
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

Numerical Investigation on System of Ordinary
Differential Equations Absolute Time Inference with

Mathematica®

Adeniji Adejimi1, Surulere Samuel2, Mkolesia Andrew3, Shatalov Michael4
Department of Mathematics and Statistics

Tshwane University of Technology
Pretoria, South Africa

Abstract—The purpose of this research is to perform a
comparative numerical analysis of an efficient numerical methods
for second-order ordinary differential equations, by reducing
the second-order ODE to a system of first-order differential
equations. Then we obtain approximate solutions to the system
of ODE. To validate the accuracy of the algorithm, a comparison
between Euler’s method and the Runge-Kutta method or order
four was carried out and an exact solution was found to verify the
efficiency, accuracy of the methods. Graphical representations of
the parametric plots were also presented. Time inference analysis
is taken to check the time taken to executes the algorithm in
Mathematica®12.2.0. The obtained approximate solution using
the algorithm shows that the Runge-Kutta method of order four
is more efficient for solving system of linear ordinary differential
equations.

Keywords—Euler’s method; Runge-Kutta method; System of
ODE; Mathematica®; AbsoluteTiming

I. INTRODUCTION

In recent times, computer algebraic system (CAS) have
been employed to investigate the use of built-in functions
and construction of algorithm to obtain solutions to initial
value problems. Scientific problems arises in stem fields as
Biology, Physics, Chemistry ,and Engineering [1], Ecology
with respect to inverse problems [2]. They also arise in non-
stem fields as humanities, virtual art, designs and films [3],
[4]. Differential equations recently have been understood, that
its application model life realities and numerical methods
are used to investigate ODEs. Some problems have been
modeled to explore dynamics of music, literature, poetry,
prey-predator models, decay radiation, and numerical methods
[5], have been used to understand its dynamics in terms of
approximation. Some mathematical real life situations modeled
by system of ODEs do not have exact solutions, hence,
approximation and/or numerical techniques must be used. In
this paper, we consider second-order ODEs, convert them to
a system of ODEs and compare the exact and numerical
solution. This exploration is investigated through evaluation
using Mathematica®[6], [7], [8]. Euler’s and Runge-Kutta [9],
[5], [10] algorithm are implemented with its built-in function.
Other researchers have implemented several methods to solve
initial value problems and the analysis of the accuracy in
areas such as Epidemiology [11], stability and efficiency to
system of ODEs [12] but not with the algorithm implemented
in this paper and the use of time inference obtained with
Mathematica®. The Euler’s method has large errors which

is illustrated using Taylor’s series expansion. Taylor’s series
converges within a small range and as a result, if the step size
is not relatively small, it diverges. From Taylor’s expansion,
the first two terms represent the Euler’s method. Through
this, its imperative enough to know if h is not small enough,
the method is not accurate and will not be a good use for
practical implementation. The Runge-Kutta method of order
four gives a better approximation than the Euler’s method but
its complicated in computing. However, it converges faster
to the exact solution. This procedure explore the comparative
analysis between the exact and numerical solution of the ODEs
[13],[14]. The algorithm works robustly for obtaining solution
to system of first order ODEs [15] and comparing the solution
by computation and investigating the absolute timing it takes
for each algorithm to compute, hence the algorithm can be
applied to biological models. This algorithm will be applied
to investigate nonlinear system of ODEs for further studies.

In this paper, we are more concerned about the accuracy
of the algorithm and its reliability after comparing the exact
solution, Euler’s method and Runge-Kutta method on the
system of first-order linear ODEs.

II. METHODOLOGY

In this section, we will consider a second-order ODEs
by recasting it to system of first-order ODEs. In considering
the Euler’s method and Runge-Kutta method of order four,
this methods investigated by coding an algorithm using the
CAS, Mathematica and its built-in function. The approximate
solution of both methods would be obtained and compared
by the result of algorithm and the built-in function of Math-
ematica®. For Equation (1) and Equation (2), the explicit
formula for the solution can’t be obtained for an initial value
problem of such form but can approximate the solution using
the numerical methods which is based on the tangent line
approximation. In this paper, the Euler’s method would be used
to approximate the system of ODEs with initial conditions.
This technique will investigate numerically with the aid of the
Mathematica® software.

www.ijacsa.thesai.org 821 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

2 4 6 8 10
t

0.5

1.0

x

(a)

2 4 6 8 10
t

-0.05

0.05

δx

(b)

2 4 6 8 10
t

1

2

3

4

y

(c)

2 4 6 8 10
t

-1.0

-0.5

0.5

δx

(d)

Fig. 1. (a) Graphical Representation: Exact and Numerical Solution of x(t) (b) Error Plot of x(t) (c) Graphical Representation: Exact and Numerical Solution
of y(t) (d) Error Plot of y(t), using the Euler’s Algorithm for Example 1.

