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Abstract—Detection of anomalies from the medical image 
dataset improves prognosis by discovering new facts hidden in 
the data. The present study aims to discuss anomaly detection 
using autoencoders and convolutional neural networks. The 
autoencoder identifies the imbalance between normal and 
abnormal samples. They create learning models flexible and 
accurate on training data. The problem is addressed in four 
stages: 1) training: an autoencoder is initialized with the hyper-
parameters and trained on the lung cancer CT scan images, 
2) test: the autoencoder reconstructs the input from the latent 
space representation with a slight variation from the original 
data, indicated by a reconstruction error as Mean Squared Error 
(MSE), 3) evaluate: the MSE value of the training and test 
dataset are compared. The MSE values of anomalous data are 
higher than a base threshold, detecting those as anomalies, 
4) validate: the efficiency metrics such as accuracy and MSE 
scores are used at both training and validation phases. The 
dataset was further classified as benign and malignant. The 
accuracy reported for outlier detection and the classification task 
is 98% and 97.2%. Thus, the proposed autoencoder-based 
anomaly detection could positively isolate anomalies from the CT 
scan images of lung cancer. 

Keywords—Anomalies; autoencoder; convolutional neural 
networks (CNN) (ConvNets); deep neural network architecture; 
regularization 

I. INTRODUCTION 
Outliers are the data that are not normal when compared to 

the rest of the information in any dataset. They indicate 
extreme values which usually diverge from the general model 
[1]. The occurrence of outliers in the dataset is possible for 
many reasons, such as a fault in the system, manual errors, 
fraudulent errors, equipment errors, and the data may vary for 
inexplicable reasons camouflaging a few unseen motifs.  At 
times, these unusual patterns indicate hidden knowledge about 
the data. For instance, irregular Electrocardiography (ECG) 
data may suggest heart-related problems because it will be 
dissimilar from the ECG report of a healthy person. Thus, 
identifying outliers is an essential part of the knowledge 
discovery process [2]. Because of this reason, outlier detection 
has always been an exciting factor for researchers, scientists, 
and data analysts. Outlier detection is widely employed in 
nearly all subject areas such as medical, fraud detection, credit 
card analysis, financial sectors, social network analysis, and 
weather forecast analysis. Outliers are of different types: 
univariate, multivariate, point/global, context, and collective 
outliers [3]. The outlier detection approaches [4] are broadly 
classified into three categories; 1) Statistical method: this 

approach is used in a typical univariate environment where the 
data distribution is normal/ Gaussian-like. Here, 
approximately 68% of the data fall with the normal 
distribution anchored to the 1st standard deviation measure. 
About 98% of data distribution fall in the 2nd standard 
deviation and 99.7% of data value belong to the 3rd standard 
deviation. The approach yields faster results. The compact 
representation of the model facilitates anomaly detection even 
on large datasets. However, the statistical methods often fail in 
a multidimensional dataset environment, and also, they require 
prior knowledge about the anomaly pattern [5], 2) supervised 
method: The model is trained on the labeled features that 
differentiate between a normal and an abnormal data class. 
The unseen data is fed to the system, i.e., test data, and the 
model determines to which category the data point belongs. 
Interestingly, they do not rely on any prior knowledge of the 
anomaly pattern and it is easy to train the model. Again, this 
model fails in a high-dimensional space, further attributed 
with the local neighborhood problem [6], 3) unsupervised 
method: the anomalies are detected through a heuristic 
approach with certain assumptions of segregating the regular 
instances versus other data points that deviate from the cluster. 
K-means and DBSCAN are the prominent techniques here [7]. 
These methods are highly dependent on users’ perception 
making the outlier detection task quite spontaneous. The main 
drawback of this approach is the binary nature of data 
separation, which is used for data grouping. Several 
algorithms have been proposed in the realm of anomaly 
detection however, they focus on arbitrary labels in the 
classification of datasets to distinguish between previously 
observed outlier samples. The protocols for feature selection 
are not indicated, making the model detect only the previously 
known anomalies. Moreover, the statistical methods will lead 
to high false negatives that may skip identifying the actual 
anomalies, and the rule-based models are highly dependent on 
user-set parameters, whereby changing these features will 
negatively impact the performance of the model [8]. 
Therefore, to fill the research gap of the existing methods, the 
present study uses a deep learning approach – autoencoder and 
convolution neural network (CNN). These methods have been 
doing miracles on a diverse range of datasets amidst any 
complexities in the structure. Thus, the main objective of the 
present study is to use an autoencoder with encoder and 
decoder arrangement to detect and eliminate outliers on lung 
cancer computerized tomography (CT) scan images [9]. 
During the training, the encoder will learn the latent 
representation of the normal data at the core layer. Thereon, 
the decoder will use the information present in the core layer 
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to reconstruct the data. The normal and abnormal data’s 
behavior is separated by using a Mean Squared Error (MSE) 
score. The MSE calculates the difference between the original 
input data and the data the model constructed at the output 
side. For a good model, the MSE scores should be small. In 
further steps, the images are subsequently classified into 
benign and malignant. The significant contributions of the 
proposed work are as follows: 

