
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

Independent Task Scheduling in Cloud Computing
using Meta-Heuristic HC-CSO Algorithm

Jai Bhagwan1, Sanjeev Kumar2
Department of Computer Science and Engineering

Guru Jambheshwar University of Science and Technology
Hisar, India

Abstract—Cloud computing is a vital paradigm of emerging
technologies. It provides hardware, software, and development
platforms to end-users as per their demand. Task scheduling is
an exciting job in the cloud computing environment. Tasks can
be divided into two categories dependent and independent.
Independent tasks are not connected to any type of parent-child
concept. Various meta-heuristic algorithms have come into force
to schedule the independent tasks. In this, paper a hybrid HC-
CSO algorithm has been simulated using independent tasks. This
hybrid algorithm has been designed by using the HEFT
algorithm, Self-Motivated Inertia Weight factor, and standard
Cat Swarm Optimization algorithm. The Crow Search algorithm
has been applied to overcome the problem of premature
convergence and to avoid the H-CSO algorithm getting stuck in
the local fragment. The simulation was carried out using 500-
1300 random lengths independent tasks and it was found that the
H-CSO algorithm has beaten PSO, ACO, and CSO algorithms
whereas the hybrid algorithm HC-CSO is working fine despite
Cat Swarm Optimization, Particle Swarm Optimization, and H-
CSO algorithm in the name of processing cost and makespan.
For all scenarios, the HC-CSO algorithm is found overall 4.15%
and 7.18% efficient than the H-CSO and standard CSO
respectively in comparison to the makespan and in case of
computation cost minimization, 9.60% and 14.59% than the H-
CSO and the CSO, respectively.

Keywords—Crow search algorithm (CSA); cat swarm
optimization (CSO); H-CSO algorithm; HC-CSO algorithm; heft
algorithm; SMIW (self-motivated inertia weight); independent
tasks; particle swarm optimization (PSO); QoS (Quality of Service);
virtual machines (VMs)

I. INTRODUCTION
At present, the IT industries having cloud infrastructure are

providing on-demand services to their customers [1][2]. These
services may include hardware storage, memory, software,
applications development at remote locations [3]. To fulfill
these services, cloud service providers provide virtual
machines to the users in order to execute their tasks. It is
necessary to map all the tasks on each virtual machine carefully
to optimize the performance of the cloud [4][5]. A service level
agreement needs to be signed by the user and the service
provider. According to that agreement various QoS (Quality of
Service) parameters need to be decided before starting a
service. These QoS may be budget, deadline of all tasks,
security, throughput, etc. Quick execution of all tasks is highly
demanded [5]. Task scheduling always remains a burning topic
of research in cloud computing due to its NP-Hard properties
[6][7]. The most critical problem of a cloud is to schedule the

tasks to the perfect resources [8][9]. The cloud service
providers apply many techniques to reduce the makespan and
cost of tasks scheduling. There may be two kinds of scheduling
techniques: independent scheduling and dependent scheduling.
In the case of dependent scheduling, the tasks are
interconnected with each other in the form of a workflow. In
independent scheduling the tasks are not dependent on each
other; they are autonomous as per their nature [6]. Further, the
scheduling policy can be classified into two categories static
scheduling and dynamic scheduling. In static scheduling, the
amount of the data is known before execution but in the event
of dynamic scheduling, the amount of the data is not known
[10]. Scheduling is an important issue to increase the
performance of a cloud. Many scheduling meta-heuristic
methods have entered the Information Technology market. For
example, Ant Colony Optimization, Genetic Algorithm,
Particle Swarm Optimization, Gravitation Search Algorithm,
etc. [11]. In this research, various algorithms have been utilized
and these are described as:

1) HEFT – The HEFT algorithm [10] is having two
phases: setting a task priority and selecting a virtual machine.
In the priority phase, the HEFT sets the ranks of all the tasks.
In the virtual machine selection phase, the HEFT calculates the
earliest finish time of all tasks on the VMs. After this in HEFT,
the tasks are set in decreasing order of their ranks and assign to
virtual machines.

2) Crow Search Algorithm – The CSA algorithm [8] is
another meta-heuristic technique. This algorithm has been
developed by considering the real behavior of the Crow bird.
The Crow is one of the most intelligent birds in this universe.
Its memory is very sharp and it can easily remember the thing
for a long time. One of the characteristics of the Crow is to
steal the food of other birds by chasing them cleverly. Based
on the above characteristic, the algorithm has been designed by
A. Askarzadeh in 2016. According to the author [12], there are
two states of the CSA algorithm, and both states are combined
in equation 1.

𝑋𝑖,𝑖𝑡𝑟+1 =

 �𝑋
𝑖,𝑖𝑡𝑟+1 + 𝑟𝑖 × 𝑓𝑙𝑖,𝑖𝑡𝑟 × (𝑚𝑗,𝑖𝑡𝑟 − 𝑋𝑖,𝑖𝑡𝑟) 𝑟𝑗 ≥ 𝐴𝑃𝑗,𝑖𝑡𝑟

𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑒𝑙𝑠𝑒
 (1)

Where 𝑟𝑖 and 𝑟𝑗 are random variables between [0 – 1], fl
denotes the flight length of the Crowi, and 𝐴𝑃𝑗,𝑖𝑡𝑟 is the
awareness probability of the Crowj at the itr iteration.

