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Abstract—Hyperspectral and Multispectral (HS-MS) image 

fusion is a most trending technology that enhance the quality of 

hyperspectral image. By this technology, retrieve the precise 

information from both HS and MS images combined together 

increase spatial and spectral quality of the image. In the past 

decades, many image fusion techniques have been introduced in 

literature. Most of them using Coupled Nonnegative matrix 

factorization (CNMF) technique which is based on Linear Mixing 

Model (LMM) which neglect the nonlinearity factors in the 

unmixing and fusion technique of the hyperspectral images. To 

overcome this limitation, we are going to propose an unmixing 

based fusion algorithm namely Multiplicative Iterative Nonlinear 

Constrained Coupled Nonnegative Matrix Factorization (MINC-

CNMF) that enhance the spatial quality of the image by 

considering the nonlinearity factor associated with the unmixing 

process of in the image. This method not only consider the spatial 

quality but also enhance the spectral data by imposing 

constraints known as minimum volume (MV) which helps to 

estimate accurate endmembers. We also measure the strength 

and superiority of our method against baseline methods by using 

four public dataset and found that our method shows 

outstanding performance than all the baseline methods. 
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I. INTRODUCTION 

Hyper-spectral (HS) images are enriched with high 
spectral resolution than conventional images. Therefore, the 
energy collected by hyper-spectral sensors is partitioned into 
several narrow wavelengths. Due to the partitioning of several 
narrow wavelengths band, the energy received by each band is 
limited. This makes the HS image to be easily influenced by 
many kinds of noise. This high signal-to-noise ratio reduces 
the spatial resolution of hyper-spectral image. So, it is 
mandatory to increase the spatial quality of the HS image. The 
fusion of high quality spatial data with the hyper-spectral 
image that possess high spectral resolution is one of the good 
approach for HS image enhancement [1]. 

Many existing traditional or multispectral sensors can 
capture images that have higher spatial resolution with lower 
spectral resolution compared with hyper-spectral sensors. 

Therefore, data fusion with hyper-spectral (HS) and 
multispectral (MS) image is one good approach to increase the 
spatial quality of hyper-spectral image. This HS-MS fusion 
approach fuses the spectral data of low-spatial resolution 
hyper-spectral image (LR-HSI) with the spatial data of high-
spatial resolution multispectral image (HR-MSI) of the same 
scene. Thus, generated a high-spatio-spectral resolution hyper-
spectral image (HR-HSI) [2]. Some important HS-MS fusion 
problem is component substitution (CS), multiresolution 
analysis (MRA), Bayesian probability, Spectral Unmixing 
(SU). But recently, the Spectral Unmixing (SU) based HS-MS 
fusion become a trending attention in this area due to its 
straightforward description in the fusion process. In spectral 
unmixing a simple and effective method namely linear mixing 
models (LMM) are widely used in most of the literature [3]. 

In HS - MS data fusion approach, both LR-HSI and HR–
MSI data are unmixed into spectral (endmember) and spatial 
(abundances) data [4]. Next, the high-spatial data of HR-MSI 
are fused with high-spectral data of LR- HSI using some 
constrained optimization techniques. Coupled Non-negative 
Matrix Factorization (CNMF) algorithm is a promising HS-
MS data fusion approach based on unsupervised unmixing. 
Therefore, LMM based CNMF method yields the high-spatial-
resolution HSI without any prior knowledge [5]. However, 
two main factors spectral variability and nonlinearity are still 
obstructing the performance of LMM method. The variation in 
spectral signature due to illumination, topography, 
atmospheric effects of the material are considered as spectral 
variability [6]. This variation of spectral signatures may cause 
significant errors during the spectral unmixing process. So, it 
is necessary to pay a considerable attention in spectral 
variability during the hyper-spectral unmixing process [7]. 

In this article, a multiplicative iterative nonlinear 
constrained coupled nonnegative matrix factorization (MINC-
CNMF) algorithm is proposed. This MINC-CNMF algorithm 
aims to enhance the spatial as well as spectral quality of HSI 
along with considering the nonlinearity of the image. For this 
achievement, a multiplicative iterative algorithm is used 
alternately to update the endmember, abundance and outlier 
term that accounts for nonlinearity. This fusion algorithm 
enhances the spatial quality of hyperspectral image, but to 
improve the spectral data we add minimum volume constraints 
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to the simplex. This minimum volume (MV) of simplex 
controls the quality of spectral data. The simplex formed by 
connecting the endmembers selected for this process. The 
iterations continue until the algorithm reaches the convergence 
condition. Finally, the fusion image is created as a product of 
endmember and abundance with the outlier term. Thus, obtain 
high spatial and spectral quality fused image [8]. 

