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Abstract—Many small and large industries use robot arms
to establish a range of tasks such as picking and placing, and
painting in today’s world. However, to complete these tasks, one
of the most critical problems is to obtain the desire position
of the robot arm’s end-effector. There are two methods for
analyzing the robot arm: forward kinematic analysis and inverse
kinematic analysis. This study aims to model the forward and
inverse kinematic of an open-source 4 degrees of freedom (DoF)
articulated robotic arm. A kinematic model is designed and
further evaluated all the joint parameters to calculate the end-
effector’s desired position. Forward kinematic is simple to design,
but as for the inverse kinematic, a closed-form solution is needed.
The developed kinematic model’s performance is assessed on a
simulated robot arm, and the results were analyzed if the errors
were produced within the accepted range. At the end of this study,
forward kinematic and inverse kinematic solutions of a 4-DoF
articulated robot arm are successfully modeled, which provides
the theoretical basis for the subsequent analysis and research of
the robot arm.
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I. INTRODUCTION

A robot arm is made up of a movable chain of links
that are linked together by joints. A hand or end-effector
that can move freely in space is typically connected to one
end, which is fixed to the ground. Robot arms are capable of
performing repetitive tasks at speeds and precision well above
those of human operators. Robot arms are used in various fields
requiring high precision, for instance medical, industry, and
some hazardous places. However, controlling the robot arm
has been challenging with a higher degrees of freedom (DoF).
Position analysis and trajectory planning of robot arm is an
essential step in design and control.

Robotics research has gotten much traction over the years,
thanks to advances in robot technology and the growing
use of robotics in various fields. The robotics researchers
have been focusing on more current configurations, intelligent
actions, autonomous robotics, and high-level intelligence. All
of these areas are related to robot kinematic, both forward and
inverse. However, there are no excellent universal algorithms
for producing the forward and inverse kinematic of a robot
arm, especially finding the correlation between both kinematic
models. The problem involves an error in achieving an accurate
correlation between the forward and the inverse kinematic of
a robot arm [1], [2], [3], [4], [5], [6], [7], [8], [9]. To plan
an accurate robot arm’s movement, we have to understand the
relationship between the forward and inverse kinematic of the
actuators to control the robot’s resulting position in an accurate
manner. Hence, there remains a scope to investigate further and
work towards finding better solutions.

This study aims to develop a suitable methodology for
solving the forward and inverse kinematic problem for a 4-DoF
articulated robotic manipulator with relative ease. A kinematic
model with an accurate correlation between the forward and
inverse kinematics of a 4-DoF articulated robotic manipulator
is developed using MATLAB software. The performance of
the developed kinematic model is assessed and evaluated in
Robot Operating System (ROS) on Ubuntu. The robot arm
assessed in this research is the OpenMANIPULATOR-X robot
arm manufactured by Robotis, which is an open-source robotic
platform.

A. Kinematic Modeling

Kinematic is a branch of mechanics that studies the motion
of bodies and structures without taking force into account.
Geometry is used to research the movement of multi-DoF
kinematic chains that make up the robot arm’s structure. The
relationship between the robot arm’s linkages and its position,
orientation, and acceleration is studied in robot kinematics.
Kinematic analysis is an effective method when planning the
robot arm’s trajectory can be divided into two types: forward
kinematic and inverse kinematic.

Forward kinematic refers to using the kinematic equa-
tions of a robot arm to compute the position of the end-
effector’s frame and joint variables relationship. Meanwhile,
inverse kinematic is the reverse process that calculates the
joint parameters that achieve an end-effector’s position. The
reverse operation, on the other hand, is much more challenging
in general. The reverse operation is, in general, much more
challenging. Forward kinematic has a simple and straightfor-
ward solution if compared with the inverse kinematic solution,
which has many equations with a highly complex form to be
solved [10].