207 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

 In the first state, the local searching is taking place
whereas in the second state the global searching (random
searching). If the awareness probability is less than or equal to
the rj variable then the global searching will be done otherwise
local searching will be executed. The searching also depends
on flight length (fl), a small value of fl will lead to local search.
In above equation 1, it is also assumed that the Crowi will
follow the victim Crowj and steal its food.

3) Cat Swarm Optimization – The CSO algorithm was
designed by Chu and Tasi in the year 2006 based on two
properties of a real cat, i.e. resting and hunting modes [13]. In
the seeking mode, the cat moves freely in a random manner
and remains alert. In the case of tracing mode, the cat has full
of energy and moves towards the prey with high eagerness.
Both the modes are described in detail in [14]. The pseudo-
code [26] of the Cat Swarm Optimization is given in Fig. 1.

Cat Swarm Optimization Algorithm

1. Randomly initialize Cats of Size N
2. While Termination Condition Do
3. Distribute Cats into Tracing Mode and Seeking Mode as per

MR Flag
4. For K = 1 to N
5. Evaluation Cat Fitness
6. If CatK is in Seeking Mode Then
7. Execute Seeking Mode
8. Else
9. Execute Tracing Mode
10. End If
11. End For
12. End While

Fig. 1. Pseudo-Code of Standard Cat Swarm Optimization.

4) H-CSO Algorithm – This algorithm was formulated by
using the HEFT algorithm original Cat Swarm Optimization,
and the SMIW method. The SMIW method is given in the
methodology adopted section in detail.

 The flaws of the H-CSO algorithm are observed and the
work has been done to overcome those limitations by inserting
a local searching part of the standard Crow Search Algorithm
[25]. Basically, the H-CSO algorithm is a hybrid of standard
CSO, HEFT algorithm, and SMIW method. Some drawbacks
of the H-CSO are described as:

• The H-CSO algorithm has poor local searching
capacity. Although, the outrange drawback of the
velocity formula of the tracing mode of the standard
CSO has been removed in the H-CSO using the SMIW
method.

• Due to the resting of Cats for a maximum time in the
seeking mode of the H-CSO, it gets frozen in the local
fragment.

The objective of this research is to simulate the HC-CSO
[25] algorithm for independent tasks and make comparisons
with H-CSO and other existing standard algorithms. The
remaining information is specified in the methodology adopted
section.

The remaining of the paper is organized as: In Section II
related work has been presented. Section III is describing the
methodology adopted and the simulation setup is explained in
Section IV. Simulation results are discussed in Section V. Final
Section VI is representing the conclusion and future scope of
this research.

II. RELATED WORK
In this section, a study of various scientists is described. A

hybrid CSO algorithm using the Simulated Annealing and
Orthogonal Taguchi was designed by the scientists in [3]. The
result analysis highlighted that the proposed method performs
efficiently than MGA, MOACO, and MPSO for various QoS
parameters. A task mapping approach using the PSO and Eagle
Strategy was designed in [4]. The simulation results indicate
that the proposed procedure is improved than the original PSO
and other existing methods like RALBA, NMT-FOLS, etc. A
joint task scheduling and resource placement policy was
designed in the paper [5]. The makespan, degree of imbalance,
resource utilization, and cost are improved using the newly
designed policy as compared to existing GSO and GA
methods. A new method named MHO was designed for task
scheduling and load balancing in [6]. The proposed method
having two phases MHOS-S and MHO-D were found better
after results analysis as compared to other meta-heuristic
methods. A new model for task allocation to virtual machines
has been proposed in [8]. The experimental results summarized
that the proposed ICSA algorithm reduced the makespan,
waiting time, response time, and flow time as compared to
FCFS and PSO methods. A Binary PSOGSA method was
developed for the load balancing and task scheduling in the
cloud in paper [11]. It is a bio-inspired load balancing
algorithm used to manage the virtual machines for the load
balancing issue. The outcome analysis demonstrated that the
proposed method is efficient than originally developed Bin-
LB-PSO and other techniques. An Average-Inertia Weight
CSO algorithm (AICSO) was proposed in [14]. The simulation
demonstrated that the AICSO is having a good convergence
rate as compared to the standard CSO and ICSO algorithms.
The authors proposed a cloud scheduling strategy named
Genetic Algorithm-Chaos Ant Colony Optimization [15]. The
proposed algorithm is optimal as compared to the ACO. A task
scheduling strategy was designed using the PSO algorithm in
the research paper [16]. The proposed method is a combination
of Dynamic PSO and Cuckoo Search. It was identified by the
results that the proposed algorithm worked fine than the
original PSO. An adaptive cost-based method was developed in
[17]. The proposed method was proved better by the simulation
results in terms of various resources utilization like memory,
bandwidth, CPU utilization, etc. A PSO-oriented load
balancing method was proposed in [19]. The proposed method
was designed by using a load balancing technique and was
analyzed with traditional Round-Robin, the present PSO and
load management method. The results were discussed by the
authors and the new introduced technique was found efficient
for balancing the cloud load. The paper [20] described that an
improved PSO was developed using a discrete position
updating strategy and the Gaussian Mutation operation. The
proposed algorithm outperformed the existing algorithms. The
researchers modified the PSO in [21] to overcome the problem