The MINC-CNMF algorithm is experimented on various 
synthetic data sets to evaluate the reconstruction quality in 
both spatial and spectral wise. This proposed method also 
compares with many other baseline algorithms available in 
literature to determine the performance of our fusion result. 
The main contribution the MINC-CNMF algorithm is that, 1) 
improve the accuracy for the extraction of spatial information 
from the MSI image, 2) improve the visual effect of the HSI 
image without any other distortion in the image, 3) propose an 
efficient image fusion algorithm that consider the nonlinearity 
effects in the image. 

The succeeding sections of this paper are arranged as 
following order. In Section 2, a detailed study is done about 
the various spectral unmixing based fusion work that is related 
to our paper and identified the proper research gap in the 
literature. Then we proposed and formulated a model for 
MINC-CNMF algorithm in Section 3 followed by 
implementation of the same algorithm in Section 4. The 
details of experimental results and discussion are given in the 
Section 5, which also include the dataset and quality measures 
used for the performance evaluation. Finally, in the Section 6 
conclusion and future enhancement of the work is explained. 

II. RELATED WORK 

Yokoya et.al in 2012 [16] proposed a coupled NMF 
(CNMF) algorithm which fuse HS and MS data based on 
unsupervised unmixing. Compared to other existing unmixing 
based fusion CNMF is straightforward and easy for 
mathematical formulation and its implementation. This 
method also minimizes the residual errors during unmixing 
process. Finally, this method results better local optimal 
solution and produce high-resolution hyperspectral image. 
Simoes et.al in 2015 [17] proposed a hyperspectral super 
resolution method, termed as HySure. This modal formulates 
data fusion as a convex optimization problem by adding an 
edge-preserving regularizer. This method uses vector total 
variation (VTV) reqularizer to promote piecewise-smoothness 
to the image. 

Lin et.al in 2018 [18], proposed an unmixing based fusion 
problem by incorporating two regularization terms such as 
sparsity and sum-of-squared-distances (SSD) regularizer. This 
method uses   -norm regularization to promote sparsity with 
well-known SSD regularizer to yield a fused image with high 
quality data. Therefore, this method upgrades the existing 
CNMF fusion performance by adding these regularization 
terms with two convex subproblems. Therefore, this algorithm 
with biconvex optimization is so called a convex optimization-
based CNMF (CO-CNMF) algorithm. But as the noise level 
increases the CO-CNMF algorithm would degrade its 
performance rapidly. Therefore, it is necessary to add image 
denoising or smoothing constraints with the fusion method. 

 Yang et.al in 2019 [19], proposed an algorithm 
incorporating total variation and signature-based (TVSR) 
regularizations, into the CNMF method. Therefore, this 
algorithm is referred to as TVSR-CNMF. The total variation 
(TV) regularizer ensures the image smoothness to the 
abundance information. The signature-based regularizer 
provide high-fidelity signature reconstruction. Therefore, this 
method enhances both spatial and spectral quality of the fused 
data irrespective of high noise level in environment. 

Borsoi et.al in 2019 [20], presented an unmixing based 
fusion algorithm that deals the spectral variability between 
images captured at different time instants. For this 
implementation, Generalized LMM (GLMM) that considers 
the variability of spectral signature by using individual scaling 
factor of each spectral band. This method divides the high-
resolution images into subspace components and then 
represents the variability of the spectral signatures in each 
subspace separately. Then solve and combine each 
subproblem to obtain high fused data. Therefore, this 
algorithm is called HS-MS image Fusion with spectral 
Variability (FuVar). Due to the consideration of more 
complex spectral variability this method creates some 
difficulty to obtain an optimization solution. 

Yang et. al.in 2019 [21], proposed an unmixing based 
fusion method by imposing sparsity and proximal minimum-
volume regularizer. The minimum-volume regularizer control 
and minimize the distance between center of mass and the 
endmember at each iteration. Thus, it redefines the fusion 
method at each iteration until reaches the simplex volume to 
minimum. The algorithm is called SPR-CNMF and it reduced 
the computational complexity. This method also controls the 
loss of cubic structural information and thus improves the 
fusion performance by yielding high-fidelity reconstructed 
images and also shows good performance at high noise-level. 

