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Abstract—Many scientists are using meta-heuristic techniques 

for dynamic workflow task scheduling in the area of cloud 

computing systems to get optimum solutions. Many swarm 

intelligent algorithms have been designed so far which are having 

many limitations as some get trapped in local optima, a few are 

having low convergence speed, some are having poor global 

search facilities, etc. Still, there is a requirement of designing a 

new algorithm or modification of existing algorithms to overcome 

the limitations of the existing techniques. A new Hybrid Cat 

Swarm Optimization algorithm named H-CSO was designed 

inspired by the HEFT algorithm and the initialization problem of 

the Cat Swarm Optimization was overcome. Still, that algorithm 

has a limitation of getting stuck in local minima. To overcome 

this algorithm a part of the Crow Search Algorithm has been 

integrated into H-CSO and described in this paper. After 

simulation, it was found that the new hybrid algorithm named 

HC-CSO outperforms CSO and H-CSO. 
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I. INTRODUCTION 

Information Technology has been reshaped by the 
evolution of cloud computing technology via big storage 
facilities, high-performance computing, and other hardware 
and software services. The current technology includes the 
evolution of computing eras where computers were connected 
via the internet that took the form of distributed computing. 
This further transformed into cluster computing, cluster to grid 
computing, and then cloud computing [1]. The major aim of 
cloud computing technology is to provide high-performance 
computing services at the minimum cost. The cloud 
technology shifted the users’ data from client machines to 
network-abled machines which are having high-powered 
processors and hardware parts. Cloud computing provides 
services in the form of Software as a Service (SaaS), Platform 
as a Service (PaaS), and Infrastructure as a Service (IaaS) 
[15]. Any end-user can pick up the services as per his 
requirements. The main benefit of the cloud is that it doesn’t 
include geographical boundaries to provide the services to the 
end-users [2]. This means that the users need not to know the 
physical locations of the service providers and computing 
datacenters. Cloud technology is flexible because a user can 
increase the number of services and drop whenever it is 
required due to the pay-per-usage policy. Various cloud 
service providers are Amazon Web Services, Microsoft, 
Google, Rackspace, salesfornce.com, etc. The cloud system 

can be classified into four categories such as private cloud, 
public cloud, community cloud, and hybrid cloud [3]. 

The performance of the cloud can be improved at various 
levels such as network level, scheduling level, database level, 
etc. After studying various research papers, it can be seen that 
numerous algorithms have been designed for workflow task 
scheduling, load balancing, energy consumption management, 
etc. in cloud computing. Workflow task scheduling is one of 
the major areas where a lot of improvement is required. Task 
scheduling can be of two types static and dynamic scheduling. 
In static scheduling, the execution times of the tasks are pre-
estimated or known but in the case of dynamic scheduling, it 
is not known. This era is of dynamic task scheduling. So, 
dynamic task scheduling algorithms are required to be 
improved. The optimization techniques play an important role 
to improve the cloud scheduling problem nowadays. A few 
famous techniques are Ant Colony Optimization, Particle 
Swarm Optimization, and Cat Swarm Optimization, etc. Cat 
Swarm Optimization belongs to Swarm Intelligent (SI) family 
[4]. The algorithms used in this paper are as under: 

1) Cat swarm optimization: This is an intelligent 

algorithm originally developed in the year of 2006. This 

algorithm is inspired by the behaviour of the original cat 

which is having to two modes known as seeking (resting 

mode) and tracing (attacking mode). Here, N numbers of cats 

are generated randomly and each cat denotes a solution, its 

position, a flag, and fitness value. M dimensions in the search 

space represent the position, and each dimension in the search 

space is having its self-velocity. The flag is used to identify 

that the cat is in either seeking mode or in tracing mode and 

this flag is set by a parameter known as Mixing Ratio (MR). 

After finding the fitness, the best cat is stored in the memory 

at each iteration and finally, the best solution or cat is 

identified at the end of the final iteration. The two modes of 

Cat Swarm Optimization are described below [1][21]: 

i) Seeking mode: This mode represents the resting mode 

of a cat and four parameters play an important role in it: SMP 

(Seeking Memory Pool), SRD (Seeking range of the Selected 

Dimension), CDC (Counts of Dimension to change), and SPC 

(Self Position Consideration). In SMP, one position is selected 

by a cat randomly for moving to the next position. Let’s say, 

the SMP is set to 10, now for every cat 10 new random 

positions will be generated and one among them will be 
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selected randomly for movement. SRD and CDC will decide 

the randomization of the new positions. How many 

dimensions need to be mutated that is decided by the CDC 

factor which is in the interval between [0 to 1]. The amount of 

mutation is defined by SRD for the dimensions selected by 

CDC. The Boolean value SPC will consider the candidate cats 

for the next iteration from the current position. Let’s assume, 

if SPC is true then for each cat SMP-1 candidates will be 

generated instead of SMP because the current position will be 

decided from them. Seeking Mode steps are given as: 

a) Generate S Copies of Seeking CatK equal to the SMP 

value. 