In robotics, the inverse kinematic approach uses the kine-
matic equations to find the joint parameters that give each
of the robot arm’s end-effectors the desired configuration
(position and rotation). Motion planning determines the robot
arm’s movement so that its end-effectors move from an initial
configuration to the desired configuration. Inverse kinematic
transforms the motion plan into joint actuator trajectories
for the robot arm. Forward kinematic measures the chain’s
configuration using joint parameters, while inverse kinematic
reverses this calculation to find the joint parameters that
achieve the desired configuration [11].

B. Mechanism of Robot Arm

A robot arm can be either serial configuration with an
open-loop structure or parallel configuration with a closed-
loop structure. The joint type for an industrial robot arm can
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be revolute or prismatic, and the link type can be rigid or
flexible. Furthermore, a hybrid structure comprising both open
and closed-loop mechanical chains is possible. The serial robot
arm is characterized by the fact that the first joint is always
starting from the fixed base and the end of the chain is free
to move in space. Several different configurations of the robot
arm can be formed due to the revolute and prismatic joints,
and the axes of two adjacent joints can be either parallel or
orthogonal. Orthogonal joints intersect by 90◦ with respect to
their common normal, and it can be parallel when one axis
rotates 90◦ [12]. Some of the robot arm mechanisms arise from
open, closed, and hybrid open and closed kinematic chains.

In addition, the DoF can be defined as the particular
motion of links related to any mechanism or machine. When
performing a specific task, the DoF often plays an important
role. The total number of DoF is always equal to the number
of independent displacements of links. The number of DoF
permitted by a joint and their characteristics can be determined
by the design constraints of the body or link.

C. Articulated Robot Arm

The articulated robot arm is a robot arm with revolute
joints and is also called a revolute, or anthropomorphic robot
arm. The anthropomorphic resembles the human arm’s design,
including shoulder, elbow, and wrist joints [13]. The articulated
robot arm can range from a simple two-joints structure to sys-
tems with 10 or more interacting joints [14]. The configuration
of a 4-DoF articulated manipulator is shown in Fig. 1.
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Fig. 1. Configuration of a 4-DoF Articulated Robot Arm.

D. Denavit-Hartenberg (D-H) Convention

In the Denavit-Hartenberg (D-H) convention, the link
notation can describe the spatial relationship between two
relative joints. The frame that connects with another joint
has a relationship to the position and geometry with another
joint. Fig. 2 shows that the link parameters are αi and ai,
and the joint offset (di) is fixed to provide the manipulator
configuration. This configuration achieves a specific posture
using n of θi [15]. The posture of every configuration or end-
effector can be changed if the value of θi changes.

Once the link frame has been set, the position and ori-
entation of the i-frame in relation to i − 1 are completely

Fig. 2. Definition Parameters of a Robot Arm [15].

defined using four parameters, known as the D-H parameters.
The parameters taken are as follows:

1) Joint offset, di: This parameter is the intersection
point’s length at the common normal line on the
zi joint axis. The measured value is at a distance
between xi and xi+1, which is measured along zi.

2) Joint angle, θi: This parameter is the angle between
the orthogonal projection on the common normal line,
xi and xi+1, and the normal plane to the zi joint axis.
The rotation direction is closely related to the param-
eter value; when the rotation is counterclockwise, it is
positive. This parameter is taken at degrees between
xi and xi+1, measured approximately zi.

3) Link length, ai: This parameter is taken at the dis-
tance of the common normal to zi and zi+1, measured
along xi+1.

4) Twist angle, αi: This parameter is the angle between
the orthogonal projections on the axis of the joint zi
and zi−1 to the normal plane on the common normal
line. This value can be obtained from the degree
between zi and zi+1, measured by xi.

