. 0.1 per

MB

C. Cloudlets

Cloudlets are called tasks to be submitted for execution on
virtual machines. In this paper, the scientific workflows
named CyberShake, Montage, Inspiral, and Sipht have been
used to test the proposed algorithm along with others. Each
workflow is having 1000 tasks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

489 | P a g e

www.ijacsa.thesai.org

D. Performance Metrics

There are several performance metrics like Makespan,
Processing Cost, Waiting Time, Response Time, Energy
Consumptions, and Resources Utilization, etc. to test the
performance of the algorithms. In this paper, makespan and
cost are used to measure the performance of the proposed
algorithm, and these parameters are given in the coming
topics.

1) Makespan: Makespan [23] is referred to the maximum

time taken for finishing the last task in a group. It is the most

widely used metric to measure the performance of a

scheduling algorithm. A lesser makespan decides that the

algorithm is efficient enough. The makespan is computed by

the given equation 5.

Makespan = max (CTi) ti∈tasks (5)

Where, CTi is the completion time of taski

2) Processing cost: Processing Cost is along with

makespan is another important performance metric because

cloud service providers want to give efficient services at the

minimum costs in this competitive environment. The

processing cost can be measured by equation 6.

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =
𝑀𝐹+𝐶𝐹

2
 (6)

Where, MF is Movement Factor

CF is Cost Factor

𝑀𝐹 =
1

𝑁𝑜. 𝑜𝑓 𝐻𝑜𝑠𝑡𝑠/𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝑠
[∑ (

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑈𝑠𝑒𝑑 𝑉𝑀
)𝑉𝑀𝑥

𝑥=1]

 (7)

𝐶𝐹 = ∑ (
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 ∗ 𝑀𝑒𝑚𝑜𝑟𝑦 𝑜𝑓 𝑇𝑎𝑠𝑘𝑠

𝑉𝑀 ∗ 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟
)𝑉𝑀𝑥

𝑥=1 (8)

3) Fitness function: Equation 9 is depicting the fitness

function which is used by meta-heuristic techniques to check

that the solution is optimized or not at various levels in the

form of makespan along with computation cost.

𝐹𝑋 =
1

𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟 ∗ 𝑉𝑀𝑗
 [∑ ∑

1

𝑉𝑀

𝐶𝑃𝑈 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝐶𝑃𝑈𝑖𝑗

𝑉𝑀𝑗
𝑗=1

𝐷𝐶𝑖
𝑖=1 +

𝑀𝑒𝑚𝑜𝑟𝑦 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝑀𝑒𝑚𝑜𝑟𝑦𝑖𝑗
+

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑖𝑗
+

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖𝑗
] (9)

Equations 7 and 8 help in the calculation of the total
processing cost represented in equation 6.

V. SIMULATION RESULTS AND DISCUSSION

Four scenarios and a set of 10, 20, and 30 virtual machines
have been set in CloudSim for simulation. To evaluate the
performance of the proposed algorithm HC-CSO, the
simulation results were compared with standard CSO and H-
CSO. The makespan results concerning all scenarios are
displayed in Table III. The results shown in Table III are the
average of the results retrieved by the proposed algorithm HC-
CSO along with other algorithms which were executed several
times.

Simulation results of the proposed algorithm HC-CSO, H-
CSO, and standard CSO for the scientific dataset

Cybeshake_1000 are displayed in Fig. 3. Southern California
Centre collected data and made the CybeShake workflow to
analyze seismic hazards. For execution, this workflow
requires almost near to lower CPU power and memory. It can
be seen that at the x-axis 10, 20, and 30 VMs are being
displayed and makespan at the y-axis. The results express that
the HC-CSO outperforms other algorithms better local search
after adding the Crow Search Algorithm and a better balance
between seeking and tracing mode.

It is seen in Fig. 4 that the experiment carried out with the
Montage_1000 dataset needs less memory and CPU power as
compared to other workflows. The Montage dataset is having
astronomical images collected and stored by NASA. The
graph tells that the group of 10, 20, and 30, VMs as well as
makespan, are shown at the x-axis and y-axis correspondingly.
The results depiction tells the proposed algorithm HC-CSO
performed efficiently as compare to other algorithms due to
better convergence in less number of iterations.