b) For each copy, change at a random dimension of Cats 

as per CDC by applying SRD operator as: 

𝐶𝑎𝑡 𝑛𝐷𝑛𝑒𝑤 = (1 + 𝑟𝑎𝑛𝑑 ∗ 𝑆𝑅𝐷) ∗  𝐶𝑎𝑡 𝑛𝐷𝑜𝑙𝑑          (1) 

Where, 𝐶𝑎𝑡 𝑛𝐷𝑜𝑙𝑑  is the current position and 𝐶𝑎𝑡 𝑛𝐷𝑛𝑒𝑤  is 
the next new position, n is the numbers of Cats and D is the 
dimension, rand is a random variable between [0, 1] interval. 

c) Evaluate fitness of all candidate/ changed Cats and 

find Best Cats (CatBest,D). 

d) Replace the position of S Cats by picking up the Best 

Cats randomly. 

ii) Tracing Mode: This mode follows the tracing 

behaviour of real cats. 

a) At first, velocity values are computed and assigned to 

all the dimensions of a CatK position by the following 

equation 2. 

𝑉𝐾,𝐷 = 𝑉𝐾,𝐷 + (𝑐1 ∗ 𝑟1 ∗ (𝑋𝐵𝑒𝑠𝑡,𝐷 − 𝑋𝐾,𝐷))           (2) 

Where, 𝑉𝐾,𝐷  is the velocity, c1 is an acceleration 

coefficient, r1 is a random variable between [0, 1], 𝑋𝐵𝑒𝑠𝑡,𝐷 is 

the best cat position, 𝑋𝐾,𝐷 is the current cat position and D is 

the dimension. 

b) If velocity is going beyond the upper range set it 

within the range. 

c) Update the position of the CatK by using the 

following equation 3. 

𝑋𝐾,𝐷 =  𝑋𝐾,𝐷 +  𝑉𝐾,𝐷             (3) 

2) Crow search algorithm: Crow family is treated as one 

of the most intelligent bird groups. Their brain is considered 

slightly lower than a human being, based on their body-to-

brain ratio. Crow is a very well famous thief as to watches 

other bird’s food and steals it after the victim bird leaves its 

place of food. This intelligent behaviour of the crow can be 

used to solve and optimize real-world problems. The CS 

Algorithm can be described with the help of a pseudo-code in 

Fig. 1 [22]. 

 

         Crow Search Algorithm 

1. Randomly initialize the positions of a group of N crows, fl (flight 

length), ri, rj and max. iterations 

2. Evaluate the position of all the crows 

3. Initialize the memory of every crow in the group 
4. While itr < itrmax 

5.     For i = 1 to N  

6.         Randomly choose one of the crows to follow, let it be Crowj 
7.         Define the awareness probability 

8.         If 𝑟𝑗 ≥ 𝐴𝑃𝑖,𝑖𝑡𝑟 Then 

9.             𝑥𝑖,𝑖𝑡𝑟 = 𝑥𝑖,𝑖𝑡𝑟 + 𝑟𝑖 ∗ 𝑓𝑙𝑖,𝑖𝑡𝑟 ∗ (𝑚𝑗,𝑖𝑡𝑟 − 𝑥𝑖,𝑖𝑡𝑟)                     (4)                                               

10.         Else 

11.             𝑥𝑖,𝑖𝑡𝑟 = a random position of a crow in search space 

12.         End If 

13.     End For 
14.     Check the fitness of new positions 
15.     Evaluate the new position of the crows 

16.     Update the memory of crows 

17. End while 

Fig. 1. Pseudo-Code of Crow Search Algorithm. 

First of all, the positions of all crows in a group and other 
parameters have been initialized. N is the number of crows, ri 
and rj are random variables between 0 to 1. After evaluation of 
the positions of all crows, the memory of each crow is 
initialized. As described earlier, the behavior of the crow is to 
chase a bird to steal its food. So, a random crow from the 
search space is selected say it be a Crowj. Crowi will follow it 
and will steal its food whenever the Crowj will leave its place 
after hiding its food. If the random variable rj will be greater 
than awareness probability the position of the current Crowi 
will be updated by using equation 4 otherwise the position will 
be updated randomly from the search space. Flight Length (fl) 
of the crow will decide the local or global search. If the fl is 
less than 1 then it will work for local search otherwise the 
global search will take place. Then the new positions or 
solutions will be stored in the memory and this process will be 
continued till the termination condition will not be satisfied 
[22]. 

In this paper, the limitation of getting stuck in the local 
minima of the H-CSO algorithm has been improved by 
integrating the local search part of the CSA. The details are 
given in the coming sections. 

