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Abstract—Statistics and stochastic-process theories, along with
the mathematical modelling and the respective empirical evidence
support, describe the software fault-debugging phenomenon. In
software-reliability engineering literature, stochastic mathemat-
ical models based on the non-homogeneous Poisson process
(NHPP) are employed to measure and boost reliability too. Since
reliability evolves on account of the running of computer test-run,
NHPP type of discrete time-space models, or difference-equation,
is superior to their continuous time-space counterparts. The
majority of these models assume either a constant, monotonically
increasing, or decreasing fault-debugging rate under an imperfect
fault-debugging environment. However, in the most debugging
scenario, a sudden change may occur to the fault-debugging rate
due to an addition to, deletion from, or modification of the source
code. Thus, the fault-debugging rate may not always be smooth
and is subject to change at some point in time called change-
point. Significantly few studies have addressed the problem of
change-point in discrete-time modelling approach. The paper
examines the combined effects of change-point and imperfect
fault-debugging with the learning process on software-reliability
growth phenomena based on the NHPP type of discrete time-
space modelling approach. The performance of the proposed
modelling approach is compared with other existing approaches
on an actual software-reliability dataset cited in literature. The
findings reveal that incorporating the effect of change-point in
software-reliability growth modelling enhances the accuracy of
software-reliability assessment because the stochastic character-
istics of the software fault-debugging phenomenon alter at the
change-point.
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I. INTRODUCTION

Today, computer-based software systems are indispensable,
and their successful operation depends mainly on software. A
fault can be introduced at any point during the software devel-
opment life cycle (abbreviated as SDLC) due to the deficiency
of human-being. A failure is a consequence of a fault. The soft-
ware development process’s testing phase aims at debugging
faults. Software reliability is typically defined as a statistical
measure of a software system’s ability to operate failure-
free. To quantify software reliability, a number of analytical
approaches to mathematical modelling the stochastic-behavior
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of software debugging phenomenon have been proposed. Non-
homogeneous Poisson process (abbreviated as NHPP) models
are widely used in software-reliability engineering to quan-
titatively express reliability. They are broadly divided into
discrete time-space and continuous time-space groups. How-
ever, discrete time-space models which adopt the number of
executed computer test-run as a unit of fault-debugging period
are more suited than their continuous time-space counterparts.
Despite the difficulties in formulating them, many studies have
highlighted their usefulness [1]–[4].

Several existing NHPP stochastic software-reliability mod-
els are based on constant or monotonically increasing fault-
debugging rates under perfect and imperfect fault-debugging
environments [1], [3], [5]–[16]. In practice, as the debugging
grows, a sudden change may take place to the fault-debugging
rate as a result of an addition to, deletion from, or mod-
ification of the source code. Thus, the fault-debugging rate
may not always be smooth and is subject to change at some
point in time called change-point [1], [17]–[23]. Many studies
argue that considering the change-point concept in imperfect
fault-debugging is expected to enhance the software-reliability
assessment accuracy due to the stochastic characteristics of
software fault-debugging phenomenon changed at the change-
point. Thus, the incorporation of change-point provides a no-
table enhancement in the reliability assessment. However, most
of the endeavors are in continuous time-space. Lately, this area
has received little attention and few studies have incorporated
the change-point concept in developing discrete time-space
software-reliability modelling [1], [24], [25]. However, the
study of the change-point problem is still very limited in the
discrete-time modelling approach. As a result, the paper studies
the effect of incorporating a change-point concept in modelling
the imperfect fault-debugging phenomenon.