III. EULER’S METHOD

Consider the initial value problem in

dx

dt
= f(t, x, y), (1)

dy

dt
= f(t, x, y), (2)

with initial condition x(0) = 0, and y(0) = 0 valid for a ≤
t ≤ b
Let

mk = f(xk, yk), (3)
nk = g(xk, yk), (4)

Such that

xk+1 = xk +mk∆t⇒ xk+1 = xk + f(xk, yk)∆t, (5)
yk+1 = yk +mk∆t⇒ yk+1 = yk + g(xk, yk)∆t. (6)

where ∆t =
tn − t0
n

is known as the step size. The rule of the
thumb to the above algorithm is the smaller the step size (over
the increased number of length interval), the more accurate the
approximate solution. However, even when extremely small
step sizes are used, over a large number of steps the error
starts to accumulate and the estimate diverges from the actual
functional value which denotes its limitation and the requires
more time to compute the approximate solution using the CAS.

IV. RUNGE-KUTTA METHOD OF ORDER 4(RK4)

The Runge-Kutta method are an important family of meth-
ods for approximate solutions of ODEs which were developed
by mathematics duo C Runge (1856-1927) and M.W Kutta
(1867-1944). In this paper, the Runge-Kutta method (RK4)

was considered for a initial value problem (IVP), for a system
of the first order ODEs, such that

x′(t) =f(t, x) where x = x(t) = [(x1(t), x2(t), . . . , xn(t)]
T
,

f ∈ [a, b]× Rn → Rn, (7)

y′(t) =f(t, y) where y = y(t) = [(y1(t), y2(t), . . . , yn(t)]
T
,

f ∈ [a, b]× Rn → Rn, (8)

with initial condition x(0) = x0. To implement the RK4
method of solution of x(t) and y(t) of the IVP over the
time interval t ∈ [a, b]. The time interval was subdivided
into n equal intervals and we selected the step size such that

h =
(b− a)

n
where h is called the step size.

Consider a problem for the implementation of RK4

x′ = f(t, x, y);x(t0) = x0, (9)
y′ = f(t, x, y); y(t0) = y0. (10)

To obtain the solution through investigation of built-in algo-
rithm of Mathematica® 12.2.0, it imperative to note that k′s
obtains the solution for x(t) and l′s for solutions to y(t).

www.ijacsa.thesai.org 822 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

20 40 60 80 100

1

2

3

4

(a)

Fig. 2. (a) Graph of Exact and Numerical Solution, Euler’s Algorithm for
Example 1.

V. NUMERICAL EXAMPLES

A. Using Euler’s Algorithm

Consider the system of ODE

x′ = −x+ y, (11)
y′ = −x− y, (12)

x(0) = 0, y(0) = 4, h = 0.1.

The exact solution was obtained as x(t) = 4e−t sin(t), y(t) =
4e−t cos(t). Results generated using the Euler’s algorithm
were represented on the Table I
Let x1 = 4e−t sin(t),y1 = 4e−t cos(t) be the exact solution,
and Xn ⇒ x′ = −z+ y, Yn ⇒ y′ = −x− y be the numerical
solution.

TABLE I. RESULTS OBTAINED USING EULER’S ALGORITHM

n x1 Xn y1 Yn

0 0 0 4 4
1 0.361332 0.4 3.60127 3.6
2 0.650627 0.72 3.20964 3.2
3 0.875707 0.968 2.83092 2.808
4 1.04414 1.152 2.46962 2.4304
5 1.16315 1.27984 2.12912 2.07216
6 1.23953 1.359072 1.81182 1.7369
7 1.27964 1.3968608 1.51924 1.42736
8 1.28932 1.3999104 1.2522 1.14494
9 1.27391 1.374412864 1.01091 0.89045

10 1.23824 1.3260166272 0.795064 0.663964

The graphs in Figure 1 represents the exact solution,
numerical solution of x(t) & y(t) and the error plots.

