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Abstract—Digital Image Forensics is a growing field of image 
processing that attempts to gain objective  proof  of the origin and 
veracity of a visual image. Copy-move forgery detection (CMFD) 
has  currently  become an active research topic in the 
passive/blind image forensics field. There has no  doubt 
that  conventional techniques and especially the keypoint based 
techniques have pushed the  CMFD  forward in the previous two 
decades. However, CMFD techniques in general 
and  conventional  techniques in particular suffer from several 
challenges. And thus, increasing approaches  are exploiting  deep 
learning for CMFD. In this survey, we cover the conventional 
and the  deep learning  based CMFD techniques from a new 
perspective. We classify the  CMFD techniques into 
several  classifications according to the detection methodology, 
the detection paradigm, and the detection  capability . We discuss 
the  challenges facing the CMFD techniques as well as the ways 
for solving  them. In addition, this survey covers the evaluation 
metrics  and datasets commonly utilized for  CMFD. Also, we 
are  debating and proposing certain plans for future research. 
This survey will be  helpful for the researchers’  as it master the 
recent trends of CMFD and outline some future 
research  directions.  

Keywords—Image forensics; copy-move forgery detection 
(CMFD);   conventional techniques; deep learning  techniques 

I. INTRODUCTION 
Digital image forgery has already showed up in many 

disturbing forms and results in inestimable lose [1]. 
Digital  image forgery is characterized as changing the original 
semantic meaning of an image by adding or erasing some 
significant features of the image for malicious aims [2], [3]. 
Digital image forgeries can be classified into three  classes: 
Image Retouching, Image Splicing, and Copy-Move Forgery 
(CMF). Among the image forgery types, CMF is the most 
common and difficult forgery type . In CMF or image cloning, 
a part of an image (an authentic source region) is replicated and 
then pasted to another part of the same image (the forged 
region) [1], [4] in order to remove unwanted object or 
replicating desirable object [5]–[7]. Fig. 1 shows two examples 
of CMF where the cloned regions are marked with red  color. 
The term cloned regions is commonly utilized to refer to the 
forged region as well as its source region. 

To face the massive increase in image forgeries and its 
harmful effect, Digital image forensics (DIF) becomes an 

important area of recent research that verifies images 
reliability. DIF can be classified into passive and active 
techniques [7], [8]. Active forensic techniques require special 
hardware and software to embed authentication information 
such as digital watermark and digital signature into the image 
before distribution [7], [9]. To overcome such drawback, 
passive/blind forensic techniques are often used. Passive 
forensic techniques don't require any prior information about 
the image to be verified [10], [11]. This survey focuses on the 
passive forensic techniques proposed for copy-move  forgery 
detection (CMFD) because CMF is a very challenging and 
popular forgery type. It is hard to differentiate between the 
actual and tampered images [12]. As the forged region is 
picked from the image itself, image properties are consistent all 
over the image and the forged region will be undetectable by 
methods that look for features inconsistencies [13], [14]. To 
make detecting CMF more difficult, several geometric and 
post-processing operations are performed [15]. 

As shown in Fig. 2, CMFD techniques can be classified 
according to its detection methodology into: visual similarity 
based, tampering artifacts based, and hybrid based techniques. 
Depending on visual similarity  aims to specifically detect CMF 
and isn’t able to detect any other forgery type. It can localize 
the forged region along with its source region based on 
assessing their similarity. Other forgery detection techniques 
are based on the fact that image forgery could present 
tampering artifacts that can be utilized to reveal the forgery. 
Depending on tampering artifacts is considered a general 
detection methodology for various forgery types. Applying 
such methodology for CMFD is only able to localize the forged 
region without its authentic source region. There are some 
works that combine the two detection methodologies together. 
Such works are able to detect and localize the cloned regions 
and can discriminate the forged region from its source region. 

The CMFD techniques can be classified according to its 
detection paradigm into:  conventional techniques, deep 
learning techniques, and the hybrid techniques. Also, CMFD 
techniques can be classified according to its detection 
capability or outcome. The outcome of a CMFD technique 
could be: (a) classifying an image as original or tampered, 
(b) localization of the cloned regions at the pixel level if the 
image is forged, and (c) classifying the cloned regions as 
source region or forged region [16][17]. 
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Fig. 1. Examples of CMF. (a) CMF Image Processed by Noise Addition. (b) CMF Image  with Ggeometric Ttransforms. 

 
Fig. 2. Classification of the Passive  CMFD Techniques.  

Surveys such as [18]–[20] are recently proposed to 
summarize the CMFD techniques. Unlike previous surveys, we 
cover and organize the conventional techniques and the deep 
learning techniques for CMFD  according to several  aspects and 
with a new perspective. By analyzing the challenges facing 
CMFD along with the ways to solve them, a reader would be 
able to know the developing level of this field, and it also can 
inspire researchers to come up with new perspectives. In 
addition, we show how the performance of the CMFD 
techniques highly depends on the utilized dataset and the 
assessment mechanism. The rest of the survey is organized as 
follows. Section 2 presents the common procedure of the 
conventional CMFD techniques. Section 3 analyzes the 
challenges that face CMFD techniques and the solutions 

proposed to handle them.  Section 4 presents the deep learning 
based CMFD techniques. Sections 5 and 6 present the standard 
evaluation metrics and the common datasets being utilized in 
literature, respectively. Section 7 highlights the important 
findings of the survey and outlines some future research 
directions.  Finally, Section 8 concludes the survey. 

II. CONVENTIONAL CMFD TECHNIQUES 
Conventional techniques are mostly adopt the visual 

similarity based detection methodology [13]. The majority of 
the conventional CMFD techniques are extract features that 
represent the image regions and assess the similarity between 
different regions to reveal the cloned regions [21]. 
Conventional CMFD techniques can be mainly classified into 
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two categories: block based techniques, and keypoint based 
techniques [7], [17]. Conventional CMFD techniques have a 
common detection procedure that divided into three 
consecutive phases which are: feature extraction, feature 
matching, and forgery localization [17], [22]–[24]. 

A. Feature Extraction 
It is common to convert RGB images into gray scale and 

extracting the image features from the intensity channel [22], 
[25]. Block based CMFD techniques divide the input image 
into fixed size overlapping square blocks [15], [26]. Numerous 
descriptors have been utilized in literature to extract the blocks 
features, e.g., Intensity-based features are utilized in [27], 
Discrete Cosine Transform (DCT) coefficients in [28]–[31], 
Principal component analysis (PCA) in [32], Singular Value 
Decomposition (SVD) [33], sector statistics [34], histogram of 
orientated gradients [35], Hu moments [36], [37], Local Binary 
Patterns (LBP) [38]–[41], zernike moments [42], [43], gaussian 
hermite moments [44], tetrolet features [45], tchebichef 
moments [46], blur moment invariants [47], polar complex 
exponential transform (PCET) moments [2], [48], etc. 