The rest of the paper is structured as follows: Section II
reviews related work and models the change-point problem
into an imperfect fault-debugging environment through a dis-
crete time-space NHPP based approach. Data analyses and
parameter estimation techniques, model validation, comparison
criteria, and software-reliability measures are discussed in
Sections III and IV, respectively. The descriptive-performance
and predictive-capability, and software-reliability evaluation
measures based on the proposed modelling approach are shown
in Section V. Finally, Section VI concludes the paper and
presents future works.
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II. SOFTWARE-RELIABILITY MODELLING: A DISCRETE
TIME-SPACE APPROACH

In this approach, we model the debugged faults by n com-
puter test-run as a pure-birth counting process (Nn;n ≥ 0),
[1]–[3] subject to

• No fault debugged at n = 0, that is, N(0) = 0.

• For any number of computer test-run n1, n2, ..., nk

where (0 < n1 < n2 < ... < nk). The k random vari-
ables N(n1), N(n2)−N(n1), ..., N(nk)−N(nk−1)
are statistically independent.

• For any number of computer test-run ni and nj , where
(0 ≤ ni ≤ nj), we have

Pr[N(nj)−N(ti) = k] =
(λn)

k

k!
e−λn (1)

here λ be the fault-debugging intensity function.

Accordingly, the NHPP software-reliability model can be
formulated

Pr[Nn = k] =
(mn)

k

k!
e−mn (2)

here Nn be the expected value number of faults whose mean-
value function (abbreviated as MVF) is known as mn.

A. Model Development

In this section, we review some of the well-documnetd
NHPP type of discrete time-space models

1) Exponential Model [3], [26]: This model considers that
the average number of faults debugged between nth and the
(n + 1)th computer test-run, is corresponding to the current
number of undebugged faults after the execution of the nth

computer test-run, meets the resulting difference equation:

λn =
mn+1 −mn

δ
= b(a−mn) (3)

here a be a fault-content, and the constant b represents a fault-
debugging per undebugged faults per test case.

To solve the difference equation (3), we employ the proba-
bility generating function (abbreviated as PGF) computational
technique, multiply both sides by wn, and sum over n from 0
to ∞, we get:

∞∑
n=0

wnmn+1 −
∞∑

n=0

wnmn = δb(a

∞∑
n=0

wn −
∞∑

n=0

wnmn)

1

w

∞∑
n=0

wn+1mn+1 −
∞∑

n=0

wnmn = δab

∞∑
n=0

wn − δb

∞∑
i=0

wnmn

∞∑
n=0

wn+1mn+1 −
∞∑

n=0

wn+1mn = δab

∞∑
n=0

wn+1 − δb

∞∑
n=0

wn+1mn

∞∑
n=0

wn+1mn+1 = δab

∞∑
n=0

wn+1 − (1− δb)

∞∑
n=0

wn+1mn

(w1m1 + w2m2 + w3m3 + ...) = δab(w1 + w2 + w3 + ...)+

(1− δb)(w1m0 + w2m1 + w3m2 + ...) (4)

Comparing the coefficients of like powers of w on both sides
in (4) and under the initial-condition mn=0 = 0, yields

m1 = δab+ (1− δb)m0 = a(1− (1− δb)1)

m2 = δab+ (1− δb)m1 = a(1− (1− δb)2)

m3 = δab+ (1− δb)m2 = a(1− (1− δb)3) (5)

The closed-form solution, by mathematical-induction, ob-
tained as

mn = a(1− (1− δb)n) (6)

Accordingly, the fault-debugging intensity function is

λn =
mn+1 −mn

δ
= ab(1− δb)n (7)

The equivalent continuous time-space model [27] corre-
sponding to (6) is

mt = a(1− e−bt) (8)

which derived as a limiting case of discrete time-space model
substituting t = nδ, limx→0(1 + x)1/x = e, and taking limit
δ → 0.