A transformation matrix can be obtained based on the D-
H parameters, which define the transformation of the i-frame
relative to the i− 1 frame. This matrix can be represented as
T i−1
i , and can be calculated as,

T i−1
i =

c(θi) −s(θi)c(αi) s(θi)s(αi) aic(θi)
s(θi) c(θi)c(αi) −c(θi)s(αi) ais(θi)
0 s(αi) c(αi) di
0 0 0 1

 (1)

where c and s represent sin and cos, respectively. For n
DoF consisting of n + 1 frames, the sum of the numbers for
the transformation matrix is n [16]. The concatenated matrix
provides the required transformation from the n frame that
corresponds to the end-effector to the 0-frame mounted on the
base as follows:

T 0
n = T 0

1 · T 1
2 · T 2

3 . . . T
n−1
n (2)

E. Closed-Form Solution

A closed-form solution is an expression for an exact
solution given with a finite amount of data [17]. If an equation
solves a given problem in terms of functions and mathematical
operations from a given commonly accepted set, it is said to be
a closed-form solution. An infinite sum, for example, will not
be considered a closed-form solution. The closed-form solution
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can be applied in solving the inverse kinematic of the robot
arm. The solution obtained has the advantages of being exact,
includes all solution sets, and low computational cost.

II. METHODS

Some considerations should be emphasized to ensure the
robot arm can maneuver correctly, including its software and
hardware. Accordingly, software should be stable and easy to
use to prevent difficulties. Furthermore, hardware plays a role
in forming a solid robot arm and able to move as planned. The
MATLAB software (MathWorks) has been used to develop the
algorithm in this study.

The primary hardware utilized in this study is the
OpenMANIPULATOR-X robot arm manufactured by Robotis.
The OpenMANIPULATOR-X robot arm is made up of pieces
from the DYNAMIXEL-X series and 3D printing. The daisy
chain method is adopted by DYNAMIXEL, which has a
modular design. It enables users to add or remove joints
for their own use easily. Fig. 3 shows the structure of the
OpenMANIPULATOR-X robot arm [18].

Fig. 3. Structure of the OpenMANIPULATOR-X Robot Arm [18].

A. Forward and Inverse Kinematic Analysis

Fig. 4 shows the flowchart of the forward and inverse kine-
matic analysis. Forward kinematic modeling was performed
using the Denavit-Hartenberg (D-H) convention method. For
inverse kinematic modeling, the closed-form solution method
was used to obtain all sets of possible solutions. Next, cor-
relation analysis between the forward and inverse kinematic
was performed to determine whether there are any relationship
between both kinematic models. Finally, performance evalua-
tion was carried out using trajectory planning and waypoint
tracking algorithm in MATLAB and ROS on Ubuntu.

B. Modeling of Forward Kinematic

The D-H convention method used to model the forward
kinematic of the robot arm can be divided into three pro-
cesses. The first process is the configuration analysis of the
robot arm to obtain its D-H parameters. Fig. 5 shows the
OpenMANIPULATOR-X robot arm’s configuration analysis,
while Table I shows the D-H parameters obtained after the
configuration analysis is performed.

There is an offset between joint 2 and joint 3 on the robot
arm, resulting in an offset angle. The offset angle is identified
and considered in D-H parameters. Fig. 6 shows the calculation
of the offset angle, θ0, between joints 2 and 3.

Fig. 4. Flowchart of the Process of Kinematic Modeling.

Fig. 5. Configuration Analysis of the OpenMANIPULATOR-X Robot Arm.

TABLE I. D-H PARAMETERS

Joint θi (◦) αi (◦) ai (m) di (m)

1 θ1 90 0 0.077

2 θ1 − θ0 0 0.130 0

3 θ3 + θ0 0 0.135 0

4 θ4 0 0.126 0
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Fig. 6. Calculation of Offset Angle, θ0 between Joint 2 and 3.