TABLE III. MAKESPAN EVALUATION (IN SEC)

Scenarios VMs CSO H-CSO HC-CSO

Scenario - 1

CyberShake_1000

10 4603.23 4520.45 4413.65

20 3693.52 3500.27 3425.29

30 2401.29 2350.15 2220.15

Scenario – 2

Montage_1000

10 2310.70 2270.09 2210.43

20 2021.13 1982.05 1813.58

30 1308.28 1219.01 1187.67

Scenario – 3

Inspiral_1000

10 52300.41 50940.98 49859.35

20 40350.03 39241.18 37174.27

30 23975.57 22548.23 20140.03

Scenario – 4

Sipht_1000

10 32820.02 31107.81 30740.41

20 25203.13 23293.24 22980.37

30 19113.29 18279.02 18033.13

Fig. 3. Makespan Comparisons for CyberShake_1000 Tasks.

0

1000

2000

3000

4000

5000

10 20 30

M
a

k
e
sp

a
n

Virtual Machines

CSO

H-CSO

HC-CSO

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

490 | P a g e

www.ijacsa.thesai.org

Fig. 4. Makespan Comparisons for Montage_1000 Tasks.

Fig. 5 is demonstrated the experimental results of the
proposed algorithm named HC-CSO along with other
algorithms like CSO and H-CSO for the dataset Inspiral_1000
which is related to the physics field and used to analyze the
gravitational waves. This dataset needs high powered CPU
and a large amount of memory for execution. The results
concluding here that the proposed algorithm performed better
than other algorithms because the HC-CSO algorithm has both
capabilities of global and local searching as well as the
algorithm also manage the velocities outrange. This capability
of the proposed algorithm manages under-loaded and overload
machines effectively by task migration. In this graph, the
numbers of VMs are being displayed at the x-axis and
makespan at the y-axis.

Fig. 5. Makespan Comparisons Inspiral_1000 Tasks.

Fig. 6 is displaying the results of the Shipt_1000 workflow
processed with the proposed HC-CSO algorithm and others.

Fig. 6. Makespan Comparisons for Sipht_1000 Tasks.

For displaying the 10, 20, and 30 sets of VMs and
makespan, the x-axis and y-axis are being used respectively.
The Sipht dataset is used to represent sRNA-encoding genes

of several bacteria and it has been released by the HIB
(Harvard International Bioinformatics) Centre. This dataset
requires huge memory and a high computational CPU. For the
processing of this dataset, the proposed algorithm HC-CSO
again worked well as compared to standard CSO and the H-
CSO because the proposed algorithm chooses the most
appropriate VM instead of high or low power due to better
properties of local as well as global searching and the HC-
CSO also avoids unnecessary diversity. The proposed
algorithm could not trap in local minima due to Crow Search
Algorithm local searching property.

In the last, it is concluded that the HC-CSO algorithm is
giving better results in the form of a better makespan for all
scenarios in comparison to standard CSO, and H-CSO. For all
the scenarios, HC-CSO works better than CSO and, H-CSO
because of the better pre-processing of tasks by HEFT, a good
balance between seeking and tracing modes due to the Crow
Search algorithm. The HC-CSO algorithm along with the
Crow Search Algorithm searches the VMs at a local and
global level very carefully to optimize the results in the
minimum number of iterations. The SMIW method restricts
the Cats to go outside the search space.

Table IV is summarizing the evaluation of the processing
cost for the execution of all scenarios designed for simulation.