2) Delayed S-shaped Model [1], [16]: This model con-
siders that the fault-debugging phenomenon as a two-stage
process namely, detection and correction. Accordingly, we
have

md(n+1)
−md(n)

δ
= b(a−md(n)

)

mc(n+1)
−mc(n)

δ
= b(md(n)

−mc(n)
) (9)

Solving the system of difference equation (9), using the
PGF computational technique in terms of the initial condition
that at n = 0, md(n)

= mc(n)
= 0, we can obtain the closed-

form exact solution as

mn ≡ mc(n)
= a((1 + δbn)(1− δb)n) (10)

An alternate formulation of (9), to obtain it in single stage,
is

mn+1 −mn

δ
= bn+1(a−mn)

where
bn+1 =

δb2n

1 + δbn
(11)

Solving (11), using the PGF computational technique in
terms of the initial condition that at n = 0, mn = 0, we can
obtain the closed-form exact solution as

mn = a((1 + δbn)(1− δb)n) (12)

It can be noticed that (12) and (11) are same.

Accordingly, the fault-debugging intensity function is

λn =
mn+1 −mn

δ
=

δab2n

1 + δbn
((1 + δbn)(1− δb)n) (13)

The equivalent continuous time-space model [3], [28] corre-
sponding to (10) or (12) is

mt = a(1− (1 + bt)e−bt) (14)

which derived as a limiting case of discrete time-space model
substituting t = nδ, limx→0(1 + x)1/x = e, and taking limit
δ → 0.
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3) Inflection S-shaped Model [1], [29], [30]: The pri-
mary assumption of the models mentioned above is that the
fault-debugging rate depends linearly upon the number of
undebugged faults. In practice, it has been observed that as
debugging progress, the fault debugging rate has three possible
trends: decreasing, constant, and increasing. To analyze these
trends, we interpret the fault debugging rate as a function of
the number of executed computer test-run. Accordingly, we
have the following difference equation:

mn+1 −mn

δ
= bn+1(a−mn)

where
bn+1 = bi + (bf − bi)

mn+1

a
(15)

Solving (15), using the PGF computational technique in
terms of the initial condition that at n = 0, mn = 0, we can
obtain the closed-form exact solution as

mn = a
1− (1− δbf )

n

1 +
bf−bi

bi
(1− δbf )n

(16)

The growth curve’s shape is determined by the parameters
bi and bf and can be either exponential or S-shaped. However,
(16) can be rewritten to define a constant fault-debugging rate,
as

mn = a(1− (1− δbf )
n) (17)

An alternate formulation of the model, where the fault-
debugging rate per undebugged fault, bn+1, is a non-decreasing
S-shape curve that captures the learning-process phenomenon
of the debugging-team, as

bn+1 =
b

1 + β(1− δb)n+1
(18)

Substituting (18) in (15) and solving using the PGF computa-
tional technique in terms of the initial condition that at n = 0,
mn = 0, we can obtain the closed-form exact solution as

mn = a
1− (1− δb)n

1 + β(1− δb)n
(19)

Setting b = bf and β =
bf−bi

bi
, it noticed that (19) and (16)

are identical.

The fault-debugging rate for the above-specified model is
a logistic function and bn+1 → b as n → ∞. here β is the
learning factor, and it represents the skill and experience gained
by the debuggers during debugging. If β = 0, then bn+1 = b,
that is, constant. The fault-debugging intensity function can be
obtained as

λn =
mn+1 −mn

δ
=

ab

1 + β(1− δb)n
(1 + β)(1− δb)n

1 + β(1− δb)n
(20)

The equivalent continuous time-space model [1], [16], [31]
corresponding to (19) or (16) is

mt = a
1− (1− e−bt)

1 + β(1− e−bt)
(21)

which derived as a limiting case of discrete time-space model
substituting t = nδ, limx→0(1 + x)1/x = e, and taking limit
δ → 0.

4) Imperfect Fault-Debugging Inflection S-shaped Model
[29], [30]: The primary assumption of the models mentioned
above is that the debugged fault is perfectly-debugged with
certainty. However, due to human-imperfection and software-
complexity, the debugging-team incapable to debug the fault-
perfectly, and the debugged fault persist, resulting in a phe-
nomenon known as imperfect fault-debugging. As a result, we
write

mn+1 −mn

δ
= bn+1(a−mn)

where

bn+1 =
bp

1 + β(1− δbp)n+1
(22)

here p is the probability of perfectly debugging the fault.