• Image datasets are highly sparse with a complex 
structure. Thus, the study empirically demonstrates a 
deep neural architecture to detect the medical image 
outliers. 

• The input data distribution is transformed into output 
distribution space with the least amount of feature loss 
(distortion). 

• A reconstruction error is calculated for the training and 
test data for understanding the gap between normal and 
abnormal data samples. A base threshold is pivotal for 
this mapping function [10]. 

• The proposed method works on an unsupervised 
dataset without any labels, making the framework 
efficient enough to ascertain the unusual patterns in the 
underlying data. 

The remainder of the paper is organized in the following 
sections. Section 2 discusses various works related to the 
present study. Section 3 introduces the autoencoder. The 
implementation details are shown in Section 4. Section 5 
delivers results and analysis of the proposed model. Lastly, the 
paper culminates with Sections 6 and 7, highlighting the 
discussions, scope for future research, and conclusion. 

II. LITERATURE STUDY 
The problems associated with anomaly detection are found 

abundantly in the literature. Various researchers have 
proposed various models and methods globally in the past two 
decades [11] [12]. In [13], LUNA16 dataset, CT scan images 
with label nodules are used by the authors to detect cancer 
using 3D-CNN. Initially, the raw images are preprocessed 
using a threshold approach, and later vanilla 3D NN 
architecture is used to classify the images into cancerous and 
non-cancerous. The model achieved 80% accuracy with 120-
sec computational time. Though the results of this research 
work are better than the previous results, it uses a relatively 
small amount of dataset (~100 CT images). The same 
LUNA16 (lung nodule analysis 2016) datasets have been used 
by the authors Gritli, et al. in [14]. The aim was to classify the 
datasets into benign and malignant using 3D AlexNet 
architecture. Through 10-fold cross-validation, the proposed 
approach resulted in 97%, proving to be efficient than the 
existing methods even at low-dose CT scan images. However, 
the layers at the semantic network are tiny and light, making 
the class activation function not perform well. There was a 
significant amount of data lost in the process of maintaining 
the class equivalence. The lung cancer detection in CT scan 
images using CNN is proposed by Sharma, et al. in [15]. The 
researchers have performed preprocessing and segmentation. 
Later U-net model is used to classify the patients’ nodules into 