208 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

of slow convergence. The proposed PSO having dynamic
inertia weight worked fine for cost reduction as compared to
the existing IPSO, PSO-ACO, and standard ACO algorithms.
An IPSO algorithm was proposed for task mapping on virtual
machines in [22]. The process was achieved by splitting the
coming tasks into many batches. The author in experiments
summarized that the Improve PSO was efficient than existing
Round-Robin, Honey Bee, and Ant Colony algorithms. A
multi-objective CSO technique was framed in paper [23]. It
was observed by the analysis of the results that the proposed
MOCSO is very effective than MOPSO for better makespan,
cost, etc. A CSO algorithm based on heuristic scheduling was
introduced in the paper [24]. The results of this paper depicted
that the proposed Cat Swarm Optimization worked better than
the existing PSO.

From the above study, the main key points are found as
follows:

1) The ACO algorithm is having a poor global search
characteristic, due to that the convergence of the ACO is poor.
The standard CSO jumps out from the search space due to the
unbalanced tracing mode’s velocity formula.

2) The PSO algorithm is famous for global searching and
superior to the ACO for scheduling purposes.

3) The CSO algorithm is superior to the PSO due to its
better convergence than PSO, but it gets trapped in local
optima due to the resting behaviour of numerous cats in
seeking mode.

4) H-CSO algorithm improved than the CSO but it may
get trapped in the local search or in tracing mode while
increasing the number of iterations.

III. METHODOLOGY ADOPTED
To overcome the research gaps of the H-CSO described in

the literature review section, a new algorithm has been
designed named HC-CSO [25]. In the H-CSO, a local search
portion of the CSA technique has been fused with the CSO.
This technique balances the seeking and tracing modes which
improve the searching capacity of the HC-CSO algorithm. The
pseudo-code of the HC-CSO algorithm is given in Fig. 2.

As said earlier the HC-CSO method is a hybridization of
the H-CSO and the Crow Search Algorithm’s local searching
portion. It has also been told earlier that the H-CSO is a
combination of HEFT (described in the introduction section)
and Self-Motivated Inertia Weight. The SMIW method is
shown in equation 2.

𝛾 = 𝛾𝑚𝑎𝑥 × exp �−𝑐 × � 𝑖𝑡𝑟
𝑖𝑡𝑟𝑚𝑎𝑥

�
𝑐
� (2)

Where, 𝛾 is a weight factor inserted in tracing mode of the
CSO whereas𝛾𝑚𝑎𝑥 , and 𝑐 are constant factors greater than 1
i.e. 2.0.

As can be seen in Fig. 2 the local search portion of the CSA
technique has been joined into the HC-CSO procedure. The
functioning of the HC-CSO method is well-defined step by
step as follows:

1) All the parameters are initialized at the beginning of the
algorithm.

Some parameters used in the pseudo-code of the HC-CSO
algorithm are: fl, rK, VK, c, 𝛾𝑚𝑎𝑥, c1, MR flag, and number of
iterations. The flight length of the crow is represented by the
symbol fl. The Local and Global searching of the Crow Search
Algorithm may be decided by the flight length. Flight length
(fl) less than 1 is used for local searching, so, it has been set to
0.5. rK and r1 are random numbers between [0, 1]. VK is the
initialized velocities of the cats. c and 𝛾𝑚𝑎𝑥 are constant values
that are set to 2. MR flag (Mixing Ratio) is set randomly [0.2-
0.3] which means 20-30% of the cats are distributed in the
tracing mode and rests are distributed in the seeking mode.

After this, the HEFT will calculate the rank based on the
average execution time of all independent tasks and will
arrange them as per their ranks.

2) If the solution is optimized at the beginning then, the
algorithm will be terminated immediately and returned the
solution else the population produced by the HEFT algorithm
will be given for local searching via the CSA algorithm (as
shown in line number 17 of pseudo-code).

3) The population generated by the CSA local search
method will be handed over to the H-CSO algorithm for local
as well as global searching via seeking and tracing modes. The
cats are distributed in the seeking and tracing modes as per the
Mixing Ratio (MR) parameter as described above. If the
present CatK is caught in the seeking mode then, the seeking
mode will be executed otherwise the tracing mode will be
processed.

4) In seeking mode, the S number of copies of the cats will
be generated. Here, all cats are evaluated by the fitness
function and the best cat is picked up randomly among various
copies. After this, the current CatK will be replaced by the best
cat.

5) In tracing mode, the velocity of the current CatK is
updated by the modified velocity equation using the SMIW
method (given in line number 28 in pseudo-code). Then, the
position of the current CatK is updated. Now, the evaluation of
the Cats is taken place and the best cat is found out.

6) The best cat is saved in the memory.
7) This practice is sustained until the criterion is not met.

In the end, the optimum solution is returned from the memory
in the shape of the optimum result (Best Cat).