Solving (22), using the PGF computational technique in
terms of the initial condition that at n = 0, mn = 0, we can
obtain the closed-form exact solution as

mn = a
1− (1− δbp)n

1 + β(1− δbp)n
(23)

The equivalent continuous time-space model [1], [32] cor-
responding to (23) is

mt = a
1− e−bpt

1 + β(1− e−bpt)
(24)

which derived as a limiting case of discrete time-space
model substituting t = nδ, limx→0(1 + x)1/x = e, and taking
limit δ → 0.

In the following section, the approach is extended to
address the concept of the change-point.

B. Model Formulation

In addition to the software-reliability models above, sev-
eral models assume a constant or monotonically increasing
fault-debugging rate. However, in reality, as the debugging
progress, the fault-debugging rate function may be changed
at some point in time. The change point’s position need not
be estimated; it can be judged from the plotted graph of the
actual software-reliability data or using a change point analyzer
tool. To incorporate the change-point concept in (26), both
fault-debugging rate and probability of perfect fault-debugging
before and after the change-point τ , are subject to change.
Accordingly, we write

bn+1 =

{
b1p1

1+β(1−δb1p1)n+1 when 0 ≤ n < τ
b2p2

1+β(1−δb2p2)n+1 when n ≥ τ
(25)

here b1(b2) represent the fault-debugging rates before(after) the
change-point, p1(p2) represent the probability of perfect fault-
debugging before(after) the change-point, and the change-point
τ represents the computer test-run number from whose execu-
tion onwards change in the fault-debugging rate is noticed.

Substituting (25) in (22) and solving using the PGF com-
putational technique in terms of the initial conditions at n = 0,
mn = 0 and at n = τ , mn = mτ respectively, we can obtain
the closed-form exact solution as
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mn =

a
1−αn

1

1+βαn
1

when 0 ≤ n < τ

a
1−(1+β)(1+βατ

2 )(α
τ
1α

n−τ
2 )

(1+βατ
1 )(1+βαn

2 )
when n ≥ τ

(26)

here α1 = 1− δb1p1 and α2 = 1− δb2p2

The proposed modelling approach given by (26) integrates
the joint effects of change-point concept and learning of the
debugging personnel in an imperfect fault-debugging environ-
ment into software-reliability modelling.

III. DATA ANALYSES AND PARAMETER ESTIMATION
TECHNIQUES

To evaluate the progress of the debugging-process during
the testing phase of the SDLC, reliability trend analysis is
employed. Therefore, before applying the model, it is reason-
able to decide whether the dataset exhibits software-reliability
growth. In other words, assessing reliability is pointless if the
software-reliability dataset during debugging does not exhibit
growth. The trend tests that are widely adopted with f fault
debugged are [2], [11], [33]:

• Arithmetic Average Test.

ρ(f) =
1

f

f∑
i=1

ni (27)

Decreasing values promote reliability growth.

• Laplace Test.

υ(f) =

∑f
i=1(i− 1)ni − f−1

2

∑f
i=1 ni√

f2−1
12

∑f
i=1 ni

(28)

Negative values promote reliability growth.

To estimate the unknown parameters of the software-
reliability models, either the maximum likelihood estimate
(abbreviated as MLE) or the least-square estimate (abbreviated
as LSE) methods is employed. Software reliability dataset can
be collected during debugging in the form of ordered pairs
(ni, yi),(i = 0, 1, 2, . . . , f) where yi is the cumulative number
of faults debugged by ni computer test-run (0 < n1 < n2 <
. . . < nf ). Table I tabulated the software-reliability dataset
used. The dataset had been obtained in twenty weeks of de-
bugging release 1 of Tandem computer project, and 100 faults
were debugged [34]. In other words, the dataset consisted of 20
data pairs (ni, yi), (i = 0, 1, 2, . . . , 20;n20 = 20; y20 = 100).
To fit and estimate the parameters of the models, all data points
have been utilized.