TABLE IV. COST CONSUMPTIONS (IN INDIAN RUPEES)

Scenarios VMs CSO H-CSO HC-CSO

Scenario - 1

CyberShake_1000

10 484.53 459.43 447.89

20 601.43 590.29 567.78

30 703.47 668.13 640.25

Scenario – 2

Montage_1000

10 181.83 167.53 159.13

20 191.19 184.19 173.19

30 198.13 190.89 169.17

Scenario – 3

Inspiral_1000

10 3663.48 3629.55 3413.42

20 3759.37 3685.87 3543.65

30 5430.17 5217.58 5130.71

Scenario – 4

Sipht_1000

10 2811.93 2759.19 2645.13

20 2973.87 2918.13 2703.29

30 3353.29 3109.24 2999.43

Fig. 7. Cost Comparisons for CyberShake_1000 Tasks.

0

500

1000

1500

2000

2500

10 20 30

M
a

k
e
sp

a
n

Virtual Machines

CSO

H-CSO

HC-CSO

0

10000

20000

30000

40000

50000

60000

10 20 30

M
a

k
e
S

p
a

n

Virtual Machines

CSO

H-CSO

HC-CSO

0

10000

20000

30000

40000

10 20 30

M
a

k
e
sp

a
n

Virtual Machines

CSO

H-CSO

HC-CSO

0

200

400

600

800

10 20 30

C
o

st

Virtual Machines

CSO

H-CSO

HC-CSO

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

491 | P a g e

www.ijacsa.thesai.org

For the first scenario having CybeShake_1000 dataset, a
group of 10, 20, and 30 VMs along with processing cost are
demonstrated at the x-axis and y-axis respectively in Fig. 7.
The graph is expressing that the proposed HC-CSO algorithm
is consuming minimal costs as compared to other algorithms.
This is because the proposed algorithm has faster convergence
and the positions of the workflows tasks on various VMs are
updated smartly.

Fig. 8. Cost Comparison for Montage_1000 Tasks.

Fig. 8 is summarizing the processing cost consumption for
the proposed algorithm HC-CSO, H-CSO, and standard CSO
algorithms while working on 10, 20, and 30 VMs for the
Montage_1000 dataset. The x-axis and y-axis of the graph are
demonstrating the VMs and computing costs respectively. The
proposed algorithm works better than H-CSO and CSO
because the workflow tasks are migrated effectively for under-
loaded virtual machines irrespective of their computing
capacity.

Fig. 9. Cost Comparison for Inspiral_1000 Tasks.

The processing cost results are being depicted in Fig. 9 for
the Ispiral_1000 dataset. It can be seen VMs and Processing at
the x-axis and y-axis respectively in the graph. The HC-CSO
algorithm consumes less cost while executing the Ispiral_1000
dataset with all sets of VMs in comparison to other
algorithms, this is because; the proposed algorithm makes an
effective balance between seeking and tracing modes due to
CSA integration. The VMs were picked up for execution of
tasks irrespective of their MIPS, RAM, and bandwidth.

Fig. 10. Cost Comparisons for Sipht_1000 Tasks.

Fig. 10 is describing the results of processing cost obtained
by the proposed HC-CSO, CSO, and H-CSO algorithms with
various groups of virtual machines for the Sipht_1000 dataset.
The VMs and processing cost can be seen at the x-axis and y-
axis correspondingly in Fig. 10. Again, for the Sipht_1000
workflow; the proposed algorithm outperforms CSO and H-
CSO in terms of computing cost. It is because the global and
local searching properties of the proposed algorithm are
balanced and the overloaded VMs loads are migrated to other
VMs very smartly in the minimum time.

With these results, it can be specified that the proposed
HC-CSO algorithm is better than other algorithms like CSO
and H-CSO in respect of makespan and processing cost. The
reason behind this is the good combination of global and local
due to CSA. The Self-Motivated Inertia Weight factor
integration overcomes the velocity outrange problem of Cats
at tracing mode. The proposed algorithm chooses the virtual
machines which are idle, under-loaded, or overloaded for
workflow tasks migration among different VMs irrespective
of their computing power, RAM, and Bandwidth.