The second process in the D-H convention involves the
calculation of the transformation matrix. After obtaining the
value of the D-H parameters, the parameters will be included
in the transformation matrix. Since 4 frames or 4 DoF were
used, the limit for the linked matrix is T 0

4 . The transformation
matrix equations can be formulated as follows:

T 0
1 =

c(θ1) 0 s(θ1) 0
s(θ1) 0 −c(θ1) 0
0 1 0 d1
0 0 0 1

 (3)

T 1
2 =

c(θ2) −s(θ2) 0 a2c(θ2)
s(θ2) c(θ2) 0 a2s(θ2)
0 0 1 0
0 0 0 1

 (4)

T 2
3 =

c(θ3) −s(θ3) 0 a3c(θ3)
s(θ3) c(θ3) 0 a3s(θ3)
0 0 1 0
0 0 0 1

 (5)

T 3
4 =

c(θ4) −s(θ4) 0 a4c(θ4)
s(θ4) c(θ4) 0 a4s(θ4)
0 0 1 0
0 0 0 1

 (6)

After obtaining values for T 0
1 , T 1

2 , T 2
3 and T 3

4 , the next
step is to combine them in a sequence to simplify them.

T 2
4 = T 2

3 · T 3
4 (7)

T 1
4 = T 1

2 · T 2
4 (8)

T 0
4 = T 0

1 · T 1
4 (9)

The final process in the D-H convention is to obtain
the position vector for the end-effector. After completing the
simplification process, the transformation matrix equation is as
follows:

T 0
4 =

nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (10)

where p(px, py, pz) is the position vector of the end-
effector while n(nx, ny, nz), o(ox, oy, oz) and a(ax, ay, az)
are orthogonal unit vectors that determine the orientation of
the frame for the end-effector. px, py , and pz are the values
for x, y, and z coordinates of the end-effector.

C. Modeling of Inverse Kinematic

The closed-form solution method involving geometric and
algebraic solutions is used to model the robot arm’s inverse
kinematic. The solution is divided into two processes. The first
process is the calculation to get the angle for joint 1. The
movement of the robot arm on the x−y surface depends only
on the angle of joint 1.

Regarding the x-y surface projection of the robot arm
movement, the angle for joint 1, θ1 can be calculated as
follows:

θ1 = tan−1

(
py
px

)
(11)

Since θ1 is the rotational angle for the robot arm’s base,
the angle range is between −180◦ and 180◦. The quadrant for
θ1 is identified to determine the sign for each trigonometric
ratio in a given quadrant. Table II shows the signs for the
trigonometric ratio in each quadrant.

TABLE II. SIGNS FOR THE TRIGONOMETRIC RATIO IN EACH QUADRANT

px py Quadrant θ1

+ + 1 θ1

- + 2 θ1 + 180◦

- - 3 θ1 − 180◦

+ 1 4 θ1

The second process involves calculating the angles for
joints 2, 3, and 4 (θ2, θ3, and θ4). For obtaining the solution
for θ2, θ3, and θ4, the 3-dimensional (3D) space which is
consisting of the x, y, and z coordinate axes, is simplified
to a 2-dimensional (2D) surface. The x and y-axis are merged
as a new axis and known as the r-axis, as shown in Fig. 7.

θ1

px

py
pr

x

y

r

Fig. 7. Combination of x and y-Axis as r-Axis.

The x-coordinate and the y-coordinate for the end-effector
are combined as r-coordinate using the Pythagorean equation
as follows:
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pr
2 = px

2 + py
2 (12)

pr =
√
px2 + py2 (13)

Fig. 8 shows the projection of the r-z surface for the
movement of the robot arm. The r3 coordinates and the z3
coordinates can be calculated as follows:

r3 = pr (14)

z3 = pz − d1 (15)

rr2

z

z2

θ2

θ3

−θ4

d1

a2

a3

a4 (r3, z3)

Fig. 8. Projection of the r − z Surface for the Movement of the Robot Arm.

The range of the total sum of angles for θ2, θ3, and θ4 are
between −90◦ and 90◦ as shown in Fig. 9.

−90◦
90◦

Fig. 9. Maximum and Minimum of the Sum of Angle for Joint 2, 3 and 4.