HS-MS image fusion is becoming an ever-increasing 
demand for the resolution enhancement of HS imagery. In this 
paper we analysed the literature based on several spectral 
unmixing based fusion methods. From the comprehensive and 
recent overviews of fusion models and associated spectral 
unmixing algorithms it is identified that unmixing-based 
fusion methods provide good and stable performance and 
estimated high-fidelity in the reconstructed image. The CNMF 
also shows a good classification capability in HS-MS fusion. 
Due to this reasons, CNMF is one of the very promising 
fusion methods based on spectral unmixing. The various 
algorithm based on CNMF models was introduced by 
imposing some constraints to the standard CNMF, to get better 
quality fused image. Even though all these methods had 
established well desired outcome, but most of the CNMF 
method are based on linear mixing model that means it does 
not consider the non-linarites of the image. 

The LMM based method does not consider the nonlinear 
data in the image such as specific or localized areas of the 
image, the areas at the edges or boundary of heterogeneous 
regions. This property implies that, LMM assume only limited 
number of pixels. Due to this limited number of pixels 
assumptions, there occurs a lack of obtaining information 
during the unmixing process. Therefore algorithms based on 
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LMM are found difficulty for the accurate estimation of 
endmembers and their abundances fractions. So, in our work, 
we are planning to modify the CNMF algorithm by adding 
some regularizer for improving the image quality and also an 
additive term for considering the non-linearity of the image. 
Thus, improvement the performance and robustness of 
unmixing based image fusion algorithm. 

III. PROBLEM FORMULATION 

Let             be an observed LR-HSI with    bands 

and    pixels, and             be an observed HR-MSI 
with    bands and    pixels, with   <    and   <  . Then 
data fusion of    band from LR-HSI,    and    pixels from 
HR-MSI,    to yield the desired high spectral and spatial 

resolution hyper-spectral image,             [9]. 

Z = EA               (1) 

The observed           can be represented as spectrally 
and spatially degraded version of fused image Z. This is 
represented as, 

                      (2) 

                      (3) 

Where,            is a point spread function (PSF) 
which is used to blur the spatial quality of referenced hyper-

spectral image to obtain LR-HSI,   .            is a 
spectral response function (SRF) which is used to spectral 
downsampling of referenced hyper-spectral image to obtain 
HR-MSI,   . The matrix           denote as residual noise 
are generally assumed as zero-mean Gaussian noises, but here 
this residual term           are consider as an outlier 
nonnegative matrix to accounts the nonlinearity effects [10]. 

The CNMF algorithm is a coupling of two NMF 
algorithm, which factorize a matrix into a product of two 
nonnegative matrices called endmembers and abundances. 
The CNMF algorithm starts from NMF by unmixing both 
hyper-spectral image Yh and multispectral image Ym [11]. 
That means CNMF simultaneously unmix both Yh and Ym by 
using NMF to estimate E and A, with the constraints. Then 
fuse the required data by using CNMF to obtain high quality 
image [12]. 

By the Eq. (1), (2) and (3) the cost functions of NMF 
unmixing for Yh and Ym, are defined as, 

‖      ‖ 
  and ‖       ‖ 

            (4) 

where     
  denotes the Frobenius norm. The squared 

Frobenius norm are commonly used to minimize the cost 
function in hyper-spectral unmixing [10]. 

Then the CNMF method fuse the data from Yh and Ym to 
reconstruct the high spatial-spectral resolution hyperspectral 
image Z = EA [13]. Therefore, the objective function CNMF 
can be defined as, 

CNMF(E, A) = ‖      ‖ 
  + ‖       ‖ 

   

                                 (5) 

The CNMF method has an ill-posed problem by nature, 
which means it may have more than one solution to the 
objective function. This ill-possedness problem of CNMF can 
be solved by adding some constraints or regularization term 
into spectral signature and/or fractional abundance. 