209 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

 HC-CSO Algorithm

 Input (Tasks (T1, T2, T3 … Tn), Virtual Machines (VM1, VM2, VM3 … VMm)
 Output (Optimal Makespan and Cost of n Tasks on m VMs) // Mapping of tasks

 BEGIN PROCEDURE

1. Initialize fl (flight length), rK, (velocity factor) VK, c, 𝛾𝑚𝑎𝑥, Coefficient c1, r1, MR flag, and no. of iterations
 /* Calculate Rank of independent tasks using HEFT Algorithm */

2. Feed the tasks in HEFT
3. For Each Task in List Do
4. Calculate average execution time of all VMs

 5. If Task t i is the last Task Then
 6. Rank value of t i = its average execution time
 7. Else
 8. ranku (t i) = WAvgi + Max tj ͼ succ (t i) (CAvgi j + ranku (t j))
 Where WAvgi is average execution cost
 Succ (t i) is set of immediate successor of task t i
 CAvgi,j is average communication cost
 9. End If
 10. End For
 11. Assign Tasks to VMs according to HEFT Rank
 12. If Solution not Optimized Then
 13. Generate a set of Crows by the Population generated by HEFT of Size N
 14. While No. of Iterations not Exceeded Do
 15. For K=1 to N
 16. Update the positions by the following equation : // Do local search
 17. 𝑋𝐾,𝐷 = 𝑋𝐾,𝐷 + 𝑟𝐾 × 𝑓𝑙𝐾,𝐷 × �𝑀𝐿,𝐷 − 𝑋𝐾,𝐷�
 Where, 𝑋𝐾,𝐷 is current position of CrowK, 𝑟𝐾 is uniformly distributed random number [0, 1]
 𝑓𝑙𝐾,𝐷 is flight length (less than 1 i.e. 0.5) of the CrowK at current iteration
 𝑀𝐿,𝐷 is present best location of CrowK in Dimension D
 18. Feed the population generated by Local CSA in H-CSO // Do local and global search
 19. Assign the velocity VK to each Cat
 20. According to Mixing Ratio (MR) flag Distribute Cats to Seeking and Tracing Modes
 21. If current CatK is in Seeking Mode Then
 22. Generate S (SMP) Copies of CatK and Spread them in D Dimensions where each Cat has a velocity (VK, D)
 23. Evaluate the Fitness value of all Copies and Discover Best Cats (XBEST, D)
 24. Replace Original CatK with the Copy of Best Cats (XBEST, D)
 25. Else If current CatK is in Tracing Mode Then
 26. Compute and Update CatK velocity by following equations:

 27. 𝛾 = 𝛾𝑚𝑎𝑥 × exp �−𝑐 × � 𝑖𝑡𝑟
𝑖𝑡𝑟𝑚𝑎𝑥

�
𝑐
�

 Where, 𝛾 is a weight factor calculated by Self-Motivated Inertia Weight method
 𝛾𝑚𝑎𝑥 and 𝑐 are constant factors greater than 1, both are set as 2.0
 28. 𝑉𝐾,𝐷 = γ × 𝑉𝐾,𝐷 + �𝑐1 × 𝑟1 × � 𝑋𝐵𝐸𝑆𝑇,𝐷 − 𝑋𝐾,𝐷��

 Where, D = 1, 2, 3, …, M.
 c1 is acceleration coefficient, r1 is random number in the range of [0, 1]

 29. Update the position of every dimension of CatK by using following equation:
 30. 𝑋𝐾,𝐷 = 𝑋𝐾,𝐷 + 𝑉𝐾,𝐷
 31. Evaluate Fitness of all Cats and find out Best Cats (𝑋𝐵𝐸𝑆𝑇,𝐷) having Best Fitness
 32. End If
 33. Update Best Cats (XBEST, D) in Memory
 34. End For
 35. End While
 36. End If
 37. return (Optimal Solution)
 END PROCEDURE

Fig. 2. Pseudo-code of Meta-Heuristic HC-CSO Algorithm.

210 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

IV. SIMULATION SETUP
 For simulations of the independent tasks a computing

machine was opted to have the configurations as Processor –
Intel ® Core ™ i3-5005U 2.0 GHz speed, RAM – 4 GB, Hard
Disk Drive – 1 TB, and Machine OS – Windows 10.

A. Parameters
For experimental tests, a PowerDatacenter was generated

having the formation as number of Hosts - 1, RAM – 25 GB,
Each VM MIPS – 1000, Storage – 1 TB, and Bandwidth –
5000 bps. The cloud nature is heterogeneous and all details are
displayed in Table I.

B. Cost Plan
The cost plan for independent task scheduling is

summarized in Table II. These charges will be applicable to the
customer for using the datacenter services [27].

TABLE I. SIMULATION PARAMETERS

PowerDatacenter

Parameters Values

Number of Hosts 1

System Architecture x86

VMM Xen

OS Linux
Number of Cloudlets
Cloudlets Length Type

500-1300 Independent
Random Length (300-700)

Numbers of VMs 3, 5 and 8

CPU (PEs Number) 1

RAM per VM 512-1024 MB

Bandwidth 500-1000 bps

Processing Elements per VM 500 – 1000 MIPS

Image Size 10000 MB

Policy Type Time Shared

PSO

No. of Particles 100

Max. Iterations 300

Weights C1 and C2 1.5

Standard CSO and H-CSO

No. of Cats 100

Max. Iterations 300

Weights (C1) 1.5

r1and rk (Random Variables) [0, 1]

Mixed Ratio Percentage Random Range [0, 1]

HC-CSO

No. of Cats 100

Max. Iterations 300

Weights (C1) 1.5

r1(Random Variable) [0, 1]

Mixing Ratio (MR) Percentage Random Range [0, 1] i.e. 0.2-0.3

fl (Flight Length) 0.5

TABLE II. COST PLAN (IN INDIAN RUPEES)

Resource Processor RAM Storage Bandwidth

Size 500-1000 MIPS 512 MB Unlimited 1000 bps

Cost Rs. 3.00 per
processor

Rs. 0.05 per
MB Rs. 0.1 Rs. 0.10

per MB

C. Dataset Used
In the simulation studies, a group of 500, 800, and 1300

independent tasks having random lengths were opted and
submitted to the VMs for execution.