The rest of the paper is structured as follows: Section II 
covers the related work. In Section III, the proposed 
methodology is described. Section IV is having a description 
of the simulation setup and simulation results and discussion 
are covered in Section V. Section VI is summarizing the 
conclusion and future scope. In the end, the research papers’ 
references are given. 

II. RELATED WORK 

Existing work in the area of workflow and task scheduling 
can be found in the following literature review: In [1] the 
scientists proposed multi-objective Cat Swarm Optimization 
based on the Simulated Annealing technique. The Simulated 
Annealing (SA) technique is incorporated in the local search 
of the proposed algorithm and the SA is enhanced by the 
Orthogonal Taguchi approach. The parameters like execution 
time and execution cost are considered for performance 
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measurement. The proposed technique worked better as 
compared to Multi-Objective Ant Colony Optimization, 
Multi-objective Genetic Algorithm, and Multi-Objective 
Particle Swarm Optimization. The authors [2] proposed a 
Multi-Objective Cat Swarm Optimization algorithm and after 
comparison with the existing Multi-Objective PSO technique, 
the proposed approach was found better in the account of 
energy consumption, execution cost, and execution time. The 
researchers in [3] introduced a Cat Swarm Optimization-based 
technique for workflow scheduling. The results were 
compared with PSO (Particle Swarm Optimization) and found 
that the CSO reduces the processing cost, made a good load 
balance, and gave the optimum results in less iteration. In [5] a 
Hybrid Particle Swarm Optimization algorithm using the Hill-
Climbing technique was proposed by the scientists. The 
proposed algorithm was found effective in terms of makespan 
after experiments. The scientists [6] introduced a Binary 
Hybrid Particle Swarm Optimization and Gravitational Search 
algorithm for load balancing of virtual machines (VMs). The 
experimental results showed that the proposed algorithms 
worked better than the existing Binary PSO load balancing 
algorithm in terms of load balancing. In [7] the researchers 
offered a new HPSOGWO algorithm that is a combination of 
Particle Swarm Optimization and Grey Wolf Optimization. 
The idea behind this algorithm was to improve the 
exploitation of PSO and exploration of GWO for making the 
better strength of the proposed algorithm. The results 
concluded that the HPSOGWO is better than standard PSO 
and GWO variants concerning solution stability, convergence 
speed, and quality. The authors in [8] proposed an IPSO 
(Improved Particle Swarm Optimization) algorithm to 
improve the allocation of large-length tasks. The introduced 
algorithm outperformed despite Ant Colony, Honey Bee, and 
Round-Robin algorithm in accounts of load balance, 
makespan, and degree of imbalance. In [9] authors presented a 
Particle Swarm Optimization based technique for workflow 
scheduling and found that the Particle Swarm Optimization 
based technique saved the cost equal to 3 times as compared 
to BRS (Best Resource Selection) algorithm. Also, the 
presented technique balanced the load efficiently. The authors 
of the paper [10] proposed a PSO (Particle Swarm 
Optimization) based scheduling technique for independent 
tasks. The proposed technique was improved using a load 
balancing strategy. The newly introduced method was 
compared with Improved PSO, Round-Robin, and existing 
load balancing techniques. The experimental results showed 
that the proposed technique is better than the above said three 
algorithms for resource utilization and makespan. The scientist 
[11] introduced the MPSO (Modified Particle Swarm 
Optimization) algorithm for the reduction of cost as compared 
to the existing Particle Swarm Optimization algorithm. The 
simulation results showed that the proposed technique worked 
better. In paper [12] the authors modified Particle Swarm 
Optimization by modifying the parameters like MIPS and 
Bandwidth for effective load balancing. The simulation results 
showed that the proposed model resulted in a reduction of 
execution time. The researchers of the paper [13] compared a 

task scheduling strategy based on Ant Colony Optimization 
with FCFS and RR (Round-Robin). The simulation results 
proved that the ACO outperforms traditional FCFS and 
Round-Robin algorithms. The authors [14] developed a hybrid 
optimization technique using Flower Pollination and Grey 
Wolf Optimization. The PEFT algorithm was used for the 
initialization of the proposed method for workflows. The 
simulation resulted that the proposed method is effective as 
compared to Flower Pollination with Genetic Algorithm in 
terms of cost and reliability. In [16] the researchers designed 
an Improved Social Learning Optimization Algorithm by 
introducing the Small Vector Position method for task 
scheduling problems. After simulation, it was found that the 
proposed approach worked well as compared to GA and PSO-
based techniques. In the paper [17], the researchers proposed 
an Adaptive Cost-based Task Scheduling technique to 
scheduling the tasks between virtual machines at minimum 
cost. The simulation results concluded that the proposed 
technique is performing well in terms of communication cost, 
execution time, CPU utilization and execution cost rather than 
cost-efficient task scheduling. In [18] research paper, the 
scientists implemented a Dynamic Adaptive Particle Swarm 
Optimization algorithm to enhance the efficiency of Particle 
Swarm Optimization for better makespan, resource utilization. 
The authors also proposed an algorithm named MDAPSO. 
DAPSO and MDPSO worked better than the original Particle 
Swarm Optimization. The authors of [19] research paper 
proposed an Improved Particle Swarm Optimization based 
technique to solve workflow scheduling problems in cloud 
systems. The proposed method worked better as compared to 
existing state-of-art methods. In [20], the scientists proposed a 
cloud scheduling model named Task Scheduling System. The 
proposed Genetic Algorithm-Chaos Ant Colony Optimization 
worked better than ACO and GA algorithms in respect to cost 
and convergence speed. 