Figure 1 (b) and (d) shows that the order of errors observed
in the graphs for Figure 1 (a) and (c) are 10−2 and 100

respectively. For example 1, we observed that the solutions for
x(t) yielded better approximations than the solutions for y(t).
Although, from a graphical perspective, Figure 1 (c) shows
better agreement (between the exact and numerical solutions)
as compared to Figure 1

The graph in Figure 2 represents the exact solution and
numerical solution of x(t) & y(t)

B. Using Runge-Kutta Algorithm

Now, let us consider the system of ODEs from equations in
Equation (11)-Equation (12). The exact solution was obtained
as x(t) = 4e−t sin(t), y(t) = 4e−t cos(t). The results
generated by the Runge-Kutta algorithm are represented in the

Table II.
Let L = 4e−t sin(t), P = 4e−t cos(t) be the exact solution,
and Xn ⇒ x′ = −x+ y, Yn ⇒ y′ = −x− y be the numerical
solution

TABLE II. TABLE II REPRESENT THE RESULT OBTAINED USING
RUNGE-KUTTA ALGORITHM.

n L Xn P Yn

0 0 0 4 4
1 0.361332 0.318733 3.60127 3.6
2 0.650627 0.579032 3.20964 3.21121
3 0.875707 0.78666 2.83092 2.8378
4 1.04414 0.94723 2.46962 2.48297
5 1.16315 1.06615 2.12912 2.14912
6 1.23953 1.14855 1.81182 1.83792
7 1.27964 1.19929 1.51924 1.55039
8 1.28932 1.22289 1.2522 1.28704
9 1.27391 1.22354 1.01091 1.04789

10 1.23824 1.20507 0.795064 0.832592

The graph in Figure 3 represents the exact solution and
numerical solution of x(t) & y(t) and error plots.

The same phenomenon we observed under the Euler’s
algorithm section is also observed in this section. Figure 3 (b)
and (d) are error plots having order of magnitudes 10−1 and
10−1 respectively. However, Figure 3 (a) and (c) shows that
the agreement between the exact and numerical solutions for
y(t) is better compared to the agreements between the exact
and numerical solutions for x(t).

The graph in Figure 4 represents the exact solution and
numerical solution of x(t)

C. Example 2

Consider the IVP of the form

x′′ + 2x′ + x = 0, (13)
x(0) = 1, x′(0) = 0.

In what follows, we reduce Equation (13) to a system of first-
order ODEs

x′ = y, (14)
y′ = −x− 2y (15)

x(0) = 1, y(0) = 0

The exact solution of the system was obtained as

x(t) = e−t(1 + t), (16)
y(t) = −e−t · t, (17)

x(0) = 1, y(0) = 0,

Analytical solutiony(t) = e−t(1 + t). (18)

The result generated using Euler’s algorithm by compara-
tive analysis is presented in Table III.
We define the following

x2→ e−t(1 + t),
y2→ −e−t · t.

}
= Exact solution (19)

and

Xn → y,
Yn → −x− 2y.

}
= Numerical solution (20)

www.ijacsa.thesai.org 823 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

2 4 6 8 10
t

0.2

0.4

0.6

0.8

1.0

1.2

x

(a)

2 4 6 8 10
t

-0.10

-0.05

0.05

δx

(b)

2 4 6 8 10
t

1

2

3

4

y

(c)

2 4 6 8 10
t

-0.5

0.5

δx

(d)

Fig. 3. (a) Graphical Representation: Exact and Numerical Solution of x(t) (b) Error Plot of x(t) (c) Graphical Representation: Exact and Numerical Solution
of y(t) (d) Error Plot of y(t), using the Runge-Kutta Algorithm for Example 1.

20 40 60 80 100

1

2

3

4

(a)

Fig. 4. (a) Graph of Exact and Numerical Solution, Runge-Kutta Algorithm
for Example 1.