cancerous or non-cancerous. The authors claim to obtain 77% 
accuracy but the proposed model suffers from data-imbalance 
problems, due to which the accuracy is dropped. Rasha, et al. 
[16] have worked on anomaly detection in lung cancer image 
datasets. The features have been selected through techniques 
such as local binary pattern (LBP), discrete wavelet transform 
(DWT), and histogram of oriented gradients (HOG). The 
firefly algorithm is used to optimize the selected features and 
later on support vector machine (SVM) is applied to classify 
the normal instance of the image. The authors have not shown 
the real-time datasets taken from Moulana hospital. The 
details of the preprocessing of the dataset are not discussed. 
When the training set contains a small fraction of outliers, it 
becomes extremely challenging to identify anomalies in the 
given image dataset. Thus Laura Beggel, et al. in [17] have 
proposed a unique anomaly detection using adversarial 
autoencoders that places anomaly patterns in low likelihood 
regions. The proposed model is performed on the MNIST 
image dataset. The model resulted in some overlap with 
reconstruction images making the task rely on a supervised 
training mode. The performance is not studied for a high-
dimensional dataset. The 3D-National lung screening trial 
(NLST) datasets have been used to study anomaly detection 
using deep generative models in [18]. The model works on the 
fact that positive samples are available in scarce; thus, the 
likelihood of the unseen data is estimated without the 
implications of the negative samples, thereby identifying the 
samples as low likelihood datapoints. However, the 
applicability is not suited when the complexity of the data 
increases. The results of the 0.62 score under ROC results are 
still not good enough for determining anomalies at the nodule 
level. Mehdi, et al. [19] have proposed lung cancer detection 
using an autoencoder that is semi-automatically trained on 
datasets from the Lung Image Database Consortium image 
collection (LIDC-IDRI) database. The dataset of healthy 
patients is used for training, later the output was fed to a 
segmentation process, and the variation in a pattern other than 
healthy patients was removed. However, the segmentation 
network could fail while training on abnormalities of the 
diseased images. 

III. ARCHITECTURE RECURRENT OUTLIER DETECTION 
USING DEEP NEURAL ARCHITECTURE – AUTOENCODERS 
Autoencoders (AE), a multi-layered feed-forward neural 

network, is an unsupervised machine learning approach [20] 
used for dimensionality reduction in a multivariate data 
environment. However, on a univariate dataset, the 
autoencoders are similar to linear regression or a typical 
principal component analysis (PCA) problem [21]. Though 
PCA and other clustering algorithms perform reasonably well 
on multidimensional data, the autoencoder does a better job 
because of hyper-parameters [22]. A significant difference 
between a PCA and an AE is that the latter perform analysis 
on the data with a non-linear activation function on the hidden 
layers. Architecturally, an AE is a simple feed-forward 
network because the information is fed to the input layer, 
passed through a set of hidden layers. Each has a varied 
number of nodes/neurons to transform the input and arrives at 
the output. The nodes are extrapolated into different layers, 
each connected to all the nodes on the previous layers. The 
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input and the output layers have the same number of nodes, 
‘n,’ due to the symmetric arrangement of the autoencoder that 
intends to reconstruct input at the output side. The values 
predicted at each node through activation functions are passed 
into consecutive layers ahead. The general representation of 
AE is shown in Fig. 1. An AE consists of two main stages, an 
encoder and a decoder [23]. An encoder maps the given input 
into a compressed representation, and a decoder transforms 
the compressed data back into the original input. Alongside, 
an encoder wraps the original data by hidden layers into a 
squeezed vector representation. 
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Where, ne  is an encoding function of the hidden layer 
ranging between 1 and n, enw and enb  are the weight and bias 

parameters at layer ‘n’ and 0x is the original input vector from 
the input layer. Similarly, at the decoder side, the output will 
be the same as the input that the system received initially but 
with a difference that the output at encoder represents the 
input (x) as a reconstruction error for 0x . 
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Where, 'x  is a decoding function at nth decoding hidden 
layer with the weights and bias being represented for the 
corresponding nth decoding layer as dnw and dnb . 

The AE extracts the crucial features and stuff in a latent 
space representation between an encoder and a decoder. 
Besides, this representation contains a low-dimensional 
version of the original input. Thereby, at the decoder, the AE 
reconstructs the input data as the output from the latent space 
features. This reconstruction is dependent on the training data, 
i.e., an AE cannot build a new representation of the input but 
only specific to what has been trained. Furthermore, the 
autoencoder calculates the reconstruction error through MSE. 
For a normal data sample, the reconstruction error is small. 
However, these numbers are usually large and above a certain 
base threshold for the anomalous data, typically set by the 
user. 

The encoding section takes the input image; the 
autoencoder captures only the spatial features and converts 
them to a low dimensional image. Further, in the decoding 
section, the image is reconstructed. 

 
Fig. 1. A Diagrammatic view of an Autoencoder Network. 