From the above study, it is found that the ACO, PSO, and 
CSO algorithms are optimizing the scheduling of independent 
as well as workflows tasks. The ACO algorithm is performing 
well for local searching; the PSO and CSO algorithms are 
good for global searching and get stuck in local optima easily. 
Various researchers integrated a few techniques and formulae 
in these algorithms to improve the performance of the cloud. 
But, these techniques are old. The CSO algorithm is a good 
performer among the ACO and PSO; the H-CSO is better than 
the CSO. 

So, a new method is required to integrate into the H-CSO 
so that its limitation of getting trapped in local optima can be 
overcome. Hence, the local searching part of the Crow Search 
Algorithm has been integrated into the H-CSO algorithm. The 
details are indicated in the proposed methodology section. 

III. PROPOSED METHODOLOGY 

From the related work, it is learned that a single algorithm 
could not be able to give better results for workflow task 
scheduling. 
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       Proposed Algorithm 

       Input (Tasks (T1, T2, T3 … Tn), Virtual Machines (VM1, VM2, VM3 … VMm) 

       Output (Optimal Makespan and Cost of n Tasks on m VMs) 

        

       BEGIN PROCEDURE 

1.  Initialize fl (flight length), rK, velocity factor VK, c, 𝛾𝑚𝑎𝑥, Coefficient c1, MR flag, and no. of iterations 

 /* Calculate Rank of Workflows Tasks in DAG using HEFT Algorithm */ 

2.  Feed workflows in HEFT 

3.  For Each Task in DAG Do 

4.      Calculate average execution time of all VMs 
         5.           If Task ti is the last Task Then 

         6.               Rank value of ti = its average execution time 

         7.           Else 

         8.               ranku (ti) = WAvgi + Max tj ͼ succ (ti) (CAvgi j  + ranku (tj)) 

                           Where WAvgi is average execution cost 

                           Succ (ti) is set of immediate successor of task ti  
                           CAvgi,j  is average communication cost 

         9.           End If      

        10.      End For 

        11.      Assign Tasks to VMs according to HEFT Rank 

        12.      If Solution not Optimized Then 

        13.            Generate a set of Crows by the Population generated by HEFT of Size N 
        14.            While No. of Iterations not Exceeded Do 

        15.               For K=1 to N 

        16.                  Update the positions by the following equation :      //  Do local search 

        17.                      𝑋𝐾,𝐷 =  𝑋𝐾,𝐷 + 𝑟𝐾 ∗ 𝑓𝑙𝐾,𝐷 ∗ (𝑀𝐿 ,𝐷 − 𝑋𝐾,𝐷) 

                                   Where, 𝑋𝐾,𝐷 is current position of CrowK, 𝑟𝐾 is uniformly distributed random number [0, 1] 

                                   𝑓𝑙𝐾,𝐷 is flight length (less than 1 i.e. 0.5) of the CrowK at current iteration 

                                   𝑀𝐿 ,𝐷 is present best location of CrowK in Dimension D 

        18.                 Feed the population generated by Local CSA in H-CSO     // Do local and global search as given below 

        19.                 Assign the velocity VK to each Cat 
        20.                 According to Mixing Ratio (MR) flag Distribute Cats to Seeking and Tracing Modes 

        21.                 If current CatK is in Seeking Mode Then 

        22.                     Generate S (SMP) Copies of CatK and Spread them in D Dimensions where each Cat has a velocity (VK, D) 
        23.                     Evaluate the Fitness value of all Copies and Discover Best Cats (XBEST, D) 

        24.                     Replace Original CatK with the Copy of Best Cats (XBEST, D) 

        25.                 Else If current CatK is in Tracing Mode Then 
        26.                     Compute and Update CatK velocity by following equations: 

        27.                          𝛾 =  𝛾𝑚𝑎𝑥 ∗ exp (−𝑐 ∗ (
𝑖𝑡𝑟

𝑖𝑡𝑟𝑚𝑎𝑥 
)

𝑐

) 

                                       Where, 𝛾 is a weight factor calculated by Self-Motivated Inertia Weight method 

                                       𝛾𝑚𝑎𝑥 and 𝑐 are constant factors greater than 1, both are set as 2. 