D. Performance Metrics
The performance metrics taken for this research are

described below:

1) Makespan: The makespan [18] is stated as the
maximum finished time occupied for the accomplishment of
the last task in a set. It is the utmost generally used and very
important parameter to map the performance of any algorithm
in task scheduling. The makespan is calculated by the formula
specified in equation 3.

Makespan = max (CTi) ti∈tasks (3)

Where, CTi is the completion time of taski

2) Computation cost: The computation cost should be as
less as possible; this is not only the demand of customers but;
the industries also want the same to stay in the competitive IT
market. The computation cost can be computed by equation 4.

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝑀𝐹+𝐶𝐹
2

 (4)

Where, MF is Movement Factor and CF is the Cost Factor

𝑀𝐹 = 1
𝑁𝑜. 𝑜𝑓 𝐻𝑜𝑠𝑡𝑠/𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝑠

�∑ �𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑈𝑠𝑒𝑑 𝑉𝑀

�𝑉𝑀𝑥
𝑥=1 � (5)

𝐶𝐹 = ∑ �𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 × 𝑀𝑒𝑚𝑜𝑟𝑦 𝑜𝑓 𝑇𝑎𝑠𝑘𝑠
𝑉𝑀 × 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟

�𝑉𝑀𝑥
𝑥=1 (6)

Equations 5 and 6 are utilized for the scheming of the total
computation cost which is represented in equation 4.

3) Fitness function: Equation 7 is displaying how to
calculate a fitness function that has been used in this research
paper. It is used to check the optimization at various levels as
shown in Fig. 2.

𝐹𝑋 = 1
𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟 × 𝑉𝑀𝑗

 �∑ ∑ 1
𝑉𝑀

 𝐶𝑃𝑈 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑
𝐶𝑃𝑈𝑖𝑗

𝑉𝑀𝑗
𝑗=1

𝐷𝐶𝑖
𝑖=1 +

𝑀𝑒𝑚𝑜𝑟𝑦 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑
𝑀𝑒𝑚𝑜𝑟𝑦𝑖𝑗

+ 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑
𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑖𝑗

+ 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖𝑗

� (7)

V. SIMULATION RESULTS AND DISCUSSION
 Previously, the HC-CSO algorithm was tested with

scientific workflows [25]. Now, a set of three scenarios with
500-1300 independent tasks and a flock of 3, 5, and 8 VMs
have been set in the CloudSim tool for the results analysis. The
HC-CSO is compared with the PSO, CSO, and H-CSO
algorithms. The simulation results in terms of makespan are
shown in Table III. All algorithms were executed many times
and the average results are displayed in the form of the
makespan for each algorithm.

211 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

TABLE III. MAKESPAN ESTIMATION (IN SEC)

Scenarios VMs PSO CSO H-CSO HC-CSO

Scenario - 1
500 Tasks

3 240.13 231.42 224.74 213.02

5 225.29 213.27 203.89 195.24

8 181.09 174.18 165.27 151.23

Scenario – 2
800 Tasks

3 425.35 417.21 401.93 387.54

5 310.17 301.07 287.35 281.75

8 279.85 263.17 255.03 243.29

Scenario – 3
1300 Tasks

3 722.13 712.28 697.13 681.08

5 580.43 553.89 530.87 513.13

8 452.24 437.23 433.11 400.39

Fig. 3, 4, and 5 are representing the virtual machines at the
x-axis and makespan at the y-axis.

Fig. 3 is representing that for 500 independent tasks the
HC-CSO algorithm is performing better than standard PSO,
CSO, and H-CSO algorithms on all 3, 5, and 8 VMs. This is
because the convergence of the HC-CSO method has been
improved due to better local searching and a balanced velocity
factor by inserting the SMIW method.

In Fig. 4, it can be seen that the makespan is improved in
the case of the HC-CSO method. In the case of 800
independent tasks, the HC-CSO method performs better than
the PSO, CSO, and H-CSO algorithms due to a better
exploration and exploitation rate and it is possible due to the
integration of the CSA algorithm in H-CSO.

Fig. 3. Makespan Assessments for 500 Independent Tasks.

Fig. 4. Makespan Assessments for 800 Independent Tasks.

Fig. 5. Makespan Assessments for 1300 Independent Tasks.

Fig. 5 is justifying that the HC-CSO outperforms the PSO,
H-CSO, and CSO with all flocks of VMs for 1300 independent
tasks. The makespan is reduced due to better convergence of
HC-CSO and a decent stability between seeking and tracing
mode due to the collaboration of the CSA.