IV. AUTOENCODERS AND ITS COMPONENTS IN ANOMALY 
DETECTION 

The fundamental role of an AE in anomaly detection is to 
determine how much the output data (reconstructed data) 
deviates from the input data. Thus, the AE is essentially 
trained on the theory of minimizing the reconstruction error. 
The following parameters are considered during the training 
process: 

• The number of hidden layers – The decision boundary 
is observed to split the input data into several classes, 
and later these classes are expressed as a straight line 
[24]. The joining curve of these lines indicates the 
number of hidden layers, and the number of 
consecutive lines decides the number of neurons in 
these hidden layers. In an AE, the number of neurons 
in the input and the output layers are the same. 

• Regularization – The main objective of using any 
machine learning approach is to make the model fit for 
both training and test data to avoid overfitting and 
underfitting. In both cases, the model will not 
generalize well. The regularization techniques are 
adopted to minimize the error rate on the test data at 
the cost of boosting the training error. Lasso regression 
(L1) and Ridge regression (L2) are the two popular 
regularization methods [25]. Here, L1 regularization 
[26] is used since this is particularly useful for the 
feature selection process on a wide range of input 
values. The loss function is given by; 

Loss Function 
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Here, Zi is the input variable at some neuron layer ‘i’ (i ∈ 
1 to ‘n’ inputs), and yij is the output layer obtained at some 
neuron layer ‘j’ corresponding to the input ‘i’. The output has 
‘j’ layers, the same as the input layer such that j ∈ 1 to ‘p’ 
outputs. αj is the reconstruction error. The entire component is 
squared to eliminate any negative value. The L1 regression 
defines an absolute value of the magnitude for a penalty term 
along with loss function [27], and it is given by; 

Regularization Function (L1) = 
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• Learning rate: Indicates the number of weights updated 
at every epoch. It tunes the algorithm to achieve 
minimum reconstruction error. 

• Batch size: This refers to the number of training 
samples used at different iterations from which the 
model learns. 

• Optimizer: An optimizer is used to combat the time 
complexity of the algorithm. Adam Optimization 
algorithm [28] is a replacement for a traditional 
stochastic gradient descent method to update the 

150 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 7, 2021 

training network’s weights. The learning rate is 
calculated for various parameters and frequently 
preserved for individual network weights. These values 
are finally adopted as a learning process unfolds. 

A. Training a Deep Neural Network through ConvNets 
When an input image passed through a standard neural 

network, many of the temporal [29] (time-related: pictures that 
were taken at different time intervals) and spatial [30] (space-
related: properties related to a single image such as 
coordinates, gradients, resolution and so on) features are lost. 
Convolutional Neural Network – ConvNet – CNN [31] model 
is used to overcome this problem. Spatial elements are 
essential to reconstruct the images as they describe each 
image’s characteristics.  An AE retains only spatial features, 
eliminating the images’ temporal aspects. The encoder 
comprises three ConvNet layers with different dimensions. At 
the core, there is a hidden layer that is dense and fully 
connected autoencoder with neurons. Once the image is 
resized, a low-dimensional version of the input is stored in the 
latent space. The decoder comprising three deConvNets 
reconstructs the input image with limited features. Each image 
is 512x512 pixels. The first layer of ConvNet is a 
convolutional layer with 32 filters such that each filter is of 
size 5x5. Only one feature out of 32 will be considered at each 
evaluation step, indicated by 512x512x1. The second layer is 
pooling with a 3x3 pool size. The output size is 509x509 since 
pooling prunes 3x3 pixels from each side. Here, the image 
would be reduced to 169x169 (509/3 ~ 169) with 32 filters (a 
similar process is repeated for the 2nd and 3rd ConvNets). The 
flattening process induces the product of these numbers. The 
pooled features of the input image are mapped onto columnar 
representation. The fully connected layer in the core is then 
turned on with batch size = 128. The spatial features are 
juxtaposed to form many attributes sufficient to create the 
original input image. At the decoding side of DeConvNets, the 
same process is reversed by retaining the dimensions constant. 