TABLE III. RESULTS OBTAINED USING EULER’S ALGORITHM

n x2 Xn y2 Yn

0 1 1 0 0
1 0.995321 1 -0.0904837 0
2 0.982477 0.99 -0.163746 -0.1
3 0.963064 0.972 -0.222245 -0.18
4 0.938448 0.9477 -0.268128 -0.243
5 0.909796 0.885735 -0.303265 -0.2916
6 0.878099 0.850306 -0.329287 -0.32805
7 0.844195 0.813105 -0.34761 -0.354294
8 0.808792 0.774841 -0.359463 -0.372009
9 0.772482 0.736099 -0.365913 -0.382638
10 0.735759 0.697357 -0.367879 -0.38742

The graph in Figure 5 represents the exact solution, nu-
merical solution of x(t) & y(t) and error plots.

For exmaple 2, we can observe a stark contrast to example
1. Figure 5 (a) and (c) shows that the agreement between the
exact and numerical solutions for x(t) is better compared to
the agreements between the exact and numerical solutions for

y(t). The error plots for the graph in Figure 5 (b) shows that
the approximation is quite good, as the error has order of
magnitude 10−2. The error plots for the solutions of y(t) is
not quite good (it has dimensions of order 100).

The graph in Figure 6 represents the exact solution and
numerical solution of x(t)

D. Using Runge-Kutta Algorithm

Consider the system of ODEs in Equation (14)-Equation
(15), result generated by RK4. The numerical solution is
presented in Equation (20). The comparative Runge-Kutta
algorithm is presented in the Table IV

TABLE IV. RESULTS OBTAINED USING RUNGE-KUTTA ALGORITHM

n L Xn P Yn

0 1 1 0 0
1 0.995321 0.996738 -0.0904837 -0.0905542
2 0.982477 0.984877 -0.163746 -0.163981
3 0.963064 0.966075 -0.222245 -0.222686
4 0.938448 0.941753 -0.268128 -0.268776
5 0.909796 0.913129 -0.303265 -0.304097
6 0.878099 0.88124 -0.329287 -0.330261
7 0.844195 0.846968 -0.34761 -0.348673
8 0.808792 0.811058 -0.359463 -0.36056
9 0.772482 0.774135 -0.365913 -0.366986
10 0.735759 0.736721 -0.367879 -0.368873

www.ijacsa.thesai.org 824 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

2 4 6 8 10
t

0.2

0.4

0.6

0.8

1.0

x

(a)

2 4 6 8 10
t

-0.015

-0.010

-0.005

0.005

0.010

δx

(b)

2 4 6 8 10
t

-0.4

-0.3

-0.2

-0.1

y

(c)

2 4 6 8 10
t

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

δx

(d)

Fig. 5. (a) Graphical Representation: Exact and Numerical Solution of x(t) (b) Error Plot of x(t) (c) Graphical Representation: Exact and Numerical Solution
of y(t) (d) Error Plot of y(t) using the Euler’s Algorithm for Example 2.

20 40 60 80 100

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

(a)

Fig. 6. (a) Graph of Exact and Numerical Solution, Euler’s Algorithm for
Example 2.

The graph in Figure 7 represents the exact solution, nu-
merical solution of x(t) & y (t), and error plots.

For this section, the error plots for x(t) has order of
magnitude 10−3 (see Figure 7 (b)). The magnitude of order
for the error plots of y(t) still maintains the same value as it
was in the section for Euler’s algorithm (see Figure 7 (d)).

The graph in Figure 8 represents the exact solution and
numerical solution of x(t)

E. Example 3

In what follows, we will consider the well-known model
of a vibrating particle attached to a stationary wall through a
spring

mx′′(t) + dx′(t) + kx(t) = 0, (21)

where m is the mass of the particle, d is the damping factor,
and k is the stiffness constant of the spring. Equation (21) is

rewritten as

x′′(t) + 2δx′(t) + ω2x(t) = 0, (22)

where 2δ = d/m and ω2 = k/m. Equation (22) is reduced to
the system of first-order ODEs

x′ = y (23)
y′ = −2δy − ω2x (24)

x(0) = 0.1, y(0) = 0, δ = 0, ω = 2π

From Equation (23)-Equation (24), the exact solution was
obtained as

x(t) = (0.1− 2.6963× 10−34i cos[6.28319t]

+(3.15475× 10−17 + 8.22996× 10−34i sin[6.28319t], (25)
y(t) = (−0.628319 + 2.38256−18i) ((0 + 0.i)

+(1 + 0.i) sin[6.28319t]) , (26)
x(0) = 1, y(0) = 0.