Table IV is briefing the cost consumptions for the
execution of each algorithm with each scenario.

It can be seen that the virtual machines and cost are
depicted at the x-axis and y-axis separately in Fig. 6, 7, and 8.

Fig. 6 is demonstrating that the cost is reduced by the HC-
CSO algorithm with respect to all sets of VMs in the case of
500 tasks. Here, the HC-CSO is outperforming other
algorithms depicted in Fig. 6 due to choosing of the best VM
among all at a right time while mapping the independent tasks.

TABLE IV. COST CONSUMPTIONS (IN INDIAN RUPEES)

Scenarios VMs PSO CSO H-CSO HC-CSO

Scenario - 1
500 Tasks

3 23.89 22.21 21.03 19.05

5 30.23 28.20 27.52 28.29

8 37.29 36.09 35.47 34.27

Scenario – 2
800 Tasks

3 41.13 38.33 37.08 33.51

5 50.88 47.29 44.13 40.11

8 65.58 62.13 59.15 54.01

Scenario – 3
1300 Tasks

3 70.03 67.51 64.53 59.24

5 93.08 87.87 82.35 75.17

8 117.13 113.25 103.89 85.87

Fig. 6. Cost Assessments for 500 Independent Tasks.

0

100

200

300

3 5 8

M
ak

es
pa

n

Virtual Machines

PSO

CSO

H-CSO

HC-CSO

0
100
200
300
400
500

3 5 8

M
ak

es
pa

n

Virtual Machines

PSO

CSO

H-CSO

HC-CSO

0
200
400
600
800

3 5 8

M
ak

es
pa

n

Virtual Machines

PSO

CSO

H-CSO

HC-CSO

0
10
20
30

40

3 5 8

C
os

t

Virtual Machines

PSO

CSO

H-CSO

HC-CSO

212 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

Fig. 7. Cost Assessments for 800 Independent Tasks.

Fig. 8. Cost Assessments for 1300 Independent Tasks.

In Fig. 7, the performance comparison is done with 800
independent tasks on a flock of 3, 5, and 8 VMs. The HC-CSO
algorithm won the race for reducing the cost as compared to
the PSO, CSO, and H-CSO methods. It is due to the
improvement of tracing mode by Self-Motivated Inertia
Weight. The CSA gives the capacity of load adjustment to the
HC-CSO algorithm in a better way by picking the best
available virtual machine.

The HC-CSO algorithm is again working fine with 1300
tasks and a group of 3, 5, and 8 VMs. This can be observed in
Fig. 8. The Cost is optimized here due to the good rate of task
migration between under-loaded and over-loaded virtual
machines. This happens because the HC-CSO algorithm is
keeping a better global seeking property and local searching is
improved by the CSA procedure. The outranged issue of the
traditional Cat Swarm Optimization has been removed in the
HC-CSO as well.

In the end, it is stated that the HC-CSO method has beaten
all other techniques like PSO, H-CSO, and the traditional CSO
concerning the makespan and computation cost due to better
convergence, and the improved tracing mode. The Cats do not
come out of the search space after inserting the SMIW method.
The Self-Motivated Inertia Weight controls the velocity
formula in tracing mode. So, it doesn’t matter whether the
search space is small or large. The CSA algorithm improves
the exploration and exploitation of the H-CSO algorithm.

VI. CONCLUSION AND FUTURE SCOPE
The cloud computing area is a burning topic of research

nowadays. Many scientists have worked with GA, ACO, PSO,
and CSO. It was seen that the CSO worked well in the name of
makespan and processing cost. The scientists worked with
dependent as well as independent tasks. The related work
showed that the Cat Swarm Optimization worked better in

many areas of cloud computing. In this research, a new
algorithm named HC-CSO was utilized for experiments. This
algorithm is a hybridization of three algorithms: HEFT, CSA,
and H-CSO. The H-CSO was developed by the HEFT and
SMIW formula.

After simulation, it was observed that the HC-CSO method
outperformed the other techniques like the H-CSO, PSO, and
CSO. The hybrid algorithm HC-CSO worked better with three
scenarios having 500, 800, and 1300 independent tasks on 3, 5,
and 8 virtual machines. After inclusion of all scenarios, it
showed an overall 4.15% efficacy for makespan with
minimization of 9.6% cost in comparison to the H-CSO and
9.60% efficacy with makespan for minimization of 14.59%
cost than the CSO. The reason behind this good performance is
the integration of the CSA algorithm in H-CSO. Also, the
SMIW method controls the tracing mode velocity factor. This
makes a check over the cats to escape out of the search space.
It saves time as there is no need to initialize the velocity of the
cats again and again.

This study proves that the HC-CSO technique is a
generalized one as it has been tested on a different set of
independent tasks. In the upcoming time, the HC-CSO
algorithm can be tried for other objectives like energy
consumption, resource utilization, load balancing, etc. Also, it
can be applied in other areas of technology.

REFERENCES
[1] R. A. Al-Arasi, and A. Saif, “Task Scheduling in Cloud Computing

Based on Meta-Heuristic Techniques: A Review Paper,” EAI Endorsed
Transactions on Cloud System, vol. 6, no. 17, pp. 1-19, 2020.