For keypoint based CMFD techniques, the feature 
extraction phase consists of two steps: features detection and 
the description step [13], [17], [22]. Feature detection is to 
localize a set of keypoints/regions inside an image that are 
stable for geometric transformation [26]. In the description 
step, keypoints are described by encoding its surrounding 
region. SIFT, and SURF are the most popular algorithms 
utilized in CMFD which are able to perform the features 
detection and description. On the other hand, Harris corner 
detector, the maximally stable extremal regions (MSERs), and 
maximally stable color region are algorithms that only perform 
the features detection. Utilizing such features detectors requires 
using other algorithms for the features description. 

B. Feature Matching 
Image blocks or keypoints with similar descriptors should 

be matched [17], [23]. The regions of matched pairs are 
possibly cloned regions [22]. One way to match image features 
is to apply a global threshold on the distance between 
descriptors as in [29], [31], [33], [35], [43], [45]. Two 
blocks/keypoints are matched if the distance between their 
feature vectors is smaller than a threshold. This threshold can 
fluctuate from zero to one. A threshold closer to zero yields 
fewer but more accurate matches [13]. However, this matching 
method obtains a low accuracy [24], [26]. So, the two nearest 
neighbor (2NN) test is a widely utilized matching method in 
keypoint based CMFD techniques as in [10], [13], [17], [21]–
[23], [49]. In the 2NN test, if the distance ratio between the 
nearest distance to the second nearest distance is less than a 
threshold, then the two keypoints are matched [26]. 

The 2NN test works well when a region is duplicated one 
time. As a result, the generalized nearest neighbor (g2NN) 
matching method is proposed to work when the region is 
cloned several times. The g2NN matching method iterates the 
2NN test until the distance ratio become greater than the 
specified threshold [4], [5], [9], [14], [25], [26]. However, 
some matched keypoints still can't be recognized by the g2NN 
matching method. Accordingly, the transitive matching is 
utilized in [50] to enhance the matching relationship. 

C. Forgery Localization 
In the forgery localization phase, the geometric transform 

between the matched pairs is usually modeled. Such modeling 
is helpful to eliminate any mismatched pairs as cloned regions 
are commonly localized when detecting certain number of 
matched pairs with the same geometric transform [44]. Then, a 
forgery decision process is performed at the image level to 
decide if the given image is tampered with CMF or not. 
Finally, a localization process at the pixel level is performed to 
locate the cloned regions within tampered images. 

In [30]–[32] the geometric transform between matched 
pairs is modeled by the shift vector between their coordinates. 
But, the shift vector concept is not suitable in case of rotation 
or scaling [44]. So, the geometric transform between the 
replicated regions is usually modeled by an affine homography 
[23]. Random Sample Consensus (RANSAC) is a widely used 
technique for accurate estimation of the affine homography 
that leads to the minimum error even when high number of 
mismatched pairs are exist [4]. So, RANSAC is utilized to 
estimate the affine transform and to filter some mismatched 
pairs in [51]–[53]. In [10] the Helmert transformation is 
utilized instead of the affine transformation because of its low 
degree of freedom and low computational complexity. 

Several decision rules are utilized in literature to decide at 
the image level whether an image is tampered with CMF or 
not. In [27] The task of cloning detection is that of detecting 
two large similar regions bigger than an area threshold 
corresponds to certain percentage of the image size. The area 
threshold determines the smallest size of the cloned region to 
be detected. Large area threshold increase the misses while 
small values increase false alarms [28]. In [42] the forgery 
decision is specified if there are more than a particular number 
of matched pairs that meet the estimated affine transform and 
the similar regions are bigger than an area threshold. 

Some works such as [34], [54]–[56] are just localize the 
cloned regions by depicting the matched pairs as lines. While 
other works reveal the cloned regions at the pixel level [24], 
[57]. Block based CMFD techniques are commonly localize 
CMF at the pixel level by relatively simple steps. First, a black 
image is created with the same size as the suspected image. 
Then, the blocks correspond to the matched pairs are simply 
assigned other color [30], [46], [47]. But, keypoint based 
CMFD techniques don’t have good localization power of 
cloned regions [10] as matched keypoints don’t cover 
completely the cloned regions [52]. To solve this issue, Cloned 
regions are commonly localized by the following steps [17]. 
First, the transformation matrices between the cloned regions 
are estimated. Then, all image pixels are transformed forward 
and backward. Next, the similarity between the original image 
and the transformed images is assessed with the correlation 
coefficients that are invariant to illumination changes. After 
that, correlation maps are smoothed to reduce the noise and 
transformed to binary images with a fixed correlation threshold 
[1], [26], [58], [59]. Finally, small isolated regions are 
eliminated and holes are filled [13], [16], [24], [36]–[38], [41], 
[60], [61]. Such final post processing can be accomplished by 
morphological operations, specially designed filter as in [39], 
or an area threshold as in [37], [62]. 
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In [7], [8], [10], [49], [63] the cloned regions are localized 
by different methods rather than the common work 
flow  described previously. In [63] to localize the cloned 
regions; image registration through bi-cubic interpolation is 
utilized. In [8] the cloned regions are localized by region 
growing technique through Hu’s moments. In [49] cloned 
regions are localized based on multi-scale analysis and a voting 
process. Some works such as [7], [10] utilized the superpixels 
segmentation algorithms to localize the cloned regions. 

III. FORMULATION OF CHALLENGES 
This section analyzes the challenges that face the CMFD 

techniques  in general and provides a comprehensive survey on 
different strategies adopted by the conventional CMFD 
techniques to handle these challenges. Table I shows the 
phases of the conventional CMFD techniques and the 
challenges that face each phase along with the solutions. 

A. Geometric Transforms 
Geometric transforms such as scaling, and rotation are 

usually applied to the forged regions to fit the scene and to 
mislead the human eye. Scaling or rotating an image region 
introduces some changes in the pixels values due to the 
interpolation error. Block based techniques fail when large 
rotation and scale are operated on the cloned regions [26] 
because of the de-synchronization in searching of matched 
blocks [60]. Dividing the image into overlapping square blocks 

with static size isn’t able to detect CMF with large scaling and 
rotation regardless of whether the utilized features are scaling 
and rotation invariant. Utilizing circular blocks solves to some 
extent CMF with rotation. To handle CMF with scaling, 
adopting a pyramid model and performing the matching 
process across several scales are needed [42]. 

The majority of the keypoint based techniques are robust 
against geometric transformations, including large rotation and 
scale. But when utilizing a keypoints detector that wasn’t 
robust by nature to certain geometric transforms, it is essential 
to make it invariant to geometric transforms such as [64], [65]. 
In [64], [65] to make Harris corners invariant to scaling, stable 
points across a scale space are only identified. 

Conventional CMFD techniques such as [6], [13], [34], 
[62] tried to enhance its robustness against reflection because 
reflection needs special handling. In [34], [62] To detect CMF 
with flipping, a matching process between the feature vectors 
of the original image and the flipped image is performed. In 
[6], [13] a flip invariant SIFT descriptor is utilized in which 
each image keypoint is represented by two descriptors that 
reorganize the SIFT descriptor with both clockwise order and 
anticlockwise order. Among all the geometric transforms, 
deformation affect greatly the performance of the conventional 
CMFD techniques as it is a nonlinear transformation that can’t 
be modeled well by an affine model [13]. Dealing with 
nonlinear geometric transformations still needs to be explored. 