        28.                          𝑉𝐾,𝐷 =   γ ∗ 𝑉𝐾,𝐷 + (𝑐1 ∗ 𝑟1 ∗ ( 𝑋𝐵𝐸𝑆𝑇,𝐷 −   𝑋𝐾,𝐷)) 

                     Where, D = 1, 2, 3, …, M. 

                     c1 is acceleration coefficient, r1 is random number in the range of [0, 1] 

        29.                     Update the position of every dimension of CatK by using following equation: 

        30.                          𝑋𝐾,𝐷 =  𝑋𝐾,𝐷 +  𝑉𝐾,𝐷 

        31.                     Evaluate Fitness of all Cats and find out Best Cats (𝑋𝐵𝐸𝑆𝑇,𝐷) with Best Fitness 

        32.                 End If 

        33.                 Update Best Cats (XBEST, D) in Memory 

        34.               End For 

        35.            End While 

        36.      End If 

        37.     return (Optimal Solution) 

       END PROCEDURE 

Fig. 2. Pseudo-Code of Proposed HC-CSO Algorithm. 

Many scientists advised improving the existing algorithms. 
The H-CSO algorithm is a combination of the HEFT, Cat 
Swarm Optimization algorithm, and Self-Motivated Inertia 
Weight useful in overcoming the velocity outrange problem of 
the standard CSO. As said earlier, this H-CSO algorithm gets 
trapped in local minima in the case of a large search space and 
complex workflows’ tasks environment. A few limitations of 
the H-CSO algorithm are described below in short: 

1) The H-CSO algorithm is having only a good global 

searching capacity. 

2) The H-CSO algorithm gets trapped in local minima due 

to a large number of cats is always residing in seeking Mode 

as compared to tracing mode. 

3) Due to a lack of balance between seeking and tracing 

modes, optimal results could not be got using the H-CSO 

algorithm. 
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In the proposed algorithm named HC-CSO, a local search 
part of a well-known Crow Search Algorithm is integrated 
into the H-CSO for avoiding it getting trapped in the local 
optima. The working of the HC-CSO algorithm is described 
as: 

First of all, the initialization of various parameters takes 
place then pre-processing of workflows tasks is executed with 
the HEFT method as shown in the pseudo-code of the 
proposed algorithm. After the pre-processing of workflows, 
the tasks are assigned to available VMs. If this solution is 
getting optimized at the very first stage then the algorithm is 
stopped and returns the optimized schedule otherwise the 
initial solution generated by the HEFT algorithm is fed to the 
CSA algorithm. Here, a number of N Crows are generated 
using the population obtained by the local Crow Search 
Algorithm. Then, the population got from the local CSA is fed 
to the H-CSO algorithm. Now, N numbers of Cats are 
generated and velocity value VK is assigned to each cat for 
further processing. In the next phase, the cats are randomly 
distributed into the seeking and tracing mode as per the 
Mixing Ratio (MR) rate and flags are set to each cat. If the 
current CatK is found in the seeking mode as per flag value, 
this mode gets executed otherwise the tracing mode gets 
executed. The position and velocities of the cats in the tracing 
mode are updated using the equations given in the pseudo-
code in Fig. 2 and the best cats get stored in the memory in the 
form of solution. This process is continued until the 
termination condition is not matched and finally an optimal 
solution is returned in the form of better makespan and cost. 
The proposed algorithm has both the best local and global 
searching capacity, so the results could be reached at an 
optimum level. The proposed algorithm is also useful to avoid 
the premature convergence of the H-CSO method. The 
pseudo-code of the proposed algorithm named HC-CSO has 
been described step by step in Fig. 2. 

IV. SIMULATION SETUP 

The simulation environment has been created in the 
CloudSim tool for simulating the different workflows used in 
this paper. Various experiments were carried out over a 
computing machine having the configuration as Processor – 
Intel ® Core ™ i3-5005U at a speed of 2.0 GHz, RAM – 4.0 
GB, HDD – 1 TB, and OS – Windows 10. 

A. Parameters 

For simulation, a PowerDatacenter has been designed 
having the configuration as RAM – 25 GB, MIPS per VM – 
1000 MIPS, Storage – 1 TB, Bandwidth – 50000 bps. Rest 
configurations of the heterogeneous cloud environment are 
depicted in Table I. The scheduling policy was set as Time 
Shared. The parameters of the CSO, the H-CSO and, the 
proposed HC-CSO are also summarized in Table I. 