The results generated from the Euler’s algorithm is presented in
Table V by defining the following: x3 to be Equation (25) and
y3 represented as Equation (26), while the numerical solution
of Equation (23) and Equation (24) are represented as (Xn, Yn)
(which were obtained using the Euler’s algorithm).

TABLE V. RESULTS OBTAINED USING EULER’S ALGORITHM.

n x3 Xn y3 Yn

0 0.1− 2.6963× 10−34i 0.1 0. + 0i 0
1 0.0998027− 2.63931× 10−34i 0.1 −0.0394524 + 1.49602× 10−19i -0.0394784
2 0.0992115− 2.57189× 10−34i 0.0996052 −0.0787492 + 2.98614× 10−19i -0.0789568
3 0.0982287− 2.49433× 10−34i 0.0988156 −0.117735 + 4.46447× 10−19i -0.118279
4 0.0968583− 2.40692× 10−34i 0.0976329 −0.156256 + 5.92518× 10−19i -0.15729
5 0.0951057− 2.31002× 10−34i 0.09606 −0.194161 + 7.36251× 10−19i -0.195834
6 0.0929776− 2.20399× 10−34i 0.0941016 −0.231299 + 8.77078× 10−19i -0.233757
7 0.0904827− 2.08927× 10−34i 0.091764 −0.267525 + 1.01444× 10−18i -0.270907
8 0.0876307− 1.96631× 10−34 0.089055 −0.302695 + 1.14781× 10−18i -0.307134
9 0.0844328− 1.83558× 10−34i 0.0859836 −0.33667 + 1.27664× 10−18i -0.342291
10 0.0809017− 1.69761× 10−34i 0.0825607 −0.369316 + 1.40043× 10−18i -0.376236

www.ijacsa.thesai.org 825 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

2 4 6 8 10
t

0.2

0.4

0.6

0.8

1.0

x

(a)

2 4 6 8 10
t

-0.008

-0.006

-0.004

-0.002

0.002

0.004
δx

(b)

2 4 6 8 10
t

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

y

(c)

2 4 6 8 10
t

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

δx

(d)

Fig. 7. (a) Graphical Representation: Exact and Numerical Solution of x(t) (b) Error Plot of x(t) (c) Graphical Representation: Exact and Numerical Solution
of y(t) (d) Error Plot of y(t), using the Runge-Kutta Algorithm for Example 2.

20 40 60 80 100

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

(a)

Fig. 8. (a) Graph of Exact and Numerical Solution, Runge-Kutta Algorithm
for Example 2.

The graph in Figure 9 represents the exact solution, nu-
merical solution of x(t) & y(t) and error plots. The graph in
Figure 11 represents the exact solution and numerical solution
of x(t)

F. Using Runge-Kutta Algorithm

Now, let us consider the system of ODEs in Equation (23)-
Equation (24), for the results generated using RK4 and its nu-
merical solution. The comparative analysis of RK4 algorithm
is presented in the Table VI.

The graph in Figure 10 represents the exact solution,
numerical solution of x(t) & y(t), and error plots.

The graph in Figure 12 represents the exact solution and
numerical solution of x(t)

TABLE VI. RESULTS OBTAINED USING RUNGE-KUTTA ALGORITHM

n L Xn P Yn

0 0.1− 2.6963× 10−34i 0.1 0. + 0.i 0
1 0.0998027− 2.63931× 10−34i 0.1 -0.0394524 + 1.49602× 10−19i -0.0394784
2 0.0992115− 2.57189× 10−34i 0.0996052 −0.0787492 + 2.98614× 10−19i -0.0789568
3 0.0982287− 2.49433× 10−34i 0.0988156 -0.117735 + 4.46447× 10−19i -0.118279
4 0.0968583− 2.40692× 10−34i 0.0976329 −0.156256 + 5.92518× 10−19i -0.15729
5 0.0951057− 2.31002× 10−34i 0.09606 −0.194161 + 7.36251× 10−19i -0.195834
6 0.0929776− 2.20399× 10−34i 0.0941016 −0.231299 + 8.77078× 10−19i -0.233757
7 0.0904827− 2.08927× 10−34i 0.091764 −0.267525 + 1.01444× 10−18i -0.270907
8 0.0876307− 1.96631× 10−34i 0.089055 −0.302695 + 1.14781× 10−18i -0.307134
9 0.0844328− 1.83558× 10−34i 0.0859836 −0.33667 + 1.27664× 10−18i -0.342291
10 0.0809017− 1.69761× 10−34i 0.0825607 −0.369316 + 1.40043× 10−18i -0.376236

VI. TIME INFERENCE

This section details the time taken by Mathematica® to
evaluate the formulated algorithms. An inference can be drawn
that Euler’s algorithm solves the system of ODEs in less time
than the RK4. By computation the average time for each
algorithm is represented in Table VII. As seen in Table VII,
the Euler’s algorithm computes faster although, it does not
give an accurate approximation but the RK4 algorithm gives
a better approximation despite having a lower computational
speed compared to the Euler’s algorithm.