[2] A. M. Lonea, H. Tianfield, and D. E. Popescu, “Identity Management for
Cloud Computing,” New Concepts and Applications in Soft Computing,
vol. 417, Springer, Berlin, pp. 175-199, 2013.

[3] D. Gabi, A. S. Ismail, A. Zainal, Z. Zakaria, and A. AI-Khasawneh,
“Hybrid Cat Swarm Optimization and Simulated Annealing for Dynamic
Task Scheduling on Cloud Computing Environment,” Journal of ICT,
vol. 17, no. 3, pp. 435-467, 2018.

[4] A. Kollu, and S. Vadlamudi, “Eagle Strategy with Cauchy Mutation
Particle Swarm Optimization for Energy Management in Cloud
Computing,” International Journal of Intelligent Engineering & Systems,
vol. 13, no. 6, pp. 42-51, 2020.

[5] D. Alboaneen, H. Tianfield, Y. Zhang and B. Pranggono, “A Meta-
Heuristic Method for Joint Task Scheduling and Virtual Machine
Placement in Cloud Data Centers,” Future Generation Computer Systems,
vol. 115, pp. 201-212, 2021.

[6] S. Peer Mohamed Ziyath, and S. Senthilkumar, “MHO: Meta Heuristic
Optimization Applied Task Scheduling with Load Balancing Technique
for Cloud Infrastructure Services,” Journal of Ambient Intelligence and
Humanized Computing, 2020.

[7] H. Singh, S. Tyagi and P. Kumar, “Scheduling in Cloud Computing
Environment using Metaheuristic Techniques: A Survey,” Emerging
Technology in Modelling and Graphics, Advances in Intelligent Systems
and Computing, vol. 937, pp. 753-763, 2020.

[8] A. Kousalya, P. Sinduja, V. H. Viswanathan, and Jeevitha, “Optimization
of Task Scheduling using Improved Crow Search Algorithm in a Cloud
Environment,” International Journal of Pure and Applied Mathematics,
vol. 119, no. 16, pp. 219-230, 2018.

[9] J. Natarajan, “Parallel Queue Scheduling in Dynamic Cloud Environment
Using Backfilling Algorithm,” International Journal of Intelligent
Engineering & Systems, vol. 11, no. 2, pp. 39-48, 2018.

[10] A. Mazrekaj, A. Sheholli, D. Minarolli, and B. Freisleben, “The
Experiential Heterogeneous Earliest Finish Time Algorithm for Task
Scheduling in Clouds,” 9th International Conference on Cloud
Computing and Services Science, pp. 371-379, 2019.

0
20
40
60

80

3 5 8

C
os

t

Virtual Machines

PSO

CSO

H-CSO

HC-CSO

0

50

100

150

3 5 8

C
os

t

Virtual Machines

PSO

CSO

H-CSO

HC-CSO

213 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

[11] T. S. Alnusairi, “Binary PSOGSA for Load Balancing Task Scheduling in
Cloud Environment,” International Journal of Advanced Computer
Science and Applications, vol. 9, no. 5, pp. 255-264, 2018.

[12] A. Askarzadeh, “A Novel Metaheuristic Method for Solving Constrained
Engineering Optimization Problems: Crow Search Algorithm,”
Computers and Structures, vol. 169, pp. 1-12, 2016.

[13] A. M. Ahmed, T. A. Rashid, and S. A. M. Saeed, “Cat Swarm
Optimization Algorithm: A Survey and Performance Evaluation,”
Computational Intelligence and Neuroscience, vol. 2020, pp. 1-20, 2020.

[14] M. Orouskhani, M. Mansouri, and M. Teshnehlab, “Average-Inertia
Weight Cat Swarm Optimization,” Advances in Swarm Intelligence,
Lecture Notes in Computer Science, vol. 6728, 2011.

[15] H. Cui, X. Liu, T. Yu, H. Zhang, Y. Fang and Z. Xia, “Cloud Service
Scheduling Algorithm Research and Optimization,” Security and
Communication Networks, vol. 2017, pp. 1-7, 2017.

[16] A. Al-maamari, and F. A. Omara, “Task Scheduling Using PSO
Algorithm in Cloud Computing Environments,” International Journal of
Grid Distribution Computing, vol. 8, no. 15, pp. 245-255, 2015.

[17] M. A. S. Mosleh, G. Radhamani, M. A. G. Hazber, and S. H. Hasan,
“Adaptive Cost-Based Task Scheduling in Cloud Environment,”
Scientific Programming, vol. 2016, pp. 1-9, 2016.

[18] M. Kalra, and S. Singh, “A Review of Metaheuristic Scheduling
Techniques in Cloud Computing,” Egyptian Informatics Journal, vol. 16,
pp. 275-295, 2016.

[19] F. Ebadifard, and S. M. Babamir, “A PSO-Based Task Scheduling
Algorithm Improved Using a Load Balancing Technique for the Cloud
Computing Environment,” Concurrency and Computation Practice and
Experience, Special Issue, pp. 1-16, 2017.

[20] G. Peng, and K. Wolter, “Efficient Task Scheduling in Cloud Computing
using an Improved Particle Swarm Optimization Algorithm,” 9th
International Conference on Cloud Computing and Services Science, pp.
58-67, 2019.