The architecture of a CNN model is shown in three stages, 
Fig. 2. 

• Convolutional Layer: The feature space is created for 
an input image and preserves the relationship between 
the pixels through filtering. The filters’ values are 
usually; 1, -1, and 0 – a positive value for feature 
brightness, a negative value for darkness, and 0 for a 
grey image. These values are placed indefinitely at 
different locations in the filters. When an original 
image passes through the filters, the filtered image 
features produce two types of high and low scores for a 
match and low for a no-match/mismatch. The filters 
here represent the number of features that the model 
can extract. However, with a more significant number 
of filters, the training process is prolonged. The filter 
values are 32, 64, 128, and so on. 

• Activation Function: The activation function helps the 
model map the resulting feature values into a 
normalized value between 0 to 1 and -1 to +1. In the 
proposed system, two activation functions are Sigmoid 
and ReLu. The sigmoid function squashes the feature 

values between 0 and 1. The ReLu – Rectified Linear 
Unit – substitutes a negative value to zero [32]. 

• Pooling: This is used to reduce the size of filter vectors. 
For instance, in max-pooling, if the filter is 3X3, the 
highest value is chosen at every 3X3 matrix. Once the 
pooling is completed, the filtered images are stacked 
up to form a list. 

 
Fig. 2. The Encoding and Decoding Processes of an Autoencoder using 
ConvNets and DeConvNets, Respectively. The Encoding and Decoding 
Processing are Symmetric and have the Same Layers in each Section. 

B. Training Algorithm for ConvNets-Autoencoders using 
Adam Optimization Technique 
Adam optimizer is used to train a deep neural network 

using ConvNets. Here, the learning curve is estimated based 
on the lower-order moments with fewer memory 
requirements. Algorithm 1 illustrates the training process 
adopted for this research study. 

Algorithm 1: Training algorithm for ConvNets using Adam 
Optimization Technique 

Input: Training data split (d); the input vector ( 0x ); Adam’s learning 
rate parameters β = ( ne , enw , enb ); the number of hidden layers; the 
number of epochs; batch size; ρ is the regularization parameter;  
Output: Trained model with decoding function (

'x ) returns α j as 
reconstruction error; fw,d(x)~ x 
1: start 
2: arrange the data required for the training model with the dataset (d) 

3: initialize the parameters β = ( ne , enw , enb );   
4: for P ∈ (1, 2, 3, 4… epochs) 
5: for q∈ (1, 2, 3, 4… batch size) 
6:  for fw,d(x) ∀ x in d 
7:  transform the input layer vectors into their 

corresponding hidden layers in a series of 
encoder layers and compute output layer with 
decoding function [eq. 1 and eq. 2] 

8:   calculate the reconstruction error α j  by using    
eq. 4 

9:  update Adam’s learning rate parameters β = ( ne ,

enw , enb );   
                              for each iteration 

10:   end for 
12:  end for 
13: end for 
14: train the model with the results of the above steps and return  
15: stop 
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V. IMPLEMENTATION 

A. Dataset Description 
CT scan images of lung cancer are used as a dataset1. The 

dataset is a subset of the LUNA16 Grand Challenge2. The 
dataset is efficient enough to analyze the model because it 
contains the images exposed to a two-phase annotation 
process by four different radiologists. Thus, it makes the 
dataset suited for testing with an emphasis on identifying 
anomalies. Further, the images are adequately compressed, 
due to which no additional image compression techniques are 
used in the present study. A total of 297 images are separately 
marked for training and testing purposes. Convolutional 
autoencoders are implemented on the Spyder platform version 
4.1.5 3by adopting a high-level neural network application 
package – Keras 2.3.0 4 ,which runs on Tensorflow  v2.4.1 5 at 
the background. The code is written in python 3.8.8 6 

B. Parameter Setting and Preprocessing 
The details of the hyper-parameters used for the 

implementation are as follows: learning rate: 0.01, epochs: 40, 
batch size: 30,  Adam optimizer parameters: alpha (learning 
rate) = 0.001, beta1 (exponential decay rate for the first 
estimate) = 0.9, beta2 (exponential decay rate for the second 
estimate) and epsilon (to overrule divide by zero error) = 10E-
8, input images: 297, corresponding to 297 neurons in each 
hidden layer, sequential CNN model with kernel size = (3,3) at 
convolution layer and pool size = (2,2) at MaxPooling layer. 