A. Constrained CNMF Method 

In this model we extend the standard LMM by considering 
the residual term R which accounts all possible nonlinear 
effects in the image. This additional term R gives the 
measurement of errors or novelty that deviates from the 
overall distribution of original sample data [14]. Therefore, the 
NMF unmixing for Yh and Ym, are defined as, 

‖             ‖ 
  and ‖              ‖ 

           (6) 

Then the objective function CNMF for Eq. (6) can be 
redefined as, 

CNMF (E, A, R) = ‖             ‖ 
  + 

‖              ‖ 
              (7) 

The symbol approximation (  ) in Eqs. (2) and (1) 
indicates that it aims to obtain the minimum dissimilarity 
between both referenced and estimated image. The measure of 
dissimilarity between referenced image Y and estimated 
image EA+R can be represented as, D (Y|EA + R) [14]. Then 
this measure of dissimilarity on both hyperspectral    and 
multispectral image    in CNMF (E, A, R) method can be 
represented as: 

                   =              +  

                                              (8) 

This additional term R itself is not enough to amounts the 
ill-posed problem of CNMF, so we further incorporate some 
priors to E and A based on its physical considerations. To 
reduce volume of the simplex a signature-based minimum 
volume (MV) constraint is imposed into our problem. To 
reconstructs the fused image, Z = EA + R, the objective 
function of our constrained CNMF method will be as following: 

                    +          

                0,        0            (9) 
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where CNMF (E, A, R) is unconstrained CNMF method,   
> 0 are the parameters to control the MV constraints thus 
strengthen the spectral quality and this MV constraints are 
calculated as, 

        ∑ ∑ ‖     ‖ 

  
     

 
             (10) 

      , is a well-known regularizer which minimize the 
volume of the simplex in hyper-spectral imagery, this 
minimum volume simplex is capable of estimating high-
fidelity spectral signature [15]. 

IV. PROBLEM OPTIMIZATIONS 

This proposed MINC-CNMF algorithm alternatively 
solved through the following convex subproblems until 
convergence: 

                                        (11) 

                                        (12) 

                                                (13) 

where k indicates the number of iterations. This algorithm 
initializes                  with FCLS and outlier    as a 
random matrix. Then updated each term (E, A, R) by using 
multiplicative updated rule [47]. Therefore, this algorithm 
starts with a given initial value (        ), then proceed in 
the order as (        )                              
                 where k is the current iteration stage. These 
steps repeated until it meets the convergence condition. 

The method is implemented by extracting endmember E 
from LR-HIS, abundance matrix A from HR-MSI and the 
outlier    and    is estimated from observed HSI and MSI. 
After this, the outlier term R for final high resolution HR-HSI 
uses a low resolution Outlier Active Function (OAF)   
         that estimate the outlier matrix R=   S   . 
Consequently, the high spectral-spatial resolution fused image 
Z can be produced as follows, 

Z = EA +R            (14) 

This fused image Z cover all the information of ground 
truth image without any distortion in spectral and spatial 
information. The Algorithm 1 shown below summarized the 
proposed unmixing based fusion MINC-CNMF algorithm. 

V. EXPERIMENTS AND PERFORMANCE ANALYSIS 

To evaluate the performance of the unmixing based fusion 
method using our MINC-CNMF algorithm we conducted our 
experiment on four public dataset and then measured the 
quality of fusion method by using various quality measures. 
At last, the strength and superiority of our algorithm were 
evaluated by conducting experiments on four hyper-spectral 
datasets. We also compare the quality of our fusion methods 
with baseline fusion methods includes CNMF [16], HySure 
[17], CO-CNMF [18], TVSR-CNMF [19] and FuVar [20]. 

Algorithm 1: MINC-CNMF algorithm 

Input:  

 LR-HSI       

 HR-MSI       

Initialize:  

 k=0 and (        ) 

Step 1 : First unmix    using nonlinear NMF unmixing algorithm by  

 ‖             ‖ 
  

 Optimize E ,   and    as follows 

   
                           

          
    

                          
      

                            
    

            

Step 2 : Subsequently, unmix    using same unmixing algorithm by 

 ‖              ‖ 
  

 Optimize    ,A and    as follows 

   
                        

           

                          
      

      

    
                              

             

Step 3: Repeat step 1-2 until convergence or predefined terminating condition 

is satisfied. 

Step 4: Optimize the outlier R by using OAF S : R =       

Step 5: Reconstruct Z from E, A and R: Z = EA + R. 

Output:  

 Fused HS image Z with high spatial-spectral dimension.  