TABLE I. CONVENTIONAL CMFD TECHNIQUES: PHASES, CHALLENGES AND PROPOSED SOLUTIONS 

Phases Challenges Solutions 

Feature Extraction 

Geometric Transforms   

Utilizing invariant features 

Multi scale analysis & matching 

Utilizing circular blocks 

Post Processing Operations Performing image enhancement before extracting features 

Dealing with Small or Smooth Cloned Regions 

Increasing the image contrast and resolution 

Utilizing hybrid keypoints detectors 

Lowering the contrast threshold 

Adopting small block size 

Combining keypoint based and block  based techniques 

Feature 
 Matching 

Image Continuity Avoid matching of neighboring features 

Handling Image Self-Similarity and Similar But Genuine 
Objects 

Enhancing discrimination  power of the descriptors 

Eliminating outlier matches 

Accurate estimation of the thresholds 

Accurate estimation and validation of the  geometric transformations 

The Matching High Computational Complexity 

Decreasing the image dimension and number of features 

Utilizing low dimensional and binary  descriptors 

Sorting and organizing the image features before matching 

Matching search space reduction 

Searching for approximate matching 

Un Consistent Matching Order Utilizing clustering or segmentation based  algorithms 

Forgery 
 Localization 

Dealing With Multiple Cloned Regions 
Performing clustering of the matched pairs 

Performing iterative  localization 

Discriminating Forged Region from its Source Region Utilizing hybrid detection methodology 
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B. Post Processing Operations 
Post processing operations are generally applied to make 

the detection of CMF harder to detect. The most utilized post 
processing operations are JPEG compression, image blurring, 
and noise addition [1]. CMFD techniques achieve better 
detection accuracy when the intensity of the post processing 
operation is minimal [16]. When handling low quality images 
or images with high noise, the performance of the CMFD 
algorithms is decreased because the pixel values are disturbed 
that result in less number of correct matched pairs, more false 
positives, and more false negatives [1], [34], [66]. 

Numerous conventional CMFD techniques tried to face 
image post-processing attacks. In [38], [39], [60] image is 
filtered by Gaussian low pass filter because the low frequencies 
are more steady to post processing operations. In [42] each 
image block is filtered by an adaptive wiener filter which can 
remove noise while preserving edges. In [67] the input image is 
enhanced before extracting the SIFT features. First, high pass 
filter (HPF) is applied. Then, Butterworth low pass filter 
(BLPF) is utilized for noise reduction. In [16], [29], [41] the 
stationary wavelet transform (SWT) is utilized to reduce the 
noise effect. Image blurring effect specially the performance of 
the keypoint based CMFD techniques [13] as a lot of keypoints 
are lost due to blurring. Dealing with blurring is similar to 
dealing with smooth or small cloned regions. Several solutions 
are reviewed in the next sub-section. 

C. Dealing with Small or Smooth Cloned Regions 
With small cloned regions, the performance of the CMFD 

techniques is  low because of insufficient number of correct 
matched pairs [34]. Block-based CMFD techniques usually 
adopt small block size for revealing small cloned regions. But, 
small block size can’t yield robust features [3] and results in 
large number of blocks that increases the computational cost. 
On the other hand, large block size decreases the 
computational cost but can’t detect small cloned regions [3], 
[44]. So, block-based CMFD techniques face a difficulty in 
selecting the suitable block size [3]. It is worth noting that 
block based CMFD techniques work well in smooth regions. 

Keypoint based CMFD techniques  fail to detect the forgery 
if insufficient keypoints are identified that results in 
insufficient correct matched pairs, and that is the situation 
when dealing with smooth or small cloned regions or when the 
input image is of low resolution [4], [68]. One way to extract 
more keypoints is to utilize hybrid/multiple detectors such as in 
[5], [9], [26]. Other works such as [15], [25] applied the 
keypoints detectors on the opponent color space rather than the 
intensity channel to get an adequate number of keypoints. 

Image keypoints are generally detected by applying certain 
contrast threshold [58]. Several works increase the keypoints in 
the whole image by simply lowering the contrast threshold of 
all images under investigation such as [9], [24]. As the suitable 
contrast threshold could varies from one image to another, 
other works tried to choose the suitable contrast threshold 
separately for each test image. In [17], [22], [23], [55], [69] 
particle swarm optimization (PSO) algorithm is utilized to 
generate customized parameter values for each image. Several 
works such as [1], [4], [56], [66], [70], [71] increase the entire 

image contrast or resolution instead of decreasing the contrast 
threshold. In [70] single image super resolution algorithm is 
utilized to increase the image resolution. Similarly in [4] the 
image is up-sampled. In [1], [56], [66] the contrast limited 
adaptive histogram equalization algorithm is utilized to 
increase the image contrast. Similarly in [71] the dynamic 
histogram equalization method is utilized. 

Increasing the keypoints in the whole image by adopting a 
small contrast threshold has several drawbacks. Keypoints in 
the rough regions will increase quicker than in smooth regions 
[68] which is pointless. This phenomenon is called the non-
uniform distribution of the image keypoints [58]. Also 
adopting a small contrast threshold will trigger numerous 
unstable keypoints, and expand false matching possibility. 
More redundant keypoints are located at nearby locations and 
its corresponding descriptors are similar [24]. 

Several works such as [12], [52], [54], [58], [68] aim to 
overcome the non-uniform distribution of the image keypoints. 
In [58] the non-maximum value suppression algorithm is 
utilized. First, all possible keypoints are initially selected. 
Then, redundant keypoints are filtered out. In [68] the image is 
segmented into smooth and rough layers. Swarm intelligence 
algorithm is applied for each layer separately to find its 
customized parameter values. In [12], [52], [54] image is 
segmented into non-overlapping superpixels. The way of 
localizing the keypoints varies from smooth regions to texture 
regions to make keypoints uniformly covering the entire image. 
Other works such as [5], [71] process specific regions within 
the image to extract more keypoints and more matched pairs. 
In [5] any suspicious region that contains insufficient number 
of matched keypoints is up-sampled and re-examined. In [71] 
matched keypoints are grouped into regions. The obtained 
regions are scaled up instead of scaling up the entire image. 

As block based CMFD techniques work well in case of 
smooth regions, a combination of keypoint based and block 
based methods is proposed for effective CMFD as in [11], [61], 
[72]. In [11], [61] SIFT based method is utilized to detect 
forgery in rough regions. To detect forgery in smooth regions, 
Zernike moments are utilized in [61] while the Fourier Mellin 
transform (FMT) is utilized in [11]. In [72] to handle cloned 
regions with insufficient number of matched pairs, two regions 
centered on the keypoints location of each matched pair are 
obtained. These regions are examined by Zernike moments. 

D. Image Continuity 
Because of the continuity of images, the similarities of 

neighboring blocks/keypoints are high and hence are wrongly 
matched. Also in block based CMFD techniques, the image is 
usually divided into overlapping blocks. Blocks with an 
overlapping ratio are highly similar and wrongly matched. So, 
in [2], [28], [30], [32], [42], [47], [53], [60] matched pairs are 
removed if their spatial separation  is below a threshold. The 
spatial separation threshold defines the smallest spatial distance 
between the cloned regions to be detected [47]. The choice of 
the spatial separation threshold should consider its relationship 
with the image content and size [61]. 