The images were preprocessed before the model is 
executed on the input. Those are; a function was called to load 
images from the folder onto an array variable. Further, images 
in the dataset had varying sizes. Thus, the height and width 
were rescaled to 512 pixels each to maintain uniformity 
throughout. The pixel values of the image (0 –black to 255 – 
white) are scaled between the ranges of 0 and 1 in the process 
called normalization (the ImageDataGenerator divides the 
pixel value by 255, for instance, 1/255 = 0.0039). This is 
performed because a neural network usually works with small 
weights used to update the neurons. If a large value is used, 
the network consumes a great deal of time, slowing down the 
learning process. With 40 epochs, the model attained an 
accuracy of 98% and an MSE value as low as 0.011. With 
every epoch, the model learns the features better with extra 
latent manifolds. The relevant features are then retained, and 
the characteristics that are not scalable for latent space 
representation are pruned. 

C. Results 
Out of 297 images, the dataset was split into three 

categories as training: 70% (207 images), validation: 10% (29 
images), and test: 20% (61 images). The efficacy of the 
proposed system is measured at both the times – training and 
validation. The terms used are: 

1 https://www.kaggle.com/kmader/finding-lungs-in-ct-data 
2 https://luna16.grand-challenge.org/Data/ 
3 https://www.spyder-ide.org/ 
4 https://keras.io/ 
5 https://www.tensorflow.org/ 
6 https://www.python.org/ 

• Overall accuracy – accuracy is calculated at every 
epoch as, accuracy= images the system constructed 
correctly / the total number of images in each epoch 
(batch size). 

• MSE – MSE defines an average square of the 
difference between the original input image and the 
image constructed by the model. 

MSE = 
2

1

1 ( )i

B

i
i

X X
B

∧

=

−∑
             (5) 

Here, ‘B’ indicates the batch size since the parameters are 
considered for individual batches. The error score of the 
original input image at the ‘i’ instance is given by iX , and the 
error score of the reconstructed image at ‘i’ is provided by iX

∧

. 
MSE score of the anomalous data tends to be above the 
normal data threshold. The MSE scores for all samples are 
calculated to set the base threshold. The distribution of these 
MSE scores determines the threshold; 92% of the data was in 
the range of 0.011 to 0.6. The remaining 8% of the data had 
many variations in their MSE scores, such as 17.5, 2.5, 9.2, 
and 11.3, so on. Therefore, by looking at this distribution, the 
base threshold for anomaly detection was set as 0.7. The MSE 
score of the reconstructed images of the normal samples will 
be less than or equal to 0.7, and for abnormal images, the 
score will be greater than 0.7. 

Of the 297 images, 23 images are identified as anomalies, 
with an MSE score greater than 0.7, and the 274 images are 
identified as normal samples, as demonstrated in Fig. 3(a). 
Initially, the accuracy was low even for a low MSE score; 
however, it is evident that, as the epoch progressed, the 
accuracy increased for normal data; however, the accuracy 
dropped as low as 11%, indicating a very high MSE score 
(17.5) for some data. Nevertheless, it is observed that the 
samples with high MSE scores have low accuracy values 
indicating the presence of the outliers. The accuracy achieved 
with low MSE scores was excelled, nearing 98%. The data 
with high MSE and low accuracy indicate the presence of the 
outliers, which were identified through the MSE scores. 

• Val_loss: This is applied to the test data. val_loss is a 
good sign of how the model performs on the unseen 
data. Smaller val_loss indicates that there is no 
problem with overfitting. Consequently, if the model is 
trained heavily on the data, the val_loss increases as 
evidence of overfitting. 