A. Dataset 

Experimented and evaluated the proposed MINC-CNMF 
algorithm by using four real dataset such as Washington DC 
mall, Neon, Pavia University, Indian Pines. The first dataset is 
Washington DC Mall dataset is a well-known dataset captured 
by HYDICE sensor. This dataset contains image of size 
1278 307 pixels. Due to large size of the image, we crop it to 
a 240 240-pixel size and that is selected for experiment 
which possesses 191 bands with 0.4 to 2.5 µm spectral range 
[16]. 

The second dataset is NEON Data, this dataset provides 
information on the National Observatory Networks San 
Joaquin Experimental Range field site. The image was 
collected over the San Joaquin field site located in California. 
The image selected for this experiment consists of 500 500 
pixels with 107 bands with 0.4 to 0.85 µm spectral range [23]. 

The third HS dataset is Pavia University captured by the 
reflective optics spectrographic imaging system (ROSIS-3) 
over the University of Pavia, northern Italy in 2003. It consists 
of 610   340 pixels with 103 bands with 0.430 to 0.838 µm 
spectral range. The image select for this experiment is 
560 320 pixel size [17]. 

The fourth HS image dataset AVIRIS Indian Pines is 
captured by AVIRIS sensor over the Indian Pines test site in 
northwestern Indiana, USA, in 1992. The image consists of 
512 614 pixels. The selected image for experiment consists 
of 350 360 pixels size and 192 bands with wavelength range 
from 0.4 to 2.5 µm [16]. 
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The high resolution ground truth images from these 
datasets were used as referenced image. The observed LR-HSI 
and HR-MSI are the input data for image fusion. These 
observed input data were generated by degrading spatial and 
spectral data from the referenced image according to Wald‘s 
protocol [22]. The observed LR-HSI Yh is created by down 
sampling the ground truth image Z with a spatial blur factor ω 
= 6 in both horizontal and vertical directions, respectively. 
The observed MSI Ym, was produced with uniform spectral 
response functions corresponding to Landsat TM bands 1–5 
and 7, which cover the 450–520, 520–600, 630–690, 760– 
900, 1550–1750, and 2080–2350 nm regions, respectively 
[10]. 

B. Quality Metrics 

The strength of our fused images are measured by using 
four quality metrics: Spectral Angle Mapper (SAM), Signal-
to-Reconstruction Error (SRE), Root-Mean-Square Error 
(RMSE), Peak Signal to Noise Ratio (PSNR), Universal 
Image Quality Index (UIQI). Using these metrics, the 
performance of our hyper-spectral image fusion algorithm is 
compared and also evaluated the quality of the estimated 
image by comparing it with ground truth HSI [8]. 

1) SAM: SAM identifies the spectral distortion between 

the estimated spectra E and a ground truth spectrum  ̂ with n 

number of pixels. It measures the spectral similarity between 

the estimated and reference spectra by calculating the angle 

difference of the vectors between them as follows: 

   (   ̂)   
 

 
 ∑        [

  
      ̂

‖  ‖ 
 ‖  ̂‖ 

] 
            (15) 

The arccosine is defined as the inverse cosine function of 
the given value. If higher the spectral similarity between 

estimated spectra E and a ground truth spectrum   ̂  SAM 
values is closer to zero. That means, SAM value near to zero 
indicates high spectral quality [17]. 

2) SRE: The SRE measure the quality of reconstructed 

image based on the accuracy of estimated abundance data. 

Therefore, using this result, we can determine the quality and 

robustness of the proposed algorithm. The SRE is measured as 

follows, 

SRE =         (
 

 
∑ ‖ ̂ ‖ 

  
   

 

 
∑ ‖ ̂      ‖ 

  
   

)          (16) 

where the number of pixels is denoted as n, and  ̂  and    
are the abundance vectors of the estimated and original at the 
i
th

 pixel. Larger the SRE value, higher the spatial quality of the 
image [24]. 

3) RMSE: The result of RMSE gives the average 

difference between the original and estimated abundance map 

and so this result indicates the quality of the image as well as 

unmixing algorithm. That means, this matrix measures the 

spatial quality between the reference abundance  ̂ and 

estimates abundance image A, is defined as: 

RMSE ( ̂  ) = 
 

    
‖   ̂‖

 

 
          (17) 

Where,    and    are the number of bands and the pixels 
in each of the band. The ideal value of RMSE is equal to zero 

and it can be achieved when  ̂ = A which signifies that there 
is no deviation. Smaller the RMSE value, better the quality of 
image [20]. 