Other solution avoids the selection of the spatial separation 
threshold by segmenting the image into non-overlapping 
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superpixels and requires that two image features are 
comparable if they are belonging to different superpixels [4], 
[58], [61], [73]. But, this solution isn’t able to detect CMF in 
case of two cloned regions are in the same superpixel [73]. 
Similarly in [3] the image blobs are detected utilizing DoG and 
BRISK keypoints in different blobs are only matched. 

E. Handling Image Self-Similarity and Similar But Genuine 
Objects 
The intrinsic self-similarity of natural images  is considered 

the other reason of wrong matching in addition to the image 
continuity [17]. In addition, images might have similar but 
genuine objects (SGO). CMFD techniques which are based on 
a simple hypothesis that similar regions in an image are often 
made by CMF are commonly produce false positives in images 
having SGO [64], [65], [74]. The ability to distinguish cloned 
regions from SGO is essential for a successful CMFD 
technique [64], [65]. In the next paragraphs, we discuss how 
the selected features, the matching method, and the choice of 
the thresholds can play a vital role to deal with image self-
similarity  and to distinguish cloned regions from SGO. 

The majority of the conventional CMFD techniques extract 
its features from gray scale images. But, some CMFD 
techniques such as [58], [75] perform the feature extraction 
phase in a certain color space to enhance its discrimination 
power and hence its performance. In [75] each color channel is 
considered separately. Matched blocks that are common in all 
color channels are considered as forged. In [58] OpponentSIFT 
is utilized for feature extraction. OpponentSIFT describes all 
the channels of the opponent color space utilizing SIFT. 

Texture descriptors are useful to differentiate between 
really cloned regions and SGO. Also, high dimensional 
descriptors are generally more distinctive. As a result, several 
works such as [52], [53], [57], [64], [65], [76] enhance its 
discrimination power and hence its matching performance by 
utilizing texture features or utilizing high dimensional 
descriptors. In [53] Image blocks are described by multiple 
LBP operators. In [76] two regions are verified as cloned if 
their GLCM contrast difference is below a threshold. In [57] 
SIFT descriptor is combined with the histogram of the reduced 
LBP. In [64], [65] LBP as well as DCT and SVD are utilized to 
describe the detected Harris keypoints. In [52] PCET is utilized 
to extract descriptors of the detected SURF keypoints. 

Cloned regions are commonly chosen from meaningful 
objects [26]. As a result, false matched pairs of intrinsic self-
similar regions are usually isolated and much more scattered. 
Based on such idea, several conventional CMFD techniques 
such as [47], [77]–[79] reduce the false matching rate basically 
by its matching process. In [47] two blocks are matched if its 
neighboring blocks are also matched to each other. The number 
of neighboring blocks to be checked for similarity defines the 
smallest size of the cloned region to be detected. In [77] a 
match is decided when the keypoints from an image and its k 
nearest neighbors are matched to that of the suspicious area. In 
[78] the matching process is done among objects rather than 
single point matching. In [79] clusters of keypoints are 
matched instead of single point matching. 

Other way to reduce the false matching rate is to adopt an 
outlier removal process of wrong matches after performing the 
matching process as in [45], [66]. In [66] the outlier matches 
are eliminated by combining the guaranteed outlier removal 
algorithm with the RANSAC algorithm. In [45] Fast outliers 
filtering method is utilized instead of RANSAC. But, such few 
outlier matches might correspond to a CMF with small cloned 
regions and should be further verified. 

Several conventional CMFD techniques utilize  the 
segmentation or the clustering methods to eliminate false 
matches [24]. The regions/clusters that contain a few matched 
pairs are discarded [14], [26], [50], [59]. The segmentation and 
the clustering based algorithms suffer from high time and space 
complexity [66]. Also it is hard to decide a segmentation or 
clustering algorithm and its associated parameters that are 
suitable for all images [24]. The superpixel segmentation 
algorithms are commonly utilized. The initial superpixel size 
has significant impact on the forgery detection performance. 
An appropriate initial superpixel size should consider the 
image size and content. In case of textured images, an initial 
superpixel size of low value should be utilized. While, a high 
value should be adopted as an initial superpixel size when 
dealing with simple images [54]. Many works have taken into 
account the image size and content  when selecting the initial 
superpixel size. But, no one has dealt with the fact that a single 
image could contain both a smooth part and a texture part and 
they should be segmented differently. 

Clustering based algorithms such as [10], [13], [49] aim to 
filter out false matches by adopting the geometric 
inconsistency idea. In [13] the slope of all lines connecting 
matched pairs is grouped in different clusters. Within each 
cluster, outlier matched pairs are removed if its locations are 
far from the cluster centroid location. In [10], [49] matched 
pairs are grouped into clusters dependent on the spatial 
separation among them and the angle of the line that connects 
them relative to the x-axis. Furthermore, in [10] the Helmert 
transformation is utilized to merge clusters with similar 
transformation parameters. Despite the fact that the hierarchical 
agglomerative clustering (HAC) is the common clustering 
algorithm utilized in CMFD, it is sensitive to outliers and 
noise. So, in [21], [51], [66], [71] the DBSCAN (density-based 
spatial clustering of applications with noise) is utilized. 

The thresholds related to the matching process acquire 
special significance in handling image self-similarity  and SGO. 
To decide an appropriate value of the matching threshold, a 
training phase is needed. But, the matching threshold may 
change from one image to another [53]. So, in [2] an 
appropriate matching threshold is estimated for each image 
utilizing PSO and the histogram of block similarities. After 
localizing suspected regions within an image, it is common to 
compute the correlation coefficient between the suspected 
regions. Then, a correlation threshold is utilized to differentiate 
really cloned regions from SGO. High value of the correlation 
threshold increases the misses’ rate while a low value increases 
the false alarm rate. Many works such as [17] have focused on 
selecting an appropriate value of the correlation threshold. In 
[17] customized correlation threshold is utilized to detect each 
image rather than utilizing a fixed threshold for all images. 
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It is essential to assess the accuracy of the estimated 
geometric transformation [5] as inaccurate estimation of the 
geometric transformation results in wrong localization of 
cloned regions. So, many CMFD techniques have focused on 
the accurate estimation and validation of the geometric 
transformation  such as [5], [13], [24]. In [24] a homography 
validation and inlier selection technique is proposed. For each 
correctly matched keypoints, the difference of the dominant 
orientations should be consistent with the estimated 
homography. In [5] inaccurate affine transformations are 
filtered by utilizing the Bag of Word idea. In [13] the affine 
transformation parameters are refined iteratively. 

F. The Matching High Computational Complexity 
Feature matching is the main phase that consumes time [2], 

[60] because of the huge number of image features and their 
high dimensional descriptors [80], [81]. Keypoint based 
techniques have a lower computation cost compared to the 
block based techniques because the number of keypoints for an 
image is generally smaller than the number of blocks [26], 
[82]. However, several keypoint based CMFD techniques try to 
increase the number of keypoints inside an image to handle 
small or smooth cloned regions. In this case, the computational 
complexity also needs to be reduced. 

