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Abstract—This paper proposes an ensemble model for wind 
speed forecasting using the recurrent neural network known as 
Gated Recurrent Unit (GRU) and data augmentation. For the 
experimentation, a single wind speed time series is used, from 
which four augmented time series are generated, which serve to 
train four GRU sub-models respectively, the results of these sub-
models are averaged to generate the results of the proposal 
ensemble model (E-GRU). The results achieved by E-GRU are 
compared with those of each sub-model, showing that E-GRU 
outperforms the sub-models. Likewise, the proposal model (E-
GRU) is compared with benchmark models without data 
augmentation such as Long Short-Term Memory (LSTM) and 
Gated Recurrent Unit (GRU), showing that E-GRU is much 
more precise, reaching a difference of around 15% with respect 
to the Relative Root mean Square Error (RRMSE) and 11% with 
respect to the Mean Absolute Percentage Error (MAPE). 

Keywords—Wind speed forecasting; recurrent neural networks; 
gated recurrent unit; ensemble GRU; data augmentation 

I. INTRODUCTION 
Earth's natural greenhouse effect makes life possible as we 

know [1]. However, human activities, such as the burning of 
fossil fuels and deforestation, have intensified the natural 
phenomenon, causing global warming [2], and due to this 
problem, the exploitation of renewable energies such as solar, 
wind, thermal energy and others have emerged as excellent 
alternatives for its solution. 

Regarding wind energy, this is harnessed through the use 
of wind machines or wind motors capable of transforming 
wind energy into mechanical rotational energy usable for the 
production of electrical energy. Thus, the prediction of wind 
speed time series has become an essential task in wind energy 
farms, this helps in the planning of energy production [3] 
among others. 

In models based on deep learning, the problem of 
overfitting [4], [5], [6] is usually presented due to the lack of 
data. Various solutions have been suggested in the literature, 
such as the use of dropout layers, regularization and data 
augmentation. 

In this work an ensemble model for wind speed forecasting 
is proposed, it is based on the recurrent neural network known 
as Gated Recurrent Unit (GRU), where despite having enough 
historical data for the training phase [7], a data augmentation 
process is used with the sole objective of improving the 
precision of the model results, thus it is used the data 
augmentation technique proposed by Flores et all (2021) "in 
press" [8]. GRU is used instead of Long Short-Term Memory 
(LSTM), due to the antecedents such as [9], [10], and others 
where GRU presents slightly better results than LSTM. 

The proposal ensemble model (E-GRU) consists of four 
GRU sub-models, for which four different augmented time 
series have been generated from a single wind speed time 
series. The final result is the average of the four sub-model 
predictions. The idea of using an ensemble model arises from 
the need to take advantage of the default and excess predicted 
values with respect to the observed or original data. 

The main contribution of this study is a novel ensemble 
model (E-GRU) for wind speed time series forecasting based 
on recurrent neural networks as GRU and data augmentation. 

The content of the work has been organized as follows. In 
the first section, the problem and the respective solution are 
described. In the second section, the theoretical bases are 
described, which are the basis of the paper's proposal. In the 
third section, the methodology followed for the 
implementation of the proposal is described. In the fourth 
section, the results achieved are described and discussed. In 
the last section, the conclusion reached at the end of the study 
is presented, as well as future work. 

II. BACKGROUND 
This section briefly describes some theoretical bases that 

are important for understanding the content of the paper. 

A. Recurrent Neural Networks (RNN) 
Just like Deep Neural Networks (DNN), Convolutional 

Neural Networks (CNN), RNNs are part of the fundamental 
architectures of Deep Learning, which specialize in working 
with sequential data, hence their use in natural language 
processing (NLP) as well as in time series regression. 
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The best known RNN is probably Long Short-Term 
Memory (LSTM) known to overcome the vanishing gradient 
problem in RNNs. Several variants are generated from LSTM, 
including Gated Recurrent Unit (GRU), which, as mentioned 
above, for certain case studies, especially in time series, 
presents better results than LSTM. 

The GRU architecture is shown in Fig. 1 

 
Fig. 1. GRU Architecture. 

From Fig. 1, to estimate ht it is neccesary the following 
equations: 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)             (1) 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)             (2) 

ℎ�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑡 + 𝑈�𝑟𝑡  ℎ𝑡−1� + 𝑏            (3) 

ℎ𝑡 = (1 − 𝑧𝑡)  ℎ𝑡−1 + 𝑧𝑡  ℎ�𝑡             (4) 

Where: 

Wz,Wr,W,Uz,Ur,U  Matrices of parameters 

br, bz, b   Vectors of parameters  

𝝈    Element-wise sigmoid function 

    Element-wise multiplication 

B. Data Augmentation 
Data augmentation arose to solve overfitting problems in 

image classification [11] models like CNN and others. Many 
of these techniques consisted of zooming, rotation, flipping, 
etc. Later, the concept was transferred to time series 
classification, here techniques such as time-warping, rotation, 
scaling, jittering, etc. emerged. 