VI. CONCLUSION

In the current technological era, cloud computing is one of
the important emerging technologies used to store a large
volume of data and other computing services in various
science and technological fields. For computing facilities,
various heuristic and meta-heuristic techniques have been
developed. In this paper, an intelligent workflow scheduling
algorithm named HC-CSO has been proposed to solve the
workflow task scheduling problem. The proposed algorithm is
a combination of H-CSO and the Crow Search algorithm. The
H-CSO algorithm is an integration of HEFT and SMIW
methods. The HEFT algorithm pre-processed the workflows
tasks and initialized the proposed HC-CSO algorithm with
these tasks. This process saves time and optimizes the results
in a fewer number of iterations. The proposed HC-CSO
algorithm didn’t get trapped in local optima due to the good
local searching capacity of the CSA. Velocity outranges cause
to push the Cats outside the search space and affects the
performance of the algorithm. The Self-Motivated Inertia
Method overcame this problem.

The proposed HC-CSO algorithm outperformed CSO and
H-CSO in terms of makespan and computing cost with all four
scenarios having four scientific datasets CyberShake,
Montage, Inspiral, Sipht, on a group of 10, 20, and 30 VMs.
This is because the proposed algorithm chose the best VM
among a group of VMs using its perfect global and local
searching capacity for workflows task scheduling. The
proposed approach is a generalized algorithm and will perform
well with all types of scientific datasets despite a particular
one.

In the future, the proposed algorithm can be tested at a
wide scale to reduce makespan, cost and, other parameters in
the cloud system and many other fields. The efficiency of the
proposed algorithm can also be tested for independent tasks. A
new technique can also be developed to enhance cloud
performance.

0

100

200

10 20 30

C
o

st

Virtal Machines

CSO

H-CSO

HC-CSO

0

2000

4000

6000

10 20 30

C
o

st

Virtual Machines

CSO

H-CSO

HC-CSO

0

1000

2000

3000

4000

10 20 30

C
o

st

Virtual Machines

CSO

H-CSO

HC-CSO

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

492 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] G. Danlami, S. I. Abdul, Z. Anazida, Z. Zalmiyah, and A. Ahmad,
“Hybrid Cat Swarm Optimization and Simulated Annealing for
Dynamic Task Scheduling on Cloud Computing Environment,” Journal
of Information and Communication Technology, vol. 17, no. 3. pp. 435-
467, July 2018.

[2] B. Saurabh, S. Santwana, and D. Madhabanda, “A Multi-Objective Cat
Swarm Optimization Algorithm for Workflow Scheduling in Cloud
Computing Environment,” Internation Journal of Soft Computing, vol.
10, pp 17-45, 2015.

[3] B. Saurabh, S. Santwana, and D. Madhabanda, “Workflow Scheduling
in Cloud Computing Environment using Cat Swarm Optimization,”
IEEE International Advance Computing Conference, pp. 680-685, 2014.

[4] G. Danlami, S. I. Abdul, Z. Anazida, Z. Zalmiyah, and A. Ahmad,
“Cloud Scalable Multi-Objective Task Scheduling Algorithm for Cloud
Computing using Cat Swarm Optimization and Simulated Annealing,”
IEEE International Conference on Information Technology, pp. 1007-
1012, 2017.

[5] D. Negar, and J. N. Nima, “A Hybrid Particle Swarm Optimization and
Hill Climbing Algorithm for Task Scheduling in the Cloud
Environments,” ICT Express, vol. 4, pp. 199-202, 2017.

[6] S. A. Thanna, A. S. Ashraf, and D. Yassine, “Binary PSOGSA for Load
Balancing Task Scheduling in Cloud Environment,” International
Journal of Advanced Computer Science and Applications, vol. 9, no. 5,
pp. 255-264, 2018.

[7] S. Narinder, and S. B. Singh, “Hybrid Algorithm of Particle Swarm
Optimization and Grey Wolf Optimizer for Improving Convergence
Performance,” Journal of Applied Mathematics, Hindawi, vol. 2017, pp.
1-15, 2017.

[8] S. Heba, N. Heba, S. Walla, and M. H. Hany, “IPSO Task Scheduling
Algorithm for Large Scale Data in Cloud Computing Environment,”
IEEE Access, vol. 7, pp. 5412-5420, 2019.