One way to reduce the matching time is to decrease the 
number of image features to be extracted as in [15], [48]. In 
[48] the features are computed for only the fundamental objects 
rather than all the overlapping blocks of the image. In [15] 
Image is divided into MSERs. SIFT keypoints that aren’t 
belong to any MSER are excluded to reduce the matching cost. 
Decreasing image dimension results in a reduction of the 
number of features. In [42] high resolution images are scaled 
down. In [27], [37] the image is decreased in dimension by 
Gaussian pyramid. In [21], [32], [36], [51], [53] the wavelet 
transform is utilized. However, decreasing the number of 
image features reduces the performance of the CMFD because 
the high details in the image have been lost [21]. 

Low dimensional descriptors and binary descriptors are 
more desired for fast matching. As a result, several works such 
as [2], [21], [28], [46], [47] tried to decrease the matching time 
by reducing the descriptor length through SVD or PCA. As 
SURF descriptor has low dimensional space compared to 
SIFT, so matching SURF descriptors is fast [81]. Also, binary 
descriptors are favored for fast matching as they are matched 
quickly by simple XOR operation through the hamming 
distance [83]. As a result, the BRISK binary descriptors are 
utilized in [83]. Similarly in [84] The SIFT descriptors are 
binarized and matched to reduce the matching time. 

Several works tried to reduce the matching search space 
and decrease the number of comparisons needed by means of 
segmentation or clustering such as [3], [52], [80]. In [52] image 
regions are separated into texture regions and smooth regions. 
The image features are matched separately in smooth regions 
and in texture regions. In [3] the image background is 
eliminated prior to matching image features to speed up the 
matching process. In [80] image keypoints are grouped into 
clusters using the Fuzzy C means clustering technique. Each 
cluster center and its close keypoint are matched only to other 
clusters instead of matching all the image keypoints. 

To reduce the matching time, it is common to sort or 
organize the image features before matching [43]. For block 
based CMFD techniques, Lexicographic sort is a widely 
utilized sorting method that makes comparable feature vectors 
closer to each other. A feature vector will be checked for 
similarity with just a specific number of neighboring vectors 
[40]. For computational efficiency, some conventional CMFD 
techniques such as [7], [60] utilized approximate matching 
instead of exact matching. In [1], [55], [62], [66], [81] the best 
bin first search algorithm is utilized which is based on a variant 
of the KD tree to search for approximate nearest neighbor. It is 
common to use the Euclidian distance to calculate the distance 
between image descriptors. But for computational efficiency, 
the cosine similarity is utilized in [25], [73], [79]. 

G. Inconsistent Matching Order 
It is common to use RANSAC to estimate the geometric 

transform from the authentic source region to its forged region 
or vice versa. The estimation of the geometric transformation is 
order-dependent. If the geometric transform estimated from the 
source region to its forged region is 𝑇 , then the geometric 
transform estimated from the forged region to its source region 
is 𝑇−1. As a result, the matched pairs fed into RANSAC should 
have consistent matching order; otherwise they could result in 
erroneous estimation [24]. But in keypoint based CMFD 
techniques, keypoints are detected from the image without any 
spatial order. So, the matching process can't guarantee a 
consistent matching direction [24]. To solve this problem, the 
segmentation and the clustering based algorithms are utilized 
to facilitate a consistent matching direction from one 
region/cluster to the other region/cluster [24]. On the other 
hand, block based CMFD techniques aren’t suffered from this 
problem at all. 

H. Dealing with Multiple Cloned Regions 
Some conventional CMFD techniques such as [22], [23] 

aren’t able to handle images with multiple cloning. To handle 
images with multiple cloning, two issues should be considered. 
First, the adopted matching method should able to perform 
multiple matching if exist of the same block/keypoint. As 
mentioned before, matching methods such as G2NN and 
transitive matching are able to perform multiple matching. 
Second, the matched pairs may follow diverse geometric 
transformations in case of multiple cloned regions [24]. 

Multiple cloning is commonly handled through clustering 
the matched pairs and iterating the localization task [24], [26]. 
Clustering of matched pairs aims to group pairs that follow the 
same affine transformation [58], [70], [81]. In [24] the 
localization task runs in an iterative manner. In each iteration, 
RANSAC algorithm is utilized to estimate one affine 
homography using all the matched pairs from two contiguous 
local patches. In [26] the RANSAC algorithm is executed 
iteratively to estimate the transformation matrices. After each 
iteration, the inliers satisfying the previously estimated 
transformation are excluded from the next iteration. 

Clustering based algorithms such as [1], [14], [61], [70], 
[81] clustered the matched pairs by their location utilizing 
HAC. Especially in keypoint based CMFD techniques,   
clustering of the matched pairs based on their location has two 
drawbacks: (i) the inability to separate the cloned region when 
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cloned region is close to its source region and (ii) the difficulty 
to identify the cloned region as a single region, when it 
contains scattered keypoints [59]. To handle these drawbacks, 
in [58], [59] matched pairs are clustered using the J-Linkage 
algorithm based on  a transformation domain rather than the 
spatial domain. In J-Linkage clustering, a number of affine 
transformation hypotheses are generated randomly. Each 
matched pair is assigned to an initial cluster. HAC process is 
operated on the clusters. To reduce the computational cost of J-
Linkage clustering, image is segmented into superpixels in 
[58]. Then, the matched pairs are grouped based on the 
correspondence between the superpixels to produce a small 
number of initial clusters of the J-Linkage algorithm [58]. 

I. Discriminating Forged Region from its Source Region 
The majority of the CMFD techniques lack the ability to 

classify the cloned regions into source and forged regions . 
Providing this capability enriches the CMFD technique. 
Depending on visual similarity to reveal the cloned region 
can’t discriminate between the forged region and its source 
region. To provide such ability, detection of tampering artifacts 
should be integrated with the visual similarity based detection 
methodology as in [85]. In [85] a resampling based method is 
combined with SIFT based CMFD technique. The resampling 
based method  takes as input the matched pairs that highlight 
any cloned regions. If the resampling factor of a certain region 
is different from its neighborhood, it is considered as forged 
region. Otherwise, it is considered as source region. The 
resampling based method  fails to classify the cloned regions 
into source and forged regions  if the forged region hasn’t been 
modified geometrically. 

IV. DEEP LEARNING BASED CMFD TECHNIQUES 
Conventional CMFD techniques with handcrafted features 

experience three limitations [86]. First, these techniques have 
an identical structure comprises of three phases. Each phase is 
trained separately and has numerous parameters that are 
manually tuned [86]–[88]. Second, these techniques are mostly 
tuned to accomplish great performance on specific dataset(s) 
yet fail in other datasets [86]. Third, handcrafted features are 
usually have restricted discrimination power [89], [90]. 

Deep learning exhibits a major achievement in various 
recognition tasks. As a result, numerous researchers attempt to 
adopt deep learning for CMFD [91]. Selection of the 
appropriate parameters/thresholds is the most important 
problem that conventional CMFD techniques faced, but deep 
learning models are able to automatically learn the suitable 
features for CMFD [87], [92]. To build a CMFD system using 
deep learning, a large number of training samples is required. 
But, existing CMF image datasets are limited in size [93]. One 
way to handle this problem is adopting transfer learning or 
utilizing deep learning methods to only extract the image 
features within a block or keypoint based CMFD techniques. 