TABLE VII. THE COMPUTATIONAL TIME TAKEN IN EVALUATING THE
EULER’S AND RUNGE-KUTTA ALGORITHM

Example 1 Example 2

Euler’s RK4 Euler’s RK4
Absolute Timing 0.000553 0.014443 0.001603 0.003870
Average Timing 0.000732 0.002925 0.000684 0.002868

VII. CONCLUSION

In this paper, we considered an algorithm which was
simulated using Mathematica® 12.2.0 installed on a 512 SSD,
64 bit laptop. The built-in function of Mathematica® with

www.ijacsa.thesai.org 826 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

0.2 0.4 0.6 0.8 1.0
t

-0.10

-0.05

0.05

0.10

x

(a)

0.2 0.4 0.6 0.8 1.0
t

-0.010

-0.005

0.005

0.010

0.015

0.020

δx

(b)

0.2 0.4 0.6 0.8 1.0
t

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8
y

(c)

0.2 0.4 0.6 0.8 1.0
t

-0.04

-0.02

0.02

0.04

0.06

0.08

0.10

δx

(d)

Fig. 9. (a) Graphical Representation: Exact and Numerical Solution of x(t) (b) Error Plot of x(t) (c) Graphical Representation: Exact and Numerical Solution
of y(t) (d) Error Plot of y(t) using the Euler’s Algorithm in Example 3.

absolute timing was used to generate a better approximation
in the three examples considered in preceding sections. The
accuracy of this algorithm depends on the system of ODEs
under consideration. The algorithm was built to simulate
system of ODEs by converting second-order ODE to a system
of first-order IVP, with graphical representation of exact and
numerical solution. The error plot with the same step size
h = 0.1 was also graphically illustrated. Considering the
parametric plot of example 1, the plot shows that the solution
presented by the both algorithm, that RK4 algorithm gives a
better approximation than the Euler’s algorithm. This was also
the case in example 2, the Runge-Kutta algorithm showed that
the solution obtained from the exact and numerical solution
by comparative analysis obtained accurate result and the same
goes for example 3. It has been observed by the results shown
in Figure 13, through the parametric plot that the algorithm
works well. Table VII shows how the Euler’s algorithm com-
putes faster but does not give accurate approximations, like that
of RK4 which computes slower but gives better approximation.
In future work, we intend to harness the algorithm to solve
higher orders of ODE that can be recasted to system of ODEs.
We also aim to adopt the algorithms to solve other differential
equations such as Lotka-Volterra model, and stiff equations,
and investigate the algorithm time taken in execution, using
Mathematica®. By investigation, it is shown in Figure 9 that
the parametric plot of the system of ODEs using the (Euler’s
and RK4) algorithms concludes that RK4 algorithm works well
and gives better approximation. In Equation (25) and Equation
(26), we observed the appearance of complex conjugate values
in the exact solution. This was due to the low value of
damping (δ = 0.01) used in the equation of motion, describing
the particle attached to a stationary wall. This explanation

also covers for the complex values observed in Table V and
Table VI. The numerical values in the aforementioned tables
showed close approximations, despite the complex part. The
values of the complex parts are also negligible as they are
really small (having dimensions of 10−34, 10−19 and 10−18).
Comparing Figure 9 (b) and (d) against Figure 10 (b) and (d),
we can observe that the Runge-Kutta algorithm also gave a
better approximation to the Euler algorithm. The errors for
the Runge-Kutta algorithm was in order 5× 10−2 while Euler
algorithm was in order 1× 10−1.