This work uses the technique proposed in "in press" [8] 
which is based on two basic techniques such as time-warping 
and jittering. The first one allows to increase the length of the 
original time series and the second one makes the synthetic 
data generated with the first one non-linear. Thus, this 
technique works with two parameters, the block size and the 
sub-block size, the first indicates the number of synthetic 
items to insert between each pair of the original time series 
and the second the number of linear synthetic items in each 
synthetic block. Fig. 2, shows a graphical view of this data 
augmentation technique. 

 
Fig. 2. Data Augmentation based on Time-warping and Jittering [8]. 

III. METHODOLOGY 
The methodology followed for the implementation of the 

proposal is described below. 

A. Time Series Selection 
The selected daily wind speed time series is the same that 

was used in the work "in press" [7], and was obtained from the 
repository of the National Aeronautics and Space 
Administration (NASA) using Power Data Access Viewer 
with latitude: -17.6851 and longitude: -71.3515. This 
corresponds to a point in Ilo city in Peru that has enormous 
potential for wind energy. 

This time series ranges from 1981-01-01 to the present, 
however, for the purposes of experimentation in this study, the 
years 1981-2016 will be used for training and the years 2017-
2020 for testing. 

B. Time Series Imputation 
The selected daily wind speed time series does not present 

NA values, so the application of any data imputation 
technique was not necessary at this stage. 

C. Data Augmentation 
In this phase, the data augmentation technique based on 

time-warping and jittering proposed in [8] was configured 
according to Table I. 

TABLE I. PARAMETERS OF DATA AUGMENTATION TECHNIQUE 

Time 
series 

Augmented 
time series 

Block-
Size 

Sub-Block 
Size 

Augmented 
ítems Total 

1981-
2016 
 
Ítems 
13149 

TS-1 6 3 78888 92037 

TS-2 6 3 78888 92037 

TS-3 6 4 78888 92037 

TS-4 6 4 78888 92037 
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As can be seen in Table I, the first two augmented time 
series (TS-1 and TS-2) have the same parameters as well as 
the third and fourth (TS-3 and TS-4), but due to the 
randomness of the data augmentation technique different 
items are generated for each synthetic block, this can be seen 
in Fig. 3. 

 
Fig. 3. Augmented Time Series for 9-first Original Items. 

D. Ensemble Model Implementation (E-GRU) 
At this stage, the ensemble model is implemented. Here 

the four sub-models have the same characteristics, which are 
detailed in Table II. 

TABLE II. HYPERPARAMETERS OF EACH SUB-MODEL 

Sub-Model Hyperparameters Values 

GRU GRU GRU GRU  

Hidden neurons 160 

Epochs 100 

Optimizer adam 

Drop rate 0.2 

Activation function ReLu 

Layer 1, 2, 3 y 4 (40,40,40,40) 

Batch size 40 

The tools used for implementation of proposal model are 
Google Colab and tensorflow 2.4.1 

E. Evaluation 
For the evaluation of the predicted days, it is necessary to 

extract those corresponding to the original data since these 
also include predicted synthetic values. For this process, the 
value of the block-size parameter of the data augmentation 
technique is considered, which we will call z; the predicted 
time series begins to be traversed and the predicted value 
located after the z value is extracted, then z new positions are 
traversed and the next value is extracted, and so on until 
reaching the last predicted value. 

The model is evaluated through three regression metrics, 
these correspond to the Root Mean Square Error (RMSE), 
Relative RMSE (RRMSE) and Mean Absolute Percentage 
Error (MAPE), which are estimated through equations (5), (6) 
and (7) respectively. 

𝑅𝑀𝑆𝐸 = �∑ (𝑃𝑖−𝑂𝑖)2𝑛
𝑖=1

𝑛
              (5) 

𝑅𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸
1
𝑛∑ 𝑂𝑖𝑛

𝑖=1
∗ 100              (6) 

MAPE = 1
𝑛
∑ �(𝑂𝑖−𝑃𝑖)

𝑂𝑖
∗ 100�𝑛

𝑖=1              (7) 

A graphical version of the proposal model (E-GRU) can be 
seen in Fig. 4. 

 
Fig. 4. Proposal Ensemble Model. 

IV. RESULTS AND DISCUSSION 
After experimentation, this section shows and describes 

the results achieved. 