TABLE I. SOFTWARE-RELIABILITY DATASET [34]

ni yi ni yi ni yi ni yi

1 16 6 49 11 81 16 98
2 24 7 54 12 86 17 99
3 27 8 58 13 90 18 100
4 33 9 69 14 93 19 100
5 41 10 75 15 96 20 100

The graphical plot of the dataset reveals a change-point
occurs in the 11th week of debugging, that is, τ = 11.

The Likelihood function L for the unknown parameters
with the MVF, that is, mn takes on the form:

L =

f∏
i=1

(mn(i)
−mn(i−1)

)xi−xi−1

(xi − xi−1)!
e
−(mn(i)

−mn(i−1)
) (29)

The statistical package for social sciences (abbreviated as
SPSS) is applied to estimate the software-reliability model’s
parameters for quicker and more precise computations.

IV. MODEL VALIDATION AND COMPARISON CRITERIA

The credibility of the stochastic software-reliability model
is decided by its descriptive and predictive power capabilities
[1]–[3], [5], [8], [16], [35].

A. Goodness-of-Fit Criteria

To test the validity of the proposed modelling approach in
(26), we evaluate three goodness-of-fit test indices based on a
real software-reliability dataset [34]. The goodness-of-fit test
indices adopted for the purpose are [1]–[3]:

• Sum of squared error (abbreviated as SSE). It assesses
the dispersion between estimated values m̂ni and the
actual data yi of the dependent variable.

SSE =

f∑
i=1

(m̂ni
− yi)

2 (30)

• The Akaike information criterion (abbreviated as
AIC).

AIC = −2logL+ 2N (31)

here N is the number of parameters of a model and
the likelihood function L for the parameters with the
MVF in (29).

• Root mean square prediction error (abbreviated as
RMSPE).

RMSPE =

√√√√ f∑
i=1

(Bias2 + V ariation2) (32)

where

Bias =
1

f

f∑
i=1

(m̂ni − yi)

V ariation =

√√√√ 1

f − 1

f∑
i=1

((m̂ni
− yi)−Bias)2

• Coefficient of multiple determination (abbreviated as
R2).

R2 = 1−
∑f

i=1(m̂ni
− yi)

2∑f
i=1(yi −

∑f
i=1 yi)

2
(33)

It should be noted that the smaller value of SSE, AIC and
RMSE, indicates the better the fit of the model. On the
contrary, the larger the value of R2 indicates better the fit
of the model.
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B. Predictive Validity Criterion

The predictive validity of the software-reliability model
is defined as its ability to predict the future behavior of the
debugging process based on its current and past behavior [35].
Suppose we have corrected xf faults after the execution of
the last computer test-run nf . First, we utilize the software-
reliability dataset up to a computer test-run say ne(≤ nf ) to
obtain the MVF, that is, mnf

. Then, put estimated values in
mn to obtain the number of faults corrected by nf . Next, we
compare it with the actually corrected number xf . Last, his
method is iterated for different values of ne. The predicted
relative error (abbreviated as PRE) is given as

PRE =
(m̂nf

− xf )

xf
(34)

When the PRE value is positive/negative, the model overes-
timates or underestimates the future debugging phenomenon.
Acceptable values are within the range ±10% [1], [2], [16].

C. Software-Reliability Evaluation Measures

Based on Section II, the following quantitative assessment
are derived [1]–[3], [26]:

• Number of residual faults. Let ξ(t) denotes the number
of residual faults after the executing of the computer
test-run nth, then

ξn = a∞ − an (35)

here a∞ denotes the number of faults eventually
corrected.

• Software-reliability. The probability of no faults de-
bugged between the nth and (n+n◦)

th computer test-
run, given that xd faults have been debugged by the
nth computer test-run, is

R(n◦ | n) = e−(m(n+n◦)−m(n)) (36)

here n◦(n◦ ≥ 0) is the mission time.