θ2, θ3, and θ4 can be calculated using the following
equations:

φ = θ2 + θ3 + θ4 (16)

r2 = r3 − a4 cos φ (17)

z2 = z3 − a4 sin φ (18)

cos θ3 =
r2

2 + z2
2 −

(
a2

2 + a3
2
)

2 a2 a3
(19)

θ3 = ± cos−1

(
r2

2 + z2
2 −

(
a2

2 + a3
2
)

2 a2 a3

)
(20)

r2 = a2 cos θ2 + a3 cos (θ2 + θ3) (21)

z2 = a2 sin θ2 + a3 sin (θ2 + θ3) (22)

r2 = cos θ2 (a2 + a3 cos θ3)− sin θ2 (a3 sin θ3) (23)

z2 = cos θ2 (a3 sin θ3) + sin θ2 (a2 + a3 cos θ3) (24)

cos θ2 =
(a2 + a3 cos θ3) r2 + (a3 sin θ3) z2

r22 + z22
(25)

sin θ2 =
(a2 + a3 cos θ3) z2 + (a3 sin θ3) r2

r22 + z22
(26)

θ2 = tan−1

(
sin θ2
cos θ2

)
(27)

θ4 = φ− (θ2 + θ3) (28)

There are two possible configurations for the robot arm,
namely “elbow up” and “elbow down”. Both configurations
are considered in the calculation of θ2, θ3, and θ4.

The angle range for θ2, θ3, and θ4 is between −90◦ and
90◦, respectively. Based on the configuration of the robot arm
in ROS, the angle range for θ2 becomes 0◦ and 180◦ and the
angle range for θ3 becomes −180◦ and 0◦. The angle limit for
each joint in ROS ranges between −90◦ and 90◦. Thus, the
angle range for θ2 to be considered in kinematic modeling is
between 0 and 90◦, while for θ3 is between −90◦ and 0◦.
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Fig. 10. Simulation Procedures for Trajectory Planning and Waypoint
Tracking.

D. Trajectory Planning and Waypoint Tracking

The simulation of trajectory planning and waypoint track-
ing is done using MATLAB software with the help of Robotics
System Toolbox, Simulink and Simscape Multibody. Fig. 10
shows the simulation procedure for trajectory planning and
waypoint tracking. The first step to be completed is to analyze
the data using MATLAB software. This procedure aims to
identify and overcome the dependencies of the simulation files.
Next, the algorithm includes uploading files related to the
robot arm into MATLAB software. After that, the algorithm
configures one point or a set of points to be used. The
points are obtained from the modeling of the robot arm and
incorporated into the algorithm. This step is very important to
determine the similarity with the actual robot arm.

The next step is to calculate and form a smooth trajectory.
This process runs the trajectory process and uses the points
configured in the previous step. Trajectory planning is one of
the critical processes in robots, where it involves the smooth
movement of the end-effector from the initial position to the
target position [18]. When an arbitrary endpoint is given, the
algorithm computes the optimal feasible path for the robot
arm’s movement based on the kinematic constraints.

The final process involves performing inverse kinematic
of the points found on the robot arm workspace. There are
six values in the weight vector. The first three values are for
rotational purposes, and the last three values are for transition
purposes. Then, the algorithm configures a number greater
than the number of points previously configured to ensure the
robot arm’s smooth movement. After that, it uses a kinematic
solver for each end-effector position and uses the previous
configuration to make an initial guess. After completing all
the processes, the movement of the robot arm is simulated.

III. RESULTS AND DISCUSSION

A. Modeling of Forward Kinematic

Fig. 11 shows the flowchart of the forward kinematic mod-
eling algorithm. D-H parameters are included in the developed
algorithm to obtain the end-effector’s coordinate of the robot
arm, and the transformation matrix is calculated to obtain
the equations for the end-effector’s coordinates. Next, random
values of the four joint angles are generated by using the
“randi” function. This function is able to generate uniformly
distributed random integers from the specified interval. Finally,
the end-effector’s coordinates are calculated by inserting the
random values for the four joint angles into the transformation
matrix equations. Table III shows the results of the forward
kinematic modeling developed.

Fig. 11. Flowchart of Forward Kinematic Modeling Algorithm.