Transfer learning utilizes a pre-trained model for certain 
task and slightly re-train the model parameters with little 
training samples for other task [93]. These pre-trained models 
such as AlexNet, VGGNet, GoogLeNet, and ResNet are pre-
trained from enormous training dataset and have a powerful 
generalization power [93]. Several works such as [92]–[94] 

utilized AlexNet for CMFD because of its simple construction. 
In [92][93] Alex Net is utilized for CMF classification at the 
image level. The proposed method in [93] fails to handle 
realistic CMF because its model is trained with simple CMF 
samples. In [92] the SVM classifier is trained with the features 
obtained from the fully connected layer of Alex Net. In [94] a 
modified AlexNet architecture is proposed for classifying 
various forgery types at the image level. 

Several CMFD techniques such as [89], [95] utilized deep 
learning methods to only extract the image features within a 
block or keypoint based CMFD techniques. In [95] A block 
based CMFD technique in which Alex Net is utilized to 
describe the image blocks. In [89] GPU-based convolutional 
kernel network (CKN) is utilized to obtain local descriptors of 
the image keypoints. CKN is a deep convolutional network that 
combines neural networks with kernel methods. CKN aims to 
produce local descriptors that are invariant to various 
transformations. Also, in [89] the image is adaptively over-
segmented into superpixels utilizing an efficient CNN based 
technique which is called the convolutional oriented 
boundaries (COB). 

Adopting transfer learning or utilizing deep learning 
methods to only extract the image features have some 
drawbacks. CMFD techniques which utilize transfer learning 
are commonly deciding the forgery at the image level only. 
Also, CMFD techniques which utilize deep learning methods 
to only extract the image features aren’t end to end trainable. 
So, several synthesized datasets that incorporates an enormous 
number of images with its localization binary masks are 
proposed to manage an end to end training process of the CMF 
localization task [90], [96]. In the next subsections, several 
deep learning based CMFD techniques are reviewed and 
organized according to its detection methodology. All the 
presented techniques are end to end deep learning based 
systems which are trained using huge synthesized datasets. 

A. Visual Similarity Based 
Deep learning based CMFD techniques which reveal the 

CMF on the basis of visual similarity are commonly mimic the 
same phases of the conventional CMFD techniques. However, 
each phase is accomplished by deep neural network (DNN) 
layers. A customized DNN layers are utilized to perform the 
feature matching phase. As a result of relying on visual 
similarity to locate CMF, similar but genuine regions may be 
treated as forged regions by mistake [87], [97]. 

Deep learning models such as [86]–[88], [97], [98] aim to 
localize CMF on the basis of visual similarity. In [87], [88], 
[97], [98] feature extraction is performed through the VGG16 
architecture. BusterNet [87], [88] is considered the first end-to-
end DNN model that aims to localize CMF at the pixel level. 
Other works such as [97], [98] aim to enhance BusterNet. For 
feature extraction, BusterNet  utilized 4 blocks of the VGG16 
network along with four pooling layers while in [98] the  4th 
pooling layer is removed to obtain features with higher 
resolution. Additionally, atrous convolution is utilized in [97], 
[98] to increase the filters field of views. As contextual 
information isn’t captured well in BusterNet, the attention 
module is utilized in [97], [98] to capture contextual 
information, and enrich features.  For feature matching, 
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BusterNet  performed single level feature matching while in 
[97], [98] hierarchical feature matching is enabled by 
considering features of multiple levels. To produce the CMF 
localization mask, BusterNet utilized a deconvolutional 
network which incorporates bilinear up-sampling layers and 
inception modules. Atrous spatial pyramid pooling (ASPP) is 
utilized in [97], [98] to localize CMF with scaling operation by 
exploiting image features in multiple scales. The CMF 
localization mask is refined in [97] using a residual refinement 
network. In [86] three dense inception blocks are combined to 
extract multi scale highly rich features. Three matching maps 
are obtained to yield a coarser to fine feature matching and 
then they are integrated by the loss layer to localize the CMF. 

B. Tampering Artifacts Based 
Several deep learning based CMFD techniques depend on 

the detection of tampering artifacts to reveal forgery in general. 
One example of such tampering traces is the unnatural 
characteristics that may appear at the forged regions boundary 
[91], [96]. To achieve visual consistency in a forged image, it 
is common to edit the forged region by various operations. The 
presence of multiple editing operations inside an image is also 
considered as a forgery indicator [99]. Additionally, geometric 
transformations and interpolation are commonly applied to the 
forged regions which results in periodic correlation artifacts. 
The resampling features can be utilized to catch such periodic 
correlation in the frequency domain [96]. 

Utilizing deep neural networks for detecting tampering 
artifacts is a difficult task. Deep neural networks (DNNs) are 
usually provides feature maps that describe image content 
rather than the forgery traces. So, utilizing DNNs for forgery 
detection needs some sort of adaptation to learn richer features 
correspond to the tampering artifacts [93], [99]. To be specific, 
the training of DNNs for the forgery detection purpose should 
be based on an information that describe the local relationship 
between adjacent pixels [99]. Such information could be 
captured through fixed spatial rich model (SRM) filters as in 
[100], [101], or a constrained convolutional layer that learns 
the filters weights as in [98], [99]. 

Realistic forged images show high similarity between its 
authentic and forged regions. So, depending only on CNN 
based architecture or single feature type for forgery localization 
isn’t enough. In [91], [96] a hybrid model consists of LSTM 
network and CNN is utilized to localize three image forgery 
types:  copy-move, splicing, and removal.  As LSTM network is 
able to handle sequential and contextual information, in [91], 
[96] LSTM is utilized to learn the transition between the 
authentic and forged regions. In [91] the proposed model 
comprises of an LSTM network and 5 convolutional layers. 
Image patches are gone through the first 2 convolutional layers 
to output a low-level feature map which is divided into blocks. 
Then, these blocks are gone through the LSTM network. The 
later 3 convolutional layers will get the LSTM feature map and 
produce the forgery localization mask. In [96] the proposed 
model comprises of an LSTM network and encoder-decoder 
network. Image is divided into blocks which are described by 
the resampling features. The resampling features go through 
the LSTM network. The encoder consists of residual units 
accepts the whole image as input and produce the spatial 
feature maps with global context. The encoder features and the 

LSTM features are fused and taken as input to the decoder to 
produce the forgery localization mask. 

CNN networks are usually aim to classify an image into 
one of various classes by learning class-specific features. On 
the other hand, the Siamese network aims to discriminate 
various classes by learning more generic features along with a 
distance metric. The Siamese network comprises of twin sub-
networks processing two images in parallel to decide whether 
the two images are similar or not [99]. In [99] a deep Siamese 
network is utilized to detect several types of image level post-
processing operations that are usually aim to hide the forgery 
traces. Moreover, a forgery localization method is proposed in 
[99] by dividing an image into overlapping regions which are 
compared with each other through the Siamese network to 
decide whether the image regions are similarly processed or 
not. Image is considered as forged if its regions have different 
processing operations. 