V. DATASET ANALYSES AND MODEL COMPARISON

To validate the proposed modelling approach, we perform
the following dataset analyses and model comparisons. First,
we use both of the trend tests presented in Section III to
determine whether or not the given software-reliability dataset
promotes reliability growth. The parameters of the models un-
der comparison [1], [3], [16], [26], [30] including the proposed
modelling approach given in (26) are then estimated using
SPSS. Then we perform the goodness-of-fit test described
in Section IV-A. Based on the obtained results, we conduct
a comparative assessments of the models under comparison.
Finally, for the proposed modelling approach, we perform the
predictive-validity test described in Section IV-B and estimate
the software-reliability evaluation measures defined in Section
IV-C.

It is worth noting that, while formulating the proposed
modelling approach, we set δ = 1 for simplification and
τ = 11 by following the stochastic-behavior of debugging
phenomenon on the basis of the adopted dataset.

The models under comparison are given below:

• Exponential model [3], [26] given in (6).

• Delayed S-shaped model [1], [16] given in (10).

• Inflection S-shaped model [1], [30] given in (19).

• Imperfect fault-debugging inflection S-shaped model
[1], [30] given in (23).

• The proposed modelling approach given in (26).

A. Software-Reliability Trend Analysis

The fitting result of the reliability dataset for arithmetic
average and Laplace trend tests are demonstrated in Fig. 1
and 2, respectively. It is quite clear that the arithmetic average
and the Laplace trend factor values are decreasing and entirely
negative from the beginning, respectively. Negative Laplace
factor values indicate that more faults were debugged in the
first half of the debugging time, indicating an increase in reli-
ability. Thus, they point to growth in reliability. Consequently,
the dataset is suitable for applying software-reliability models.

B. Goodness-of-Fit Analysis

Table II shows the estimated parameters of the models un-
der comparison using the statistical package statistical package
for social sciences (abbreviated as SPSS) and their goodness-
of-fit test indices. It can be seen that, when compared to all
other models using the SSE, AIC, RMSPE, and R2 indices,
the proposed modelling approach has the lowest SSE, AIC
and RMSPE values and the highest R2 value. Therefore,
among the models under comparison, the proposed modelling
approach outperformed the others. The enhancement in the
performance of the proposed modelling approach is attributed
to the inclusion of the change-point concept in modelling
software-reliability. These results agree with the findings of
previously published works [1], [25].

It is worth noting that the proposed modelling approach’s
estimated value of a is the closest to the number of debugged
faults actually present in the software, and the fault-debugging
rates b2 < b1 clearly show a varying trend that first increases
and then decreases following the change-point with an S-
shaped varying trend. The latter finding is attributed to the
presence of imperfect fault-debugging and learning-process
phenomena.

Fig. 3 and 4 show the fitting results of the noncumulative
and cumulative reliability dataset for the proposed modelling
approach. It is quite clear that the proposed modelling ap-
proach fits the dataset perfectly.

C. Predictive Validity Analysis

To estimate the proposed modelling approach parameters,
the software-reliability dataset is truncated into several parts.
It is noticed that the PRE values differ from one truncation
to the next. As a result, Fig. 5 depicts the fitting result of the
predictive-validity of the proposed modelling approach.

It is noticed that the proposed modelling approach over-
estimates the debugging-process from the truncated ne (70%
approx.) onwards. Therefore, the dataset is truncated at te
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TABLE II. PARAMETER-ESTIMATION AND COMPARISON-CRITERIA RESULTS

Models Under Parameter-Estimation Comparison-Criteria
Comparison a b1(b) p1(p) b2 p2 β SSE AIC RMSPE R2

Model due to [3], [26] 130 .080 − − − − 233 1789 3.449 .986
Model due to [1], [16] 106 .217 − − − − 357 1796 4.329 .978
Model due to [1], [30] 111 .158 − − − 1.21 180 1787 3.073 .989
Model due to [1], [30] 111 .158 1 − − 1.21 180 1787 3.073 .989
Proposed given in (26) 105 .474 1 .357 .675 5.92 35 1780 1.352 .998
− The parameter is not part of the corresponding model.