TABLE I.  SIMULATION PARAMETERS 

PowerDatacenter 

Parameters Values 

Number of Hosts 1 

System Architecture x86 

VMM Xen 

OS Linux 

Number of Cloudlets 

Cloudlets Length Type 

1000 in Each Workflow 

Random 

Numbers of VMs 10, 20 and 30 

CPU (PEs Number) 1 

RAM per VM 512-1024 MB 

Bandwidth 1000-1500 bps 

Processing Elements per VM 500 – 1000 MIPS 

Image Size 10000 MB 

Policy Type Time Shared 

Standard CSO and H-CSO 

No. of Cats 100 

Iterations 300 

Weights (C1) 1.5 

r1and rk (Random Variables) [0, 1] 

Mixed Ratio Percentage Random Range [0, 1] i.e. 0.2-0.3 

HC-CSO (Proposed Algorithm) 

No. of Cats 100 

Iterations 300 

Weights (C1) 1.5 

r1(Random Variable) [0, 1] 

Mixed Ratio Percentage Random Range [0, 1] 

fl (Flight Length) 0.5 

B. Cost Plan 

The cost plan (in Indian Rupees) of workflow scheduling 
is depicted in Table II. 

TABLE II.  COST PLAN 

Resource Processor RAM Storage Bandwidth 

Size 500-1000 MIPS 512 MB Unlimited 1000 bps 

Cost 
Rs. 3.0 per 

processor 

Rs. 0.05 per 

MB 
Rs. 0.1 

Rs. 0.1 per 

MB 

C. Cloudlets 

Cloudlets are called tasks to be submitted for execution on 
virtual machines. In this paper, the scientific workflows 
named CyberShake, Montage, Inspiral, and Sipht have been 
used to test the proposed algorithm along with others. Each 
workflow is having 1000 tasks. 
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D. Performance Metrics 

There are several performance metrics like Makespan, 
Processing Cost, Waiting Time, Response Time, Energy 
Consumptions, and Resources Utilization, etc. to test the 
performance of the algorithms. In this paper, makespan and 
cost are used to measure the performance of the proposed 
algorithm, and these parameters are given in the coming 
topics. 

1) Makespan: Makespan [23] is referred to the maximum 

time taken for finishing the last task in a group. It is the most 

widely used metric to measure the performance of a 

scheduling algorithm. A lesser makespan decides that the 

algorithm is efficient enough. The makespan is computed by 

the given equation 5. 

Makespan = max (CTi) ti∈tasks              (5) 

Where, CTi is the completion time of taski 

2) Processing cost: Processing Cost is along with 

makespan is another important performance metric because 

cloud service providers want to give efficient services at the 

minimum costs in this competitive environment. The 

processing cost can be measured by equation 6. 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =
𝑀𝐹+𝐶𝐹

2
                    (6) 

Where, MF is Movement Factor 

CF is Cost Factor 

𝑀𝐹 =
1

𝑁𝑜.  𝑜𝑓 𝐻𝑜𝑠𝑡𝑠/𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝑠 
[∑ (

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑈𝑠𝑒𝑑 𝑉𝑀
)𝑉𝑀𝑥

𝑥=1 ]

               (7) 

𝐶𝐹 = ∑ (
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 ∗ 𝑀𝑒𝑚𝑜𝑟𝑦 𝑜𝑓 𝑇𝑎𝑠𝑘𝑠

𝑉𝑀 ∗ 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟
)𝑉𝑀𝑥

𝑥=1            (8) 

3) Fitness function: Equation 9 is depicting the fitness 

function which is used by meta-heuristic techniques to check 

that the solution is optimized or not at various levels in the 

form of makespan along with computation cost. 

𝐹𝑋 =  
1

𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟 ∗ 𝑉𝑀𝑗
 [∑ ∑

1

𝑉𝑀
 
𝐶𝑃𝑈 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝐶𝑃𝑈𝑖𝑗

𝑉𝑀𝑗
𝑗=1

𝐷𝐶𝑖
𝑖=1 +

𝑀𝑒𝑚𝑜𝑟𝑦 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝑀𝑒𝑚𝑜𝑟𝑦𝑖𝑗
+

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑖𝑗
+

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖𝑗
]        (9) 

Equations 7 and 8 help in the calculation of the total 
processing cost represented in equation 6. 

V. SIMULATION RESULTS AND DISCUSSION 

Four scenarios and a set of 10, 20, and 30 virtual machines 
have been set in CloudSim for simulation. To evaluate the 
performance of the proposed algorithm HC-CSO, the 
simulation results were compared with standard CSO and H-
CSO. The makespan results concerning all scenarios are 
displayed in Table III. The results shown in Table III are the 
average of the results retrieved by the proposed algorithm HC-
CSO along with other algorithms which were executed several 
times. 

Simulation results of the proposed algorithm HC-CSO, H-
CSO, and standard CSO for the scientific dataset 

Cybeshake_1000 are displayed in Fig. 3. Southern California 
Centre collected data and made the CybeShake workflow to 
analyze seismic hazards. For execution, this workflow 
requires almost near to lower CPU power and memory. It can 
be seen that at the x-axis 10, 20, and 30 VMs are being 
displayed and makespan at the y-axis. The results express that 
the HC-CSO outperforms other algorithms better local search 
after adding the Crow Search Algorithm and a better balance 
between seeking and tracing mode. 