Several works such as [90], [100], [101] adapted object 
detection or segmentation networks to localize three image 
forgery types: copy-move, splicing, and removal. In [100] 
Faster R-CNN network with two parallel streams: RGB stream, 
and noise stream is proposed. The RGB stream models the 
global visual tampering artifacts. SRM filters are applied to the 
image to extract local noise features which go through the 
noise stream to figure out any noise inconsistency. A bilinear 
pooling layer is utilized to fuse the two streams features and 
enrich the network training. Object detection networks such as 
R-CNN, and Faster R-CNN are able to localize the forgery 
using bounding boxes. For this reason, object segmentation 
networks such as Mask R-CNN and U-net are preferred to 
precisely localize the forgery at the pixel level. In [90] an 
improved Mask R-CNN network is proposed. For precise 
forgery segmentation, a sobel based edge agreement head is 
joined to the mask prediction  branch of the Mask R-CNN. In 
[101] a dense U-net based architecture is utilized. The image 
residual obtained by SRM filters is concatenated with the 
image pixels to enhance the learning process of the dense U-
net. Through multi-scale up-sampling and concatenation, the 
features in the convolutional network are moved to the 
deconvolutional network to exploit the contextual features 
intersection for improving the forgery localization. 

DNNs can easily localize splicing forgery utilizing the 
tampering traces [97]. But, this isn't the case in localizing CMF 
because  almost all image properties are highly consistent [97].  
So, in [100] the model's performance in detecting CMF is the 
worst compared to other forgery types. To handle CMF, a 
comparison mechanism between the image objects is needed. 
Also in [99] the experimental results provided for CMF 
localization isn’t enough. 

C. Hybrid Detection Methodology 
Discriminating forged region(s) from its source region(s) is 

favored task in forensic  investigations. CMFD techniques with 
hybrid detection methodology such as [88], [98] are usually 
aim to discriminate forged regions from its source region 
besides localizing them at the pixel level. BusterNet [88] is 
considered the first end to end DNN that is able to discriminate 
forged region from its source region besides localizing them at 
the pixel level. BusterNet consists of two parallel branches that 
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are fused together. One branch is responsible for localizing the 
forged region besides its source region based on  visual 
similarity. The other branch is responsible for localizing at the 
pixel level only the forged region within the entire image based 
on visual artifacts. It comprises of a CNN based feature 
extractor and a deconvolutional network. But, BusterNet  fails 
to discriminate the source region from its forged region  if any 
of its branches wrongly locate the regions. So, the proposed 
model in [98] solves this problem and proposing more faster 
network with less parameters than BusterNet. The proposed 
model in [98]  consists of two serial sub-networks. The first 
sub-network is responsible for localizing similar regions at the 
pixel level which will be cropped and transferred to the second 
sub-network as sub-images. The second sub-network follows 
the same structure of the constrained CNN and is responsible 
for deciding the class label of each sub-image if it is source 
region or forged region. 

V. EVALUATION METRICS 
The outcome of a CMFD technique could be classifying an 

image as authentic/tampered, or localization of the cloned 
regions within the image at the pixel level. Such localization of 
the cloned regions requires classifying each image pixel as 
authentic/tampered. In this way, any CMFD technique can be 
viewed as a classifier and its performance could be measured at 
the image level or at the pixel level. However, the pixel-level 
evaluation is the most accurate and reliable way. The standard 
evaluation metrics for CMFD techniques are mostly depending 
on some measures which could operate at the image level or 
the pixel level. These measures are: TP, FP, TN,𝑎𝑛𝑑 FN [106]. 
True Positive (TP) represents the No. of tampered 
images/pixels correctly recognized as tampered.  False Positive 
(FP) represent the No. of authentic images/pixels erroneously 
recognized as tampered.  True Negative (TN) represents the No. 
of authentic images/pixels correctly recognized as authentic.  
False Negative ( FN) represents the No. of tampered 
images/pixels erroneously recognized as authentic. 

From the above measures, different evaluation metrics can 
be computed at the image / pixel level as listed below [106]: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑝) =  𝑇𝑃
𝑇𝑃+𝐹𝑃

             (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑟)/𝑇𝑃𝑅/𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃
𝑇𝑃+𝐹𝑁

           (2) 

𝐹1 =  2.𝑝.𝑟
𝑝+𝑟  = 2.𝑇𝑃

2.𝑇𝑃+𝐹𝑃+𝐹𝑁
             (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =   𝑇𝑃+𝑇𝑁
𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

            (4) 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝐹𝑃𝑅) =   𝐹𝑃
𝐹𝑃+𝑇𝑁

           (5) 

The performance of CMFD techniques can also be 
evaluated through the receiver operating characteristics (ROC). 
The ROC curve examines the effect of various thresholds on 
the prediction result by plotting the TPR against the FPR. 
However, it is common to convert the ROC curve into single 
value by computing the area under the ROC curve (AUC). The 

AUC value of certain classification system  represents its 
discrimination capability and hence facilitates the performance 
comparison of different classification system s [88]. 

As mentioned before, several attacks including the 
geometric operations and the post-processing operations are 
performed to make it difficult to detect the CMF. So, it is 
required to test the ability of the CMFD techniques to face 
these attacks. Such type of test is called the robustness test. In 
robustness test, the evaluation metrics mentioned above are 
usually measured for various attacks. Here comes the role of 
the evaluation datasets and how it covers various attacks. 

VI. THE CMFD DATASETS 
Many datasets are available for CMFD in which they vary 

according to some aspects such as the dataset volume, the way 
for expressing its ground truth, and the dataset complexity. 
Table II highlights the main CMFD datasets utilized in 
literature along with its main characteristics. 

The dataset volume is determined by the number of 
authentic (A) & tampered (T) images it contains, the images 
size, and the images format. In general, evaluating the 
performance of CMFD techniques using datasets with massive 
number of images obtains reliable measures at the expense of 
the time complexity. Images with high resolution could provide 
more details that facilitate the forgery detection task. On the 
other hand, low image size is preferred for fast computation. 
CMFD datasets with compressed images add some difficulty 
for the forgery detection task because of missing some details. 

The CMFD datasets commonly provide its ground truth at 
two levels: at the image level and/or at the pixel level. At the 
image level, each image should have a class label to indicate if 
it is authentic or tampered. Evaluating the pixel-level 
performance requires the presence of the ground truth 
localization masks. Not all the CMFD datasets provide binary 
masks that localize the cloned regions within the tampered 
images. But since most of the CMFD datasets provide the 
authentic images and its tampered images, it is possible to 
indirectly obtain the CMF localization mask through images 
subtraction followed by thresholding and morphological 
operations. This idea was adopted by the authors of [13] to get 
the localization masks for the CAISA dataset [107]. 