A. Results 
According to Table III and Fig. 5, it can be seen that the 

ensemble proposal model E-GRU on average surpasses all the 
sub-models. 

Regarding the RMSE, on average E-GRU is superior to all 
sub-models. However, for the forecast horizon of 500 days, 
GRU-1 (0.0284) slightly exceeds E-GRU (0.0288), this is the 
horizon where E-GRU reaches its worst performance. 

According to RRMSE on average and in all prediction 
horizons, E-GRU outperforms all sub-models. It is important 
to highlight that according to the RRMSE achieved, E-GRU 
and all the sub-models can be classified as excellent since they 
present RRMSE <10% [12], [13]. 

With respect to MAPE, like the previous metrics, on 
average E-GRU outperforms all sub-models. However, it is 
important to highlight that GRU-1 for the horizons of 50 and 
100 predicted days, manages to surpass E-GRU. 

According to Fig. 6, the importance of the ensemble 
process in the proposal can be appreciated. The data predicted 
by the sub-models closely approximates the original data by 
default and excess, and the average operation of the ensemble 
model makes it much closer to these, making E-GRU more 
accurate than the sub-models. 

Likewise, it is important to highlight the importance of 
each sub-model, thus in Fig. 6 for the point enclosed in the 
circle, GRU-4, the worst of the sub-models according to Table 
III, is the only one that contributes to improving the proposal 
model precision. 
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TABLE III. SUB-MODELS VS MODEL RESULTS 

Model/ 
Sub-
Model 

Predicted Days 
Avg 

50 100 250 500 1000 1461 

GRU-1 

RMSE 0.0188 0.0235 0.0313 0.0284 0.0292 0.0298 0.0268±0.0050 

RRMSE 0.5791 0.6854 0.9027 0.8102 0.8389 0.8549 0.7785±0.1297 

MAPE 0.4166 0.5031 0.6041 0.5525 0.5669 0.5759 0.5365±0.0723 

GRU-2      

RMSE 0.0299 0.0353 0.0348 0.0331 0.0339 0.0352 0.0337±0.0021 

RRMSE 0.9219 1.0269 1.0010 0.9427 0.9723 1.0087 0.9789±0.042 

MAPE 0.8045 0.8514 0.8121 0.7050 0.7335 0.7596 0.7776±0.0602 

GRU-3 

RMSE 0.0206 0.0320 0.0385 0.0337 0.0349 0.0350 0.0324±0.0067 

RRMSE 0.6371 0.9335 1.1091 0.9604 1.0009 1.0019 0.9404±0.1759 

MAPE 0.4458 0.6675 0.7851 0.6704 0.6716 0.6774 0.6529±0.1236 

GRU-4 

RMSE 0.0511 0.0434 0.0461 0.0419 0.0426 0.0433 0.0447±0.0037 

RRMSE 1.5770 1.2656 1.3290 1.1929 1.2234 1.2406 1.3047±0.1537 

MAPE 1.2298 1.0035 1.0455 0.9682 0.9930 1.0049 1.0408±0.1053 

Proposal Ensemble Model (E-GRU) 

RMSE 0.0177 0.0230 0.0255 0.0288 0.0238 0.0247 0.0239±0.0040 

RRMSE 0.5459 0.6713 0.7333 0.6498 0.6839 0.7069 0.6651±0.0691 

MAPE 0.4375 0.5142 0.5210 0.4622 0.4727 0.4869 0.4824±0.0354 

 
Fig. 5. Comparison of Metrics: Sub Models vs Proposal Model. a) RMSE, 

b) RRMSE and c) MAPE. 

 
Fig. 6. Comparison of First 10 Predicted Days for Sub Models and Proposal 

Model. 

According to Table IV, in reference to the average and all 
the prediction horizons it can be seen that the ensemble 
proposal model E-GRU far exceeds the results of the 
benchmark models (LSTM and GRU). Here it is important to 
highlight that the architecture of the LSTM and GRU models 
is four-layer and use the same hyperparameters as the sub-
models of ensemble proposal model, but they do not use data 
augmentation. 

Regarding the RRMSE, there is an average difference of 
approximately 15% between the results of the ensemble 
proposal model (E-GRU) and the benchmark models. 
Likewise, with respect to MAPE, the percentage difference is 
approximately 11%. 

B. Discussion 
In this part, the results achieved by the ensemble proposal 

model E-GRU are compared with those achieved by other 
state-of-the-art models in the prediction of wind speed time 
series. 

Here, according to Table V, the high precision of the 
models proposed by Qureshi et al [14] and Flores et al [7] can 
be highlighted. In the first case, the authors use an architecture 
based on Deep Neural Networks and Meta Regression with 
Transfer Learning (DNN MRT), reaching an RMSE = 0.0953. 
In the second case, the authors use an architecture based on 
the recurrent neural network GRU including data 
augmentation, reaching an RMSE = 0.0876. 