4) PSNR: PSNR measure the reconstruction quality of 

spatial data in band wise. PSNR is the ratio between the 

signals to the residual errors. The PSNR of the l
th

 band is 

defined as 

      
 

  
 ∑      

  
              (18) 

where       measures the spatial quality in the     
spectral band, is defined as: 

                (
        

‖  ̂    ‖  ⁄
)          (19) 

where A
l
 is the pixel value of the l

th
 abundance band in the 

image. Higher the PSNR value, better the spatial quality of the 
estimated image [16]. 

5) UIQI: UIQI determines the similarity between the 

original and the estimated images by calculating the average 

correlation between the both images. The    denotes the 

image at the     band and   ̂ denotes the original image at the 

corresponding band, then the correlation between      and     ̂ 

are calculated as, 

 (    ̂ )   
 
   ̂ 

 
    ̂ 

 
  

    ̂ 

 
  
    

  ̂
  

  
    ̂ 

 
  
    

  ̂
           (20) 

Where,     and   ̂  denote the mean vectors,     and   ̂  

denote the variances and     ̂  is the covariance of both 

images respectively. The UIQI measure the average 
correlation Q over all the bands as follows, 

    (    ̂ )   
 

  
 ∑  (    ̂ )

  
           (21) 

The UIQI value range from [−1, 1]. When both images are 

similar, A =  ̂, then the value of     (    ̂ ) = 1. For the final 

result, the overall UIQI of the estimated HSI can be computed 
by averaging the UIQI value of all bands [17]. 

https://www.rapidtables.com/math/trigonometry/cos.html
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C. Regularization Parameter 

The regularization parameter controls the minimization of 
optimized problem, thus guarantees reconstruction of 
hyperspectral image with high spatial-spectral resolution. The 
original CNMF problem is reformulated into the regularized 
or constrained CNMF by incorporating minimum volume 
constraints to enhance the spectral quality during the 
enhancement of spatial quality by fusion. For regularizing this 
constraint a parameters    imposed into the problem. 
According to the comparative analysis of the existing 
literature study, the values of this parameter are set 
empirically in the range {1e-5, 1e-4, 1e-3, 1e-2, 0.01, 0.05, 
0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4} to obtain the best result 
[20]. 

The results obtained on our proposed method with this 
parameter α for set of above ranged values are observed in 
four selected datasets. It shows that when the α value exceeds 
0.0015, the value of SAM and RMSE increases rapidly. 
Similarly, when the value of parameters α is below 0.0001, the 
RMSE value also starts rising. Therefore, the performance 
metrics provide better values in between 0.0015 and 0.0001. 
Other performance measures such as SRE, PSNR, and UIQI 
are also shows higher value in these ranges in all our four 
datasets. So, we set α = 0.00001 (1e-4) to achieve better 
performance [20]. 

D. Performance Analysis of Fusion Algorithm 

Many fusion algorithms are introduced in recent years to 
enhance the hyper-spectral image by fusion. But majority of 
these unmixing based fusion algorithms enhance the quality of 
either spectral or spatial information. Out of these existing 
algorithms our MINC-CNMF algorithm improves the quality 
of both spectral and spatial data in the hyper spectral image. In 
addition to this, enhancement is also considered the 
nonlinearity in the image during fusion by unmixing process. 
In this work our plan to enhance the spatial quality of LR-HSI. 
For this purpose, we extracted the high spatial quality of 
multispectral image and fused with high LR-HSI which 
having high spectral quality. The LR-HSI and HR-MSI are 
obtained by spatial and spectral down sampling of ground 
truth HSI. 

In this paper, we proposed a MINC-CNMF algorithm for 
fusing the high quality spectral and spatial data of LR-HSI and 
HR-MSI by enhancing the both data without any distortion. 
The visual effect of our proposed algorithm on four datasets is 
presented in Fig. 1. Form Fig. 1 it is found that our proposed 

algorithm gives better visual effect compared to other fusion 
method. 