TABLE III. RESULTS OF FORWARD KINEMATIC MODELING

Case
Joint Angles (◦) End-Effector’s Coordinates

θ1 θ2 θ3 θ4 px py pz

1 103 15 -5 21 -0.1489 0.3508 0.115

2 56 3 -13 79 0.1716 0.2544 0.1531

3 65 68 -23 -20 0.1185 0.2542 0.3347

4 -22 34 -21 53 0.2804 -0.1133 0.2733

5 48 8 -65 32 0.2125 0.236 -0.0963

6 11 70 -8 -67 0.2512 0.0488 0.2966

7 166 42 -35 -40 -0.3407 0.0849 0.0918

8 82 38 -58 36 0.0632 0.3583 0.1246

9 -158 56 -79 14 -0.3158 -0.1276 0.0965

10 -54 75 -37 9 0.1465 -0.2017 0.3691

B. Modeling of Inverse Kinematic

Fig. 12 shows the flowchart of the inverse kinematic model-
ing algorithm. The coordinates of the end-effector are entered
into the algorithm to obtain the joint angles that achieve a
particular end-effector position. Next, the angle value for joint
1 is calculated, followed by calculating the angle values for
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joints 2, 3, and 4. Finally, all solution sets for the joint angles
are obtained.

Fig. 12. Flowchart of Inverse Kinematic Modeling Algorithm.

Table IV shows the set of solutions for joint angles in
integers obtained using MATLAB software. Referring to case 1
from the results of the forward kinematic modeling in Table V,
a total of 66 sets of solutions can be obtained for the end-
effector’s coordinates (px = −0.0834, py = 0.3611 and
pz = 0.1744) including the desired solution set, which is the
65th set of solution (θ1 = 103◦, θ2 = 15◦, θ3 = −5◦ and
θ4 = 21◦).

TABLE IV. SET OF SOLUTIONS FOR JOINT ANGLES IN THE FORM OF
INTEGER

Solution
Joint Angles (◦ )

Solution
Joint Angles (◦ )

θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

1: 103 28 -2 -28 34: 103 40 -39 14

2: 103 38 -20 -19 35: 103 11 17 -12

3: 103 26 2 -28 36: 103 39 -39 16

4: 103 39 -24 -15 37: 103 11 17 -10

5: 103 24 5 -28 38: 103 39 -39 17

6: 103 40 -27 -13 39: 103 10 16 -9

7: 103 23 7 -28 40: 103 38 -38 18

8: 103 41 -29 -10 41: 103 10 16 -7

9: 103 21 9 -27 42: 103 37 -38 20

10: 103 41 -31 -8 43: 103 10 15 -5

11: 103 20 10 -26 44: 103 37 -37 21

12: 103 42 -32 -5 45: 103 10 15 -3

13: 103 19 12 -25 46: 103 36 -37 22

14: 103 42 -34 -3 47: 103 9 14 -1

15: 103 18 13 -25 48: 103 35 -36 23

16: 103 42 -35 -1 49: 103 9 13 0

17: 103 17 14 -24 50: 103 34 -35 24

18: 103 42 -36 1 51: 103 9 12 2

19: 103 16 14 -22 52: 103 33 -34 25

20: 103 42 -36 2 53: 103 10 11 5

21: 103 15 15 -21 54: 103 32 -33 26

22: 103 42 -37 4 55: 103 10 9 7

23: 103 14 16 -20 56: 103 31 -31 27

24: 103 42 -38 6 57: 103 10 8 9

25: 103 14 16 -19 58: 103 29 -30 27

26: 103 41 -38 8 59: 103 11 6 11

27: 103 13 16 -18 60: 103 28 -28 28

28: 103 41 -38 9 61: 103 12 3 14

29: 103 12 17 -16 62: 103 26 -25 28

30: 103 41 -39 11 63: 103 13 0 17

31: 103 12 17 -15 64: 103 24 -22 28

32: 103 40 -39 13 65: 103 15 -5 21

33: 103 11 17 -13 66: 103 21 -17 27

To obtain more accurate angles with more decimal points,
the number of solution sets increases. The number of solution
sets increases by about 10 times with the increase of one

decimal point for the joint angles, as shown in Table V.