It is seen in Fig. 4 that the experiment carried out with the 
Montage_1000 dataset needs less memory and CPU power as 
compared to other workflows. The Montage dataset is having 
astronomical images collected and stored by NASA. The 
graph tells that the group of 10, 20, and 30, VMs as well as 
makespan, are shown at the x-axis and y-axis correspondingly. 
The results depiction tells the proposed algorithm HC-CSO 
performed efficiently as compare to other algorithms due to 
better convergence in less number of iterations. 

TABLE III.  MAKESPAN EVALUATION (IN SEC) 

Scenarios VMs CSO H-CSO HC-CSO 

Scenario - 1 

CyberShake_1000 

10 4603.23 4520.45 4413.65 

20 3693.52 3500.27 3425.29 

30 2401.29 2350.15 2220.15 

Scenario – 2 

Montage_1000 

10 2310.70 2270.09 2210.43 

20 2021.13 1982.05 1813.58 

30 1308.28 1219.01 1187.67 

Scenario – 3 

Inspiral_1000 

10 52300.41 50940.98 49859.35 

20 40350.03 39241.18 37174.27 

30 23975.57 22548.23 20140.03 

Scenario – 4 

Sipht_1000 

10 32820.02 31107.81 30740.41 

20 25203.13 23293.24 22980.37 

30 19113.29 18279.02 18033.13 

 

Fig. 3. Makespan Comparisons for CyberShake_1000 Tasks. 

0

1000

2000

3000

4000

5000

10 20 30

M
a

k
e
sp

a
n

Virtual Machines

CSO

H-CSO

HC-CSO



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 6, 2021 

490 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 4. Makespan Comparisons for Montage_1000 Tasks. 

Fig. 5 is demonstrated the experimental results of the 
proposed algorithm named HC-CSO along with other 
algorithms like CSO and H-CSO for the dataset Inspiral_1000 
which is related to the physics field and used to analyze the 
gravitational waves. This dataset needs high powered CPU 
and a large amount of memory for execution. The results 
concluding here that the proposed algorithm performed better 
than other algorithms because the HC-CSO algorithm has both 
capabilities of global and local searching as well as the 
algorithm also manage the velocities outrange. This capability 
of the proposed algorithm manages under-loaded and overload 
machines effectively by task migration. In this graph, the 
numbers of VMs are being displayed at the x-axis and 
makespan at the y-axis. 

 

Fig. 5. Makespan Comparisons Inspiral_1000 Tasks. 

Fig. 6 is displaying the results of the Shipt_1000 workflow 
processed with the proposed HC-CSO algorithm and others. 

 

Fig. 6. Makespan Comparisons for Sipht_1000 Tasks. 

For displaying the 10, 20, and 30 sets of VMs and 
makespan, the x-axis and y-axis are being used respectively. 
The Sipht dataset is used to represent sRNA-encoding genes 

of several bacteria and it has been released by the HIB 
(Harvard International Bioinformatics) Centre. This dataset 
requires huge memory and a high computational CPU. For the 
processing of this dataset, the proposed algorithm HC-CSO 
again worked well as compared to standard CSO and the H-
CSO because the proposed algorithm chooses the most 
appropriate VM instead of high or low power due to better 
properties of local as well as global searching and the HC-
CSO also avoids unnecessary diversity. The proposed 
algorithm could not trap in local minima due to Crow Search 
Algorithm local searching property. 

In the last, it is concluded that the HC-CSO algorithm is 
giving better results in the form of a better makespan for all 
scenarios in comparison to standard CSO, and H-CSO. For all 
the scenarios, HC-CSO works better than CSO and, H-CSO 
because of the better pre-processing of tasks by HEFT, a good 
balance between seeking and tracing modes due to the Crow 
Search algorithm. The HC-CSO algorithm along with the 
Crow Search Algorithm searches the VMs at a local and 
global level very carefully to optimize the results in the 
minimum number of iterations. The SMIW method restricts 
the Cats to go outside the search space. 

Table IV is summarizing the evaluation of the processing 
cost for the execution of all scenarios designed for simulation. 