The E-GRU proposal model uses the same GRU 
architecture of [7] for each sub-model as well as the same data 
augmentation technique, the fundamental difference is that 
instead of using a single augmented time series, it uses four 
augmented time series, which are different due to the 
randomness of the technique and also work with different 
values for the sub-block size parameter. 

The results show that the proposal ensemble model 
manages to surpass the state-of-the-art models including the 
techniques proposed in [14] and [7]. 

TABLE IV. BENCHMARK MODELS VS PROPOSAL MODEL RESULTS 

Model/ 
Metric 

Predicted Days 
Avg 

50 100 250 500 1000 1461 

GRU GRU GRU GRU 

RMSE 0.4828 0.5680 0.5761 0.5181 0.5190 0.5146 0.5298±0.0354 

RRMSE 14.9025 16.5702 16.592 14.770 14.896 14.744 15.4127±0.907 

MAPE 13.0355 14.1669 13.929 12.124 12.314 12.276 12.9745±0.892 

LSTM LSTM LSTM LSTM 

RMSE 0.4748 0.5711 0.5824 0.5224 0.5224 0.5380 0.5319±0.0392 

RRMSE 14.6557 16.6608 16.772 14.881 14.994 14.843 15.4680±0.973 

MAPE 0.4748 13.9701 13.886 12.040 12.164 12.115 10.7751±5.124 

Proposal Ensemble Model (E-GRU) 

RMSE 0.0177 0.0230 0.0255 0.0288 0.0238 0.0247 0.0239±0.0040 

RRMSE 0.5459 0.6713 0.7333 0.6498 0.6839 0.7069 0.6651±0.0691 

MAPE 0.4375 0.5142 0.5210 0.4622 0.4727 0.4869 0.4824±0.0354 
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TABLE V. COMPARISON WITH RESULTS OF RELATED WORK 

Work Technique Freq. Train Test RMS
E 

Zhang et al, 
2013 [15] 

WTT+SAM+RB
FNN Daily 696 48 0.88 

Bokde et al, 
2018  [16] EEMD+PSF Hourly 2160 720 0.36 

Mezaache et al, 
2018 [17] AE+ENN 10-minutes 26000 11000 3.0506 

Khodayar et al, 
2019 [18]  RBM+IPDL 10-minutes 105120 52560 11.126 

Li et al, 2019 
[19] CNN+LSTM 15-minutes 3500 500 3.0012 

Liu et al, 2019 
[20] GRU Daily 811 372 0.9899 

Deng et al, 
2019 [21] Bi-GRU   400 6.75 

Jiang el at, 
2019 [22] VWC  2304 576 0.2557 

Wang et al, 
2019 [23] EWT+KLD Hourly 14016 3504 1.07 

Qureshi et al, 
2017 [14] DNN+MRT Hourly   0.0953 

Yan et al, 2020 
[24] 

ISSD+LSTM-
GOADBN Hourly 600 100 1.0156 

Cheng et al, 
2020 [25] MSSO 10-minutes 2880 720 0.3002 

Altan et al, 
2020 [26] 

DM+LSTM+G
WO 10-hours 4397 775 0.1878 

Noman et al, 
2020 [27] NARX 10-minutes Data 

2017 
Data 
2018 0.3590 

Luo et al, 2020 
[28] DE+MOO 10-minutes 3200 800 0.2348 

Flores et al, 
2021 [7] GRU Daily 13149 1461 0.0876 

Tian et al. 2021 
[29] IWOA-ESN Hourly 800 200 0.8544 

Proposal 
Model GRU Daily 13149 1461 0.0239 

V. CONCLUSION AND FUTURE WORK 
According to what is observed in the Results and 

Discussion section of this paper, it can be concluded that the 
proposal model allows to improve the results of the state of 
the art in relation to wind speed forecasting. Likewise, it is 
important to highlight the importance of the data augmentation 
process, since all the sub-models implemented for the 
ensemble proposal model E-GRU present excellent results 
according to the RRMSE evaluation. Thus, the main 
advantage of the proposal model with respect to the state-of-
the-art models for wind speed prediction is its high precision, 
and the simplicity of model implementation and each of its 
respective sub-models. 

As a future work, it should be noted that the main 
weakness of the proposal model lies in the computational cost 
involved in training 4 GRU models with 92,037 items each. 
Thus, the minimum amount of synthetic and historical data 

could be analyzed to obtain satisfactory results. On the other 
hand, it could be experimented with time series with 
characteristics different from those of wind speed. 
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