• Val_accuracy: The overall accuracy is an indicator of 
the classification performed on the training data. But 
for the test data, val_acc is crucial as it tests the 
accuracy of the unseen data. A neural network model is 
considered good when the val_loss starts decreasing, 
and the val_acc starts increasing [33], as shown in 
Fig. 3(b). Here, the number of examples used to 
calculate the loss/ error gradient is called a batch size 
or simply a batch. However, the training epoch 
indicates that the model has made learning for a 
randomly selected batch. As the validation loss is 
calculated in terms of samples, the term batch is used. 
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• Val_mse: The MSE score for the validation/test data 

The overall evaluation of the proposed model is plotted in 
a line chart for the key terms explained so far. This is shown 
in Fig. 4. It must be noted that, as the epochs progress, the 
accuracy metrics increases, and the MSE values decreases. 
Additionally, val_loss is also reduced, indicating that the 
model is trained appropriately. Fig. 5 shows a set of images 
identified as anomalies and normal data. Once the outliers are 
removed, the image dataset is classified into either benign or 
malignant with simple neural network architecture [34]. 

The predicted output is put forward in the form of a 
confusion matrix in Fig. 6. Out of 297 input images, 259 
images were correctly classified as benign (TP), and 22 out of 
24 (actual number of malignant) images were classified as 
outliers (TN), 5 images that are non-benign (actual malignant) 
but are identified incorrectly as benign (FP) and 11 images 
were obtained incorrectly as malignant (FN). The ROC 
(Receiver-Operating-Curve) is plotted to determine the model 
performance based on predicting the probabilities of outcome 
(whether an image is an outlier or not) as illustrated in Fig. 7. 
The ROC is plotted against True Positive Rate (TPR) and 
False Positive Rate (FPR) for a wide range of threshold 
values. TPR – Recall – Sensitivity is given by, TPR = (TP) / 
(TP + FN) and FPR is given by, FPR = (FP) / (FP + TN). 
Area-Under-Curve (AUC) measures the degree of separation, 
which tells how capable the system is at distinguishing 
between the classes. 

 
Fig. 3. (a) A Graphical Representation of Variation in the Accuracy and the 
MSE Scores. The Accuracy Increased, and the MSE Value is Dropped to a 

Minimum towards the End of 40 Epochs, (b) A Graphical Representation of 
Variation in Training and Test v_loss. As Observed, the val_ loss of Test Data 

is Slightly Reduced at Encircled Points. 

 
Fig. 4. The Evaluation Metrics Such as MSE, Val_loss, Val_acc, val_MSE, 

and Overall Accuracy Plotted across 40 Epochs. 

 
Fig. 5. A Series of Data for both Anomalous (Black Background) and 

Normal (White Background) as Identified by the Proposed Model. 

 
Fig. 6. A Confusion Matrix for the Two Classes – benign and Malignant 

Plotted against the True and Predicted Classes. Here, 259 Indicates TP, FP = 
5, FN = 11 and TN = 22. The Ranking is shown for all the 297 Input Samples. 

 
Fig. 7. ROC Curve for Cumulative Results of the Classification Task. The 

Value of AUC = 0.972 (97%) Reveals that the Model is Excellent in 
Distinguishing between the benign and Malignant Classes. 

D. Comparison of Various Outlier Detection Methods with 
the Proposed Model 
In this subsection, the proposed model is compared with 

the classical state-of-art systems. The result of this comparison 
is described in Table I. The proposed model outperformed the 
other conventional methods by achieving 98% accuracy. This 
indicates that the model can be well adapted even for distinct 
datasets with complex structures. 

0

0.2

0.4

0.6

0.8

1

1.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40

MSE

Val_loss

Val_acc

Val_MSE

Accuracy

153 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 7, 2021 

TABLE I. COMPARISON OF THE PROPOSED MODEL WITH THE OTHER 
STATE-OF-ART TRADITIONAL SYSTEMS IN TERMS OF ACCURACY 

 Accuracy 

Gritli. et.al in [14]. 3D AlexNet 
architecture. 97% 

Sharma. et.al in [15]. CNN-based 
architecture  77% 

Rasha. et.al [16]. Firefly algorithm with 
SVM 78% 

Laura Beggel. et al. in [17]. Adversarial 
autoencoder-based 

0.62 
[Under 0.62] 