TABLE V. RESULTS OF INVERSE KINEMATIC MODELING

Case
End-Effector’s Coordinates Joint Angles (◦) Number of Solution Sets

px py pz θ1 θ2 θ3 θ4 0 DP 1 DP 2 DP

1 -0.0833 0.361 0.1744 103 15 -5 21 66 668 6672

2 0.1716 0.2544 0.1531 56 3 -13 79 179 1769 17686

3 0.1185 0.2542 0.3347 65 68 -23 -20 76 762 7616

4 0.2804 -0.1133 0.2733 -22 34 -21 53 134 1346 13454

5 0.2125 0.236 -0.0963 48 8 -65 32 132 1318 13174

6 0.2512 0.0488 0.2966 11 70 -8 -67 147 1462 14617

7 -0.3407 0.0849 0.0918 166 42 -35 -40 156 1546 15468

8 0.0632 0.3583 0.1246 82 38 -58 36 120 1192 11902

9 -0.3158 -0.1276 0.0965 -158 56 -79 14 176 1752 17518

10 0.1465 -0.2017 0.3691 -54 75 -37 9 64 630 6310

C. Correlation Analysis of Kinematic Modeling

Referring to the forward and inverse kinematic modeling
results, as shown in Tables III and V, the solution is precisely
the same when comparing the joint angles from the forward
and inverse kinematic. The same solution set of joint angles
could be obtained using the inverse kinematic model, as
applied in the forward kinematic model. Thus, the correlation
between the developed forward and inverse kinematic model
is said to be accurate.

D. Performance of End-Effector Coordinates

Fig. 13 and 14 display the example of simulation results
of trajectory planning and waypoint tracking for the set of
solutions for the joint angles. The simulation results show that
the solution set of joint angles which produce the most feasible
trajectory are θ1 = 103◦, θ2 = 42◦, θ3 = −35◦ and θ4 =
0◦. Furthermore, Table VI depicts the comparison of the end-
effector’s coordinates obtained from the modeling process in
MATLAB and output from ROS. The most significant errors
occurred in case 1 and case 5. Errors occur between the end-
effector’s coordinates obtained from the results of modeling
and output from ROS due to the rounding calculations that
unavoidable in modeling and the kinematic constraints on the
simulated robot arm in ROS as follows:

1) Joint Bounds:
This constraint is satisfied if the robot configuration
vector maintains all joint positions within the bounds
specified.

2) Cartesian bounds:
This constraint is satisfied if the end-effector origin’s
position relative to the target frame remains within
the bounds specified.

3) Orientation target:
This constraint requires the end-effector orientation to
match a target orientation within an angular tolerance
in any direction. The target orientation is specified
relative to the body frame of the reference body.

4) Pose target:
This constraint requires the end-effector’s pose to
match a target pose within a distance and angular
tolerance in any direction. The target pose is specified
relative to the body frame of the reference body.

5) Position target:
This constraint requires the end-effector position to
match a target position within a distance tolerance in
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any direction. The target position is specified relative
to the body frame of the reference body.

Fig. 13. Simulation Results of Trajectory Planning and Waypoint Tracking
for Joint Angle 1.

Fig. 14. Simulation Results of Trajectory Planning and Waypoint Tracking
for Joint Angles 2, 3 and 4.

TABLE VI. PERFORMANCE OF END-EFFECTOR COORDINATES FROM
MODELING AND ROS.