Then the performance capability of this proposed 
algorithm against various baseline algorithm are tested using 
the quality measure such as SAM, RMSE, SRE, PSNR and 
UIQI and the result are shown in the Table I. The result shown 
in Table I indicates that our proposed algorithm show 
superiority over all the baseline fusion methods. The less 
SAM value indicates that estimated fused image has less 
spectral distortion. The reduced value of RMSE shows the 
high reconstruction fidelity to the referenced image. The high 
PSNR value shows the good spatial quality of estimated 
image. Similarly, the higher value of SRE and UIQI shows 
much better performance of fusion algorithm. The 
performance of all these quality measures are shown in Fig. 2. 

Ground truth 

 

 HR- MSI 

 (a) 

 LR- HSI 

 

MINC-CNMF 

 

   (b)  
 

  (c)  
 

  (d)  
 

Fig. 1. The Ground Truth, HR-MSI, LR-HSI and our MINC-CNMF 

Algorithm Images of Four Dataset (a) Washington DC Mall, (b) NEON, (c) 

Indian Pines and (d) Pavia University. 
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TABLE I. PERFORMANCE VALUES OF DIFFERENT QUALITY MEASURES ON THE FOUR DATASETS  (BEST VALUES ARE MARKED AS BOLD CHARACTER) 

Dataset Method CNMF HySure CO-CNMF TVSR-CNMF FuVar Proposed 

Washington DC 
Mall  

SAM 1.01 0.99 0.74 0.74 0.76 0.72 

RMSE 8.57 7.50 7.41 7.43 0.01 0.01 

SRE 15.26 15.46 15.64 15.66 16.17 16.58 

PSNR 76.23 76.02 75.35 76.01 75.33 76.31 

UIQI 0.01 0.09 0.02 0.01 0.11 0.30 

NEON  

SAM 0.59 0.69 0.52 0.86 0.51 0.49 

RMSE 5.56 5.58 5.57 5.58 5.58 4.45 

SRE 20.31 20.01 20.46 20.46 20.47 20.47 

PSNR 83.11 83.09 84.23 89.32 90.01 110.14 

UIQI 0.02 0.08 0.01 0.11 0.1 0.15 

Pavia University  

SAM 0.57 0.39 0.33 0.61 0.34 0.31 

RMSE 1.51 1.23 2.11 3.12 3.08 0.01 

SRE 16.13 17.03 17.33 16.03 17.01 17.83 

PSNR 70.67 71.90 71.43 72.30 71.40 72.35 

UIQI 0.03 0.01 0.13 0.09 0.25 0.30 

Indian Pines. 

SAM 0.53 0.38 0.02 0.48 0.01 0.01 

RMSE 2.01 2.24 2.72 2.77 2.91 0.01 

SRE 13.98 12.90 12.07 14.70 13.48 14.70 

PSNR 72.61 74.11 73.71 72.04 73.85 74.80 

UIQI 0.15 0.08 0.14 0.21 0.12 0.23 

  

  

Fig. 2. The Performance of Four Quality Measures on our Proposed MINC-CNMF Algorithm. 
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VI. CONCLUSIONS 

In this paper, we proposed an unmixing based fusion 
algorithm to enhance the LR-HSI using a multiplicative 
iterative nonlinear constrained coupled nonnegative matrix 
factorization (MINC-CNMF) algorithm. This algorithm 
enhances the quality of both spectral as well as spatial 
dimension of the image to the standard CNMF. In addition, 
this algorithm also considered the nonlinear factors in the 
image by considering the outlier data heterogeneous area, 
pixel illuminations, tiny spots in the image. This MINC-
CNMF spectral unmixing based fusion algorithm updates each 
parameter by using a popular update method namely 
multiplicative update rule, which update the endmember 
signatures, abundances and the outlier matrix iteratively until 
it reaches the stopping criteria as explained in the algorithm 
implementation. 

We experimented our fusion by unmixing method on four 
real-world dataset and analyze the performance of our 
methods on various quality measures such as SAM, SRE, 
RMSE, PSNR, UIQI. Then we compare the effectiveness of 
our MINC-CNMF algorithm with the existing methods. From 
the results produced by all the above method it is found that 
the proposed algorithm gives better fused image with high 
quality spatial and spectral dimension and consume less 
computational processing time than all other existing methods. 
This work mainly focused on exploring both spatial and 
spectral information by considering nonlinear effects in the 
hyper-spectral image. In future work, to furthermore improve 
the accuracy of unmixing performance by introducing some 
more constraints or prior information about endmembers and 
abundance to this modal. 
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