AnoGAN deep convolution using 
adversarial network [35]  84% 

Our proposed method 98% - outlier detection 
97.2% - classification task 

VI. DISCUSSIONS 
Like any other expert system, the proposed model also 

deals with some limitations. The model is highly dependent on 
the training data. As a result, when unseen data – a typical 
healthy heart image – was fed as an input, the system calls it 
an anomaly. This could be a potential problem mainly when 
the corpus is more generic than domain-specific. The 
proposed model considers only the spatial features, thereby 
removing the temporal characteristics of the image in the 
cleaning step. Thus, the edges and variations in the local 
binary pattern of the images are skipped, leading to 
misrepresentation of features sometimes. Interestingly, the 
global minimum MSE score is 0.01, and it cannot be reduced 
even with further training. This hypothesis helped to shorten 
the input size and exemplify the latent space representation. 
Additionally, a sparse hierarchical model is witnessed in most 
activations, mainly when the spatial features are selected. 
Further, the complex representation is brought down to lower 
dimensions in the encoder and later decoded into an original 
image. During this transformation, the model may memorize 
the data during the training process leading to overfitting. 
Therefore, the proposed method restricts the number of 
neurons in the core layer, usually half of the number of input 
variables in the network. This will ensure that the model is 
learning the key patterns, rules, and essential features from the 
input data. It is imperative to note that no training labels are 
used in the model, making it completely unsupervised. 
However, each neuron at the hidden layers is driven by the 
data on hand that makes the system data-reliant. Thus, when 
the input features change, the activation function triggers 
different neurons and results in a different output through the 
network. While the latent space representation stress enough 
on the encoding and decoding process, the regularization used 
in the network minimizes the error rate through the L1 
regularization technique. Though the proposed model 
performs reasonably well, there is still room for improvement. 
For instance, the gradient-weighted activation mapping 
technique could be used to obtain visual explanations of the 
predictions made by the system, and using a larger dataset 
could further improve the performance. 

The future direction of this research study is to identify the 
nodule location and size measurement using Deep NN 
techniques and later categorize it into different cancer stages. 

The present work could be implemented on different types of 
autoencoder for a complex dataset and study the performance. 
The hyper-parameters may be tweaked to refine the CNN 
model and check if the accuracy is improved. The outliers can 
be grouped into different clusters and analyze their behavior in 
each set. Alongside, the feature rules can be generated to 
highlight the anomaly score of each group to understand the 
depth of anomalies present in the data. The accuracy could be 
improved further by choosing a giant database such as 
LUNA16 or LIDC/IDRI. The results obtained will help 
clinicians detect cancer more accurately with an anomaly-free 
dataset. 

VII. CONCLUSION 
A study on outliers in medical data has been one of the 

leading research concerns over the past few years. By and 
large, the anomalies in the medical data are inevitable but 
impose complications if left unnoticed. Previously known 
anomaly detection approaches using PCA are equally 
efficient; however, PCA attempts to uncover the lower-level 
features of the input data, but autoencoders learn features from 
the data having higher dimensions with any complex and non-
linear structures. With the help of an encoder and a decoder, 
clustered in multiple convolutional layers, the autoencoders 
efficiently remove the outliers without any training labels in 
the dataset. The encoder absorbs significant features of the 
images. The original image is reconstructed at the decoder 
side. Of the 297 images, 23 images are identified as 
anomalies, with an MSE score greater than 0.7, and the 274 
images are identified as normal samples. With 40 epochs, the 
model attained an accuracy of 98% and an MSE value as low 
as 0.011. With every epoch, the model learns the features 
better with extra latent manifolds. The outputs are further 
classified into benign and malignant. The confusion matrix 
indicates a good classification of the two classes. Out of 297 
input images, 259 images were correctly classified as benign, 
and 22 out of 24  images were classified as outliers, 5 images 
that are non-benign but are identified incorrectly as benign, 
and 11 images were obtained wrongly as malignant. The 
ROC-AUC curve showed 97.2% efficiency on the 
classification task. Thus, autoencoder could be a one-stop 
destination to remove the outliers from complex multivariate 
data. 
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