Case

End-Effector’s Coordinates
Error (%)

Modeling Output from ROS

px py pz px py pz px py pz

1 -0.0833 0.361 0.1744 -0.073 0.366 0.1784 14.25 1.34 2.24

2 0.1716 0.2544 0.1531 0.178 0.246 0.155 3.6 3.41 1.23

3 0.1185 0.2542 0.3347 0.127 0.247 0.327 6.69 2.91 2.35

4 0.2804 -0.1133 0.2733 0.282 -0.109 0.271 0.57 3.94 0.85

5 0.2125 0.236 -0.0963 0.221 0.232 -0.087 3.85 1.72 10.69

6 0.2512 0.0488 0.2966 0.257 0.048 0.287 2.26 1.67 3.34

7 -0.3407 0.0849 0.0918 -0.318 0.082 0.091 7.14 3.54 0.88

8 0.0632 0.3583 0.1246 0.061 0.35 0.129 3.61 2.37 3.41

9 -0.3158 -0.1276 0.0965 -0.294 -0.124 0.101 7.41 2.9 4.46

10 0.1465 -0.2017 0.3691 0.153 -0.194 0.362 4.25 3.97 1.96

IV. CONCLUSION

This study successfully modeled both the forward and
inverse kinematic model for the 4-DoF articulated robot arm.
Correlation between the forward and inverse kinematic model
is analyzed, and the performance of the kinematic model is
evaluated on the simulated robot arm. The developed kinematic
model serves as a theoretical framework for further research,
for instance robot arm trajectory planning, and structural
optimization of robot design.
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robot manipulator with optimized algorithm for inverse kinematics,” Int.
Journal of Mechanical and Mechatronics Engineering, vol. 9, no. 6, pp.
929–934, 2016.

[5] A. A. Mohammed, and M. Sunar, “Kinematics modeling of a 4-DOF
robotic arm,” in Proceedings of the 2015 Int. Conf. on Control, Automa-
tion and Robotics, pp. 87—91, 2015.

[6] A. Novitarini, Y. Aniroh, D. Y. Anshori, and S. Budiprayitno, “A closed-
form solution of inverse kinematic for 4 DOF tetrix manipulator robot,” in
Proceedings of the 2017 Int. Conf. on Advanced Mechatronics, Intelligent
Manufacture, and Industrial Automation, pp. 25—29, 2017.

[7] L. Rónai, and T. Szabó, “Kinematical investigation and regulation of a
4DOF model robot,” Acta Mechanica Slovaca, vol. 20, no. 3, pp. 50–56,
2016.

[8] A. Singh, and A. Singla, “Kinematic Modeling of Robotic Manipulators,”
in Proceedings of the 2017 National Academy of Sciences India Section
A - Physical Sciences, pp. 303—319, 2017.

[9] T. Singh, P. Suresh, and S. Chandan, “Forward and inverse kinematic
analysis of robotic manipulators,” Int. Research Journal of Engineering
and Technology, vol. 4, no. 2, pp. 1459–1469, 2017.

[10] A. El-Sherbiny, M. Elhosseini, and A. Haikal, “A comparative study
of soft computing methods to solve inverse kinematics problem,” Ain
Shams Engineering Journal, vol. 9, no. 4, pp. 2535–2548, 2018.

[11] P. Jha, “Inverse kinematic analysis of robot manipulators,” India:
National Institute of Technology Rourkela, 2015.

[12] J. M. McCarthy, and G. S. Soh, “Geometric design of linkages,” New
York: Springer, 2010.

[13] L. Luthsamy, H.F. AL-Qrimli, S.Shazzana Wan Taha, and N.A. Raj,
“Design and control of an anthropomorphic robotic arm,” Journal of
Industrial Engineering Research, vol. 2, no. 1, pp. 1–8, 2016.

[14] I. Al-Naimi, “Introduction to robot manipulators,” Robotics and Au-
tomation, 2018.

[15] P. Corke, “Robotics, vision and control: Fundamental algorithms in
MATLAB,” 2nd ed. Switzerland: Springer, 2017.

[16] S. Singh, and E. Singla, “Service arms with unconventional robotic
parameters for intricate workstations: Optimal number and dimensional
synthesis,” Journal of Robotics, pp. 1-–11, 2016.

[17] M. v. Hoeij, “Closed form solutions,” Florida: Florida State University,
2017.

[18] Robotis, “OpenMANIPULATOR-X,” Available online:
https://emanual.robotis.com [accessed on 18 May 2021].

www.ijacsa.thesai.org 775 | P a g e