TABLE IV.  COST CONSUMPTIONS (IN INDIAN RUPEES) 

Scenarios VMs CSO H-CSO HC-CSO 

Scenario - 1 

CyberShake_1000 

10 484.53 459.43 447.89 

20 601.43 590.29 567.78 

30 703.47 668.13 640.25 

Scenario – 2 

Montage_1000 

10 181.83 167.53 159.13 

20 191.19 184.19 173.19 

30 198.13 190.89 169.17 

Scenario – 3 

Inspiral_1000 

10 3663.48 3629.55 3413.42 

20 3759.37 3685.87 3543.65 

30 5430.17 5217.58 5130.71 

Scenario – 4 

Sipht_1000 

10 2811.93 2759.19 2645.13 

20 2973.87 2918.13 2703.29 

30 3353.29 3109.24 2999.43 

 

Fig. 7. Cost Comparisons for CyberShake_1000 Tasks. 
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For the first scenario having CybeShake_1000 dataset, a 
group of 10, 20, and 30 VMs along with processing cost are 
demonstrated at the x-axis and y-axis respectively in Fig. 7. 
The graph is expressing that the proposed HC-CSO algorithm 
is consuming minimal costs as compared to other algorithms. 
This is because the proposed algorithm has faster convergence 
and the positions of the workflows tasks on various VMs are 
updated smartly. 

 

Fig. 8. Cost Comparison for Montage_1000 Tasks. 

Fig. 8 is summarizing the processing cost consumption for 
the proposed algorithm HC-CSO, H-CSO, and standard CSO 
algorithms while working on 10, 20, and 30 VMs for the 
Montage_1000 dataset. The x-axis and y-axis of the graph are 
demonstrating the VMs and computing costs respectively. The 
proposed algorithm works better than H-CSO and CSO 
because the workflow tasks are migrated effectively for under-
loaded virtual machines irrespective of their computing 
capacity. 

 

Fig. 9. Cost Comparison for Inspiral_1000 Tasks. 

The processing cost results are being depicted in Fig. 9 for 
the Ispiral_1000 dataset. It can be seen VMs and Processing at 
the x-axis and y-axis respectively in the graph. The HC-CSO 
algorithm consumes less cost while executing the Ispiral_1000 
dataset with all sets of VMs in comparison to other 
algorithms, this is because; the proposed algorithm makes an 
effective balance between seeking and tracing modes due to 
CSA integration. The VMs were picked up for execution of 
tasks irrespective of their MIPS, RAM, and bandwidth. 

 

Fig. 10. Cost Comparisons for Sipht_1000 Tasks. 

Fig. 10 is describing the results of processing cost obtained 
by the proposed HC-CSO, CSO, and H-CSO algorithms with 
various groups of virtual machines for the Sipht_1000 dataset. 
The VMs and processing cost can be seen at the x-axis and y-
axis correspondingly in Fig. 10. Again, for the Sipht_1000 
workflow; the proposed algorithm outperforms CSO and H-
CSO in terms of computing cost. It is because the global and 
local searching properties of the proposed algorithm are 
balanced and the overloaded VMs loads are migrated to other 
VMs very smartly in the minimum time. 

With these results, it can be specified that the proposed 
HC-CSO algorithm is better than other algorithms like CSO 
and H-CSO in respect of makespan and processing cost. The 
reason behind this is the good combination of global and local 
due to CSA. The Self-Motivated Inertia Weight factor 
integration overcomes the velocity outrange problem of Cats 
at tracing mode. The proposed algorithm chooses the virtual 
machines which are idle, under-loaded, or overloaded for 
workflow tasks migration among different VMs irrespective 
of their computing power, RAM, and Bandwidth. 

VI. CONCLUSION 

In the current technological era, cloud computing is one of 
the important emerging technologies used to store a large 
volume of data and other computing services in various 
science and technological fields. For computing facilities, 
various heuristic and meta-heuristic techniques have been 
developed. In this paper, an intelligent workflow scheduling 
algorithm named HC-CSO has been proposed to solve the 
workflow task scheduling problem. The proposed algorithm is 
a combination of H-CSO and the Crow Search algorithm. The 
H-CSO algorithm is an integration of HEFT and SMIW 
methods. The HEFT algorithm pre-processed the workflows 
tasks and initialized the proposed HC-CSO algorithm with 
these tasks. This process saves time and optimizes the results 
in a fewer number of iterations. The proposed HC-CSO 
algorithm didn’t get trapped in local optima due to the good 
local searching capacity of the CSA. Velocity outranges cause 
to push the Cats outside the search space and affects the 
performance of the algorithm. The Self-Motivated Inertia 
Method overcame this problem. 

The proposed HC-CSO algorithm outperformed CSO and 
H-CSO in terms of makespan and computing cost with all four 
scenarios having four scientific datasets CyberShake, 
Montage, Inspiral, Sipht, on a group of 10, 20, and 30 VMs. 
This is because the proposed algorithm chose the best VM 
among a group of VMs using its perfect global and local 
searching capacity for workflows task scheduling. The 
proposed approach is a generalized algorithm and will perform 
well with all types of scientific datasets despite a particular 
one. 

In the future, the proposed algorithm can be tested at a 
wide scale to reduce makespan, cost and, other parameters in 
the cloud system and many other fields. The efficiency of the 
proposed algorithm can also be tested for independent tasks. A 
new technique can also be developed to enhance cloud 
performance. 
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