The dataset complexity is determined by the challenges it 
contains, attacks involved in creating the forged images, and 
the intensity of such attacks. The attacks include the geometric 
transforms and the post processing operations which are 
usually carried out in forged images. Also, the shape and size 
of the cloned regions greatly affect the detection performance 
of CMFD techniques. Small and irregularly shaped cloned 
regions poses a great challenge for CMFD techniques. 
Furthermore, images with multiple CMF pose other challenge. 
Several datasets are designed to intensively cover certain 
challenge(s). For example, the COVERAGE   [105] dataset is 
intensively introduce SGO regions. Also, the GRIP  [103] 
dataset introduced several small and smooth cloned regions. 
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TABLE II. SUMMARY OF THE CMFD DATASETS 

Dataset No. of 
images 

Size of 
images 

Format of 
images 

Shape of 
cloned 
region(s) 

Geometric 
transforms 

Post processing 
operations 

Existence 
of 
localization 
masks 

Other notes 

The CMFD datasets with single cloning 

MICC-F220 
[14] 

110 A + 
110 T 

722*480 to 
800*600 JPEG Square 

or  rectangular 

Scaling (S) 
& Rotation 
(R) 

Not exist Not exist Size of forged region = 1.2% 
of the entire image 

MICC-F2000 
[14] 

1300 A + 
700 T 2048*1536 JPEG Square 

or  rectangular S & R Not exist Not exist Size of forged region = 1.12% 
of the entire image 

SBU-CM16 
[102] 240 T 800*580 PNG/JPEG arbitrary 

shapes Only R 

Noise  addition 
(NA), 
JPEG  compression 
(JC), blurring (B) 

Exist 
Although the cloned regions 
vary from smooth to texture, 
they are not skillfully prepared 

GRIP [103] 80 A + 
3440 T 768*1024 PNG arbitrary 

shapes S & R NA & JC Exist 

Provide small / smooth CMF. 
The complete dataset is 
obtained by executing perl 
scripts. 

CMH [49] 216 T 845*634 to 
1296*972 PNG/JPEG arbitrary 

shapes S & R JC Exist  

CVIP [104] 70 A + 
970 T 

1000*700 
or 
700*1000 

BMP arbitrary 
shapes S & R Not exist Exist The forged region varies in 

size from small to large. 

COVERAGE 
[105] 

100 A + 
100 T 

400*486 
(on 
average) 

TIF arbitrary 
shapes 

S, R, and 
free form 

Illumination 
change Exist Have multiple SGO objects. 

Large size of forged region. 

The CMFD datasets containing multiple cloning  

MICC-
F8multi [14] 8 T 800*532 to 

2048*1536 JPEG arbitrary 
shapes S & R Not exist Not exist  

MICC-F600 
[14] 

440 A + 
160 T 

800*533 to 
3888*2592 JPEG/PNG arbitrary 

shapes S & R Not exist Exist  

FAU [106] 48 A 3000*2300 PNG/JPEG arbitrary 
shapes S & R NA, JC, 

downscaling Exist 

Cloned regions with varied 
size and texture are exist. 
Forgeries could be generated 
on demand through scripts. 

CAISA 
ITDE v1.0 
[107] 

800 A + 
451 
images 
with CMF 

384*256 JPEG Regular / 
Arbitrary 

S, R, and 
distortion Not exist Not exist Include images with CMF as 

well as splicing 

CAISA 
ITDE v2.0 
[107] 

7200 A + 
3274 
images 
with CMF 

320*240 to 
800*600 

JPEG / TIF 
/ BMP 

Mostly 
arbitrary 
shaped 

S, R, and 
distortion B Not exist Include images with CMF as 

well as splicing 

CoMoFoD 
small [108] 

5000 A + 
5000 T 512*512 PNG/JPEG arbitrary 

shapes 
S, R, and 
distortion 

NA, JC, B, 
Brightness 
change, Contrast 
adjustment, 
Color  reduction 

Exist 

Post processing operations are 
applied to the authentic images 
as well as the forged images. 
The forged region varies in 
size from small to large. 

CoMoFoD 
large [108] 

1500 A + 
1500 T 3000*2000 PNG/JPEG arbitrary 

shapes 
S, R, and 
distortion 

Same as 
CoMoFoD small Exist Same as CoMoFoD small 

VII. DISCUSSION AND FUTURE DIRECTION 
Assessing the visual similarity for revealing the CMF is the 

most effective and common detection methodology. Such 
detection methodology can be implemented through the 
conventional techniques or the deep leaning techniques. 
Regardless of the implementation paradigm, the detection 
system usually consists of three stages as follows: feature 
extraction, feature matching, and forgery localization. Each 
stage suffers from certain challenges. In the feature extraction 
phase, it is required to deal with small, smooth cloned regions 
and low resolution images as well as the geometric transforms 

and post processing operations. In the matching phase, dealing 
with similar but genuine objects and reducing the false 
matching rate are of great importance. In the forgery 
localization phase, it is essential to deal with multiple cloning. 

Among the conventional CMFD techniques, keypoint 
based techniques and hybrid techniques have been proved to 
provide better performance than the block based techniques. To 
handle CMF with small or smooth cloned regions, there are 
two options: either integrating block based techniques with 
keypoint based techniques or covering the entire image by 
enough keypoints. There are several alternatives to acquire an 
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adequate number of keypoints covering the entire image such 
as utilizing multiple keypoints detectors, lowering the contrast 
threshold of the keypoint detector, and increasing the image 
resolution or contrast. Among all these alternatives, techniques 
that handle the non-uniform distribution of the image keypoints 
phenomenon are favored. 

The matching complexity is a fundamental problem with 
conventional CMFD techniques. Also, increasing the extracted 
features from an image to handle CMF with small/smooth 
cloned regions makes the matching complexity problem more 
difficult. Adopting low dimensional descriptors  can decrease 
the matching time but reduce the CMFD performance. On the 
other hand,  matching search space reduction or utilizing 
approximate matching are favored techniques for reducing the 
matching time. 

For accurate localization of cloned regions that avoid 
detecting SGO as cloned regions, it is important to utilize 
descriptors with high discrimination power, choose appropriate 
values of the thresholds, validate the estimated geometric 
transform and estimate it accurately. Conventional CMFD 
techniques are commonly utilizing clustering or segmentation 
techniques for different reasons: to eliminate false matching, 
facilitate consistent matching direction between the cloned 
regions, and localize multiple cloned regions. 

Although the conventional CMFD techniques have created 
many solutions to deal with different challenges, there are two 
problems that remain without an efficient solution. First, 
CMFD techniques aim to localize the cloned regions with high 
accuracy whatever the applied geometric and post processing 
operations. Also, in the same time the CMFD technique should 
have reasonable time complexity. There is a tradeoff between 
these objectives and a way to balance between them is needed. 
Second, several parameters are utilized in conventional CMFD 
techniques. A way to automatically choose customized values 
for these parameters that are suitable for each image is also 
needed. On the other hand, deep learning can find a solution to 
these two problems, as it is the best way to learn features as 
well as the classification task. 

Because of its massive learning power, deep learning 
techniques can overcome many of the challenges facing 
CMFD. Deep learning models are able to extract features with 
high description and discrimination ability. Such extracted 
features could be further enriched by adopting attention 
modules and utilizing the contextual information. Deep 
learning techniques have achieved an adequate level of 
invariance to geometric transformations, and post processing 
operation through the polling units and data augmentation. In 
addition, deep learning techniques achieve scaling invariance 

by