[21] Z. Zhou, J. Chang, Z. Hu, J. Yu, and F. Li, “A Modified PSO Algorithms
for Task Scheduling Optimization in Cloud Computing,” Concurrency
and Computation Practice and Experience, Special Issue, pp. 1-11, 2018.

[22] H. Saleh., H. Nashaat, W. Saber, and H. M. Harb, “IPSO Task
Scheduling Algorithm for Large Scale Data in Cloud Computing
Environment,” IEEE Access, vol. 7, pp. 5412-5420, 2019.

[23] S. Bilgaiyan, S. Sagnika, and M. Das, “A Multi-Objective Cat Swarm
Optimization Algorithm for Workflow Scheduling in Cloud Computing
Environment,” International Journal of Soft Computing, vol. 10, no. 1,
pp. 37-45, 2015.

[24] S. Bilgaiyan, S. Sagnika, and M. Das, “Workflow Scheduling in Cloud
Computing Using Cat Swarm Optimization,” IEEE International
Advance Computing Conference, pp. 680-685, 2014.

[25] J. Bhagwan, and S. Kumar, “An HC-CSO Algorithm for Workflow
Scheduling in Heterogeneous Cloud System,” International Journal of
Advanced Computer Science and Applications, vol. 12, no. 6, pp. 484-
492, 2021.

[26] S. Goyal, S. Bhushan, Y. Kumar, A. H. S. Rana, M. R. Bhutta, M. F. Ijaz,
and Y. Son, “An Optimized Framework for Energy-Resource Allocation
in a Cloud Environment Based on the Whale Optimization Algorithm,”
Sensors, pp. vol. 21, no. 5, 1-20, 2021.

[27] S. Elsherbiny, E. Eldaydamony, M. Alrahmawy, and A. E. Reyad, “An
Extended Intelligent Water Drops Algorithm for Workflow Scheduling in
Cloud Computing Environment,” Egyptian Informatics Journal, vol. 9,
pp. 33-55, 2018.

214 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	1) HEFT – The HEFT algorithm [10] is having two phases: setting a task priority and selecting a virtual machine. In the priority phase, the HEFT sets the ranks of all the tasks. In the virtual machine selection phase, the HEFT calculates the earliest finis
	2) Crow Search Algorithm – The CSA algorithm [8] is another meta-heuristic technique. This algorithm has been developed by considering the real behavior of the Crow bird. The Crow is one of the most intelligent birds in this universe. Its memory is very sh
	3) Cat Swarm Optimization – The CSO algorithm was designed by Chu and Tasi in the year 2006 based on two properties of a real cat, i.e. resting and hunting modes [13]. In the seeking mode, the cat moves freely in a random manner and remains alert. In the c�
	4) H-CSO Algorithm – This algorithm was formulated by using the HEFT algorithm original Cat Swarm Optimization, and the SMIW method. The SMIW method is given in the methodology adopted section in detail.

	II. Related Work
	1) The ACO algorithm is having a poor global search characteristic, due to that the convergence of the ACO is poor. The standard CSO jumps out from the search space due to the unbalanced tracing mode’s velocity formula.
	2) The PSO algorithm is famous for global searching and superior to the ACO for scheduling purposes.
	3) The CSO algorithm is superior to the PSO due to its better convergence than PSO, but it gets trapped in local optima due to the resting behaviour of numerous cats in seeking mode.
	4) H-CSO algorithm improved than the CSO but it may get trapped in the local search or in tracing mode while increasing the number of iterations.

	III. Methodology Adopted
	1) All the parameters are initialized at the beginning of the algorithm.
	2) If the solution is optimized at the beginning then, the algorithm will be terminated immediately and returned the solution else the population produced by the HEFT algorithm will be given for local searching via the CSA algorithm (as shown in line numbe�
	3) The population generated by the CSA local search method will be handed over to the H-CSO algorithm for local as well as global searching via seeking and tracing modes. The cats are distributed in the seeking and tracing modes as per the Mixing Ratio (MR�
	4) In seeking mode, the S number of copies of the cats will be generated. Here, all cats are evaluated by the fitness function and the best cat is picked up randomly among various copies. After this, the current CatK will be replaced by the best cat.
	5) In tracing mode, the velocity of the current CatK is updated by the modified velocity equation using the SMIW method (given in line number 28 in pseudo-code). Then, the position of the current CatK is updated. Now, the evaluation of the Cats is taken pl�
	6) The best cat is saved in the memory.
	7) This practice is sustained until the criterion is not met. In the end, the optimum solution is returned from the memory in the shape of the optimum result (Best Cat).

	IV. Simulation Setup
	A. Parameters
	B. Cost Plan
	C. Dataset Used
	D. Performance Metrics
	1) Makespan: The makespan [18] is stated as the maximum finished time occupied for the accomplishment of the last task in a set. It is the utmost generally used and very important parameter to map the performance of any algorithm in task scheduling. The ma�
	2) Computation cost: The computation cost should be as less as possible; this is not only the demand of customers but; the industries also want the same to stay in the competitive IT market. The computation cost can be computed by equation 4.
	3) Fitness function: Equation 7 is displaying how to calculate a fitness function that has been used in this research paper. It is used to check the optimization at various levels as shown in Fig. 2.

	V. Simulation Results and Discussion
	VI. Conclusion and Future Scope