[9] P. Suraj, W. Linlin, M. G. Siddeswara, and B. Rajkumar, “A Particale
Swarm Optimization-based Heuristic for Scheduling Workflow
Applications in Cloud Computing Environments,” IEEE International
Conference on Advanced Information Networking and Applications, pp.
400-407, 2010.

[10] E. Fatemeh, and M. B. Seyed, “A PSO Based Task Scheduling
Algorithm Improved using a Load-Balancing Technique for the Cloud
Computing Environment,” Concurrency and Computation Practice and
Experience, Wiley, Special Issue, pp. 1-16, Dec. 2017.

[11] Z. Zhou, C. Jian, H. Zhigang, Y. Junyang, and L. Fangmin, “A
Modifuled PSO Algorithm for Task Scheduling Optimization in Cloud

Computing,” Concurrency and Computation Practice and Experience,
Wiley, Special Issue, pp. 1-11, Sept. 2018.

[12] M. Neha, and S. Gaurav, “Modified Particale Swarm Optimization
based upon Task Categorization in Cloud Environment,” International
Journal of Engineering and Advanced Technology, vol. 8, pp. 67-72,
2019.

[13] A. T. Medhat, E. Ashraf, E. K. Arabi, and A. T. Fawzy, “Cloud Task
Scheduling Based on Ant Colony Optimization,” International
Conference on Computer Engineering and Systems, IEEE, pp. 64-69,
2013.

[14] S. Khurana, and R. K. Singh, “Workflow Scheduling and Reliability
Improvement by Hybrid Intelligence Optimization Approach with Task
Ranking,” EAI Endorsed Transactions on Scalable Information Systems,
Nov. 2019.

[15] M. S. Raja, P. Sanchita, and K. Abhishek, “Task Scheduling in Cloud
Computing: Review,” International Journal of Computer Science and
Information Technologies, vol. 5, no. 6, pp. 7940-7944, 2014.

[16] L. Zhizhong, Q. Jingxuan, P. Weiping, and C. Hao, “Effective Task
Scheduling in Cloud Computing Based on Improved Social Learning
Optimization Algorithm,” International Journal of Online and
Biomedical Engineering, vol. 13, no. 6, pp. 4-21, 2017.

[17] A. S. M. Mohammed, G. Radhamani, A. G. H. Mohamed, and H. H.
Syed, “Adaptive Cost-Based Task Scheduling in Cloud Environment,”
Scientific Programming, Hindawi, vol. 2016, pp. 1-9, 2016.

[18] A. Ali, and A. O. Fatma, “Task Scheduling Using PSO Algorithm in
Cloud Computing Environments,” International Journal of Grid
Distribution Computing, vol. 18, no. 5, pp. 245-256, 2015.

[19] P. Guang, and W. Katinka, “Efficient Task Scheduling in Cloud
Computing using an Improved Particle Swarm Optimization
Algorithm,” International Conference on Cloud Computing and Service,
pp. 58-67, 2019.

[20] C. Hongyan, L. Xiaofei, Y. Tao, Z. Honggang, F. Yajun, and X.
Zongguo, “Cloud Service Scheduling Algorithm Research and
Optimization,” Security and Communication Networks, vol. 2017, pp. 1-
7, 2017.

[21] M. A. Aram, A. R. Tarik, and A. M. S. Soran, “Cat Swarm optimization
Algorithm: A Survey and Performance Evaluation,” Computational
Intelligence and Neuroscience, vol. 2020, pp. 1-17, 2020.

[22] A. Alireja, “A Novel Metaheuristic Method for Solving Constrained
Engineering Optimization Problems: Crow Search Algorithm,”
Computer and Structures, vol. 169, pp. 1-12, 2016.

[23] K. Mala, and S. Sarabjeet, “A Review of Metaheuristic Scheduling
Techniques in Cloud Computing, Egyptian Informatics Journal, vol. 16,
pp. 275-295, 2015.