ACKNOWLEDGMENT

The authors wish to thank Tshwane University of Technol-
ogy for their support and the Department of Higher Education
and Training, South Africa.

www.ijacsa.thesai.org 827 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

0.2 0.4 0.6 0.8 1.0
t

-0.10

-0.05

0.05

0.10

x

(a)

0.2 0.4 0.6 0.8 1.0
t

-0.005

0.005

0.010

δx

(b)

0.2 0.4 0.6 0.8 1.0
t

-0.6

-0.4

-0.2

0.2

0.4

0.6

y

(c)

0.2 0.4 0.6 0.8 1.0
t

-0.02

-0.01

0.01

0.02

0.03

0.04

0.05

δx

(d)

Fig. 10. (a) Graphical Representation: Exact and Numerical Solution of x(t) (b) Error Plot of x(t) (c) Graphical Representation: Exact and Numerical Solution
of y(t) (d) Error Plot of y(t) using the Runge-Kutta Algorithm in Example 3.

20 40 60 80 100

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

(a)

Fig. 11. (a) Graph of Exact and Numerical Solution, Euler’s Algorithm in
Example 3.

20 40 60 80 100

-0.6

-0.4

-0.2

0.2

0.4

0.6

(a)

Fig. 12. (a) Graph of Exact and Numerical Solution, Runge-Kutta Algorithm
in Example 3.

www.ijacsa.thesai.org 828 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 6, 2021

0.5 1.0
x

1

2

3

4

y

(a)

0.2 0.4 0.6 0.8 1.0 1.2
x

1

2

3

4

y

(b)

0.2 0.4 0.6 0.8 1.0
x

-0.4

-0.3

-0.2

-0.1

y

(c)

0.2 0.4 0.6 0.8 1.0
x

-0.3

-0.2

-0.1

y

(d)

Fig. 13. [a,b] Parametric plot: Euler’s and RK4 algorithm for Example 1
[c,d] Parametric plot: Euler’s and RK4 algorithm for Example 2

REFERENCES

[1] F. C. Hoppensteadt and C. S. Peskin,. Mathematics in Medicine and the
Life Sciences. Springer-Verlag, New-York,, 1992.

[2] AA. Adeniji, and MY. Shatalov, and I. Fedotov, and AC. Mkolesia,
Introduction to numerical methods. Discontinuity Nonlinearity and
Complexity, 10(3), 523-534, 2021

[3] L. Koss. Visual arts, design, and differential equations. Journal of
Mathematics and the Arts, 11(3): 129–158, 2017.

[4] W. Brian. 2015-Koss-Differential Equations In Art and Film. SIMIODE.

[5] J. RChasnov. Introduction to numerical methods. The Hong Kong
University of Science and Technology, 60, 2012.

[6] Ü. Göktaş, D. Kapadia. Methods in Mathematica for solving ordinary
differential equations. Mathematical and Computational Applications,
16(4): 784–796, 2011.

[7] Abell, LL. Martha and Braselton, P. James. Differential equations with
Mathematica. Academic Press, 2016.

[8] M. Sofroniou, and R. Knapp. Wolfram Mathematica Tutorial Collection-
Advanced Numerical Differential Equation Solving in Mathematica.
Wolfram Research. Inc, 2008.

[9] DF. Griffiths, DJ. Higham. Euler’s method, Numerical Methods for
Ordinary Differential Equations. Springer, London, 19-31, 2010.

[10] CR. Nathan, W. Dorathy Euler’s Method for Systems of Differential
Equations. Applications of Calculus to Biology and Medicine, 117-122,
2017.

[11] B. Yong The comparison of fourth order Runge-Kutta and homotopy
analysis method for solving three basic epidemic models. Journal of
Physics: Conference Series, 1317(1), 12-20, 2019.

[12] AT. Kolar Comparison of numerical methods for solving a system
of ordinary differential equations: accuracy, stability and efficiency.
Mälardalen University, School of Education, Culture and Communica-
tion., 65, 2020.

[13] Blanchard, Paul and Devaney, Robert L and Glen, R Hall, and Jong-
Eao Lee. Differential Equations: A Contemporary Approach, Thomson
Learning, 2007.

[14] N. Shawagfeh, D. Kaya. Comparing numerical methods for the solu-
tions of systems of ordinary differential equations. Applied mathematics
letters, 17(3):323-8, 2004.

[15] P, B Conrad. Ordinary Differential Equations: A Systems Approach. ,
2010.

www.ijacsa.thesai.org 829 | P a g e