Fig. 1. The Fitting Result of the Reliability Dataset for
Arithmetic Average Test Data.

Fig. 2. The Fitting Result of the Reliability Dataset for Laplace
Test Data.

Fig. 3. The Fitting Result of the Noncumulative Reliability
Dataset for the Proposed Modelling Approach.

Fig. 4. The The Fitting Result of the Cumulative Reliability
Dataset for the Proposed Modelling Approach.

(60% approx.) to obtain the whole dataset. The fitting result
of the retrodictive and predictive capabilities is shown in Fig.
6. The points below ne (marked by the intersection of the
horizontal line with the curve) show the retrodictive-capability
while the points above ne show the predictive-capability of the
proposed modelling approach.

The proposed modelling approach reveals that about 60%
of the debugging-time is enough to predict the debugging-
future process’s behavior satisfactorily.

D. Software-Reliability Quantitative Measures Analysis

Fig. 7 depicts the fitting result of the number of residual
faults for the proposed modelling approach. It is quite clear
that the proposed modelling approach fits the dataset perfectly.
Following the change-point, every three faults were debugged,
one of which was imperfectly debugged according to the
parameters’ estimated values in Table II. Fig. 8 depicts the
fitting result of the estimated software-reliability (three cases:
when the mission time is one, two, and three days respectively)
for the proposed modelling approach. It is noticeable that the
proposed modelling approach reveals that software-reliability
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Fig. 5. The Fitting Result of the Predictive Validity for the
Proposed Modelling Approach.

Fig. 6. The Fitting Result of the Retrodictive and Predictive
Capabilities for the Proposed Modelling Approach.

Fig. 7. The Fitting Result of the Number of Residual Faults for
the Proposed Modelling Approach.

Fig. 8. The Fitting Result of the Estimated Software-Reliability
(three cases) for the Proposed Modelling Approach.

monotonically increases after the change-point in all cases.

These types of information provided by the proposed
modelling approach enable the developer to decide how best to
allocate resources during the software testing and maintenance
phases of the SDLC.

VI. CONCLUSIONS

Quantitative measures provided by software-reliability
models play a pivotal role in the decision-making process
during testing and fault debugging-process. To some extent,
the concept of change-point is novel in the discrete time-
space software-reliability modelling approach. The NHPP type
of discrete time-space software-reliability modelling is well-
documented with well-established concepts in the software-
reliability engineering literature and can be used to describe
the stochastic-behavior of the fault-debugging process.

The proposed discrete time-space NHPP based stochastic
software-reliability model integrates the debugger’s learning
phenomenon with a single change-point under an imperfect
fault-debugging environment. The results explained through

a numerical example in the tables and figures provided
in Section V are encouraging compared with other well-
established models built under imperfect and perfect fault-
debugging environments. The conducted numerical example
concludes that incorporating the concept of change-point into
software-reliability modelling yields the most promising re-
sults concerning the descriptive and predictive performances
of the proposed modelling approach and software-reliability
quantitative measures. As a result, the paper demonstrates a
high level of numerical agreement between the results of the
proposed modelling approach obtained here and other results
presented in the literature.

Finally, the paper shows how starting with fundamental
assumptions, the discrete time-space NHPP based modelling
approach is becoming more useful with the inclusion of the
learning process in debugging and introducing the change-
point concept in an imperfect fault-debugging environment.
However, we confined ourselves to introducing just a single
change-point, and we did not consider the debugging effort
expenditures. Hence, it is essential to track and account for
the reliability growth concerning the costs spent on software
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debugging. Studying the effect of multiple change-point oc-
currences and software debugging efforts on reliability growth
is an ongoing and future research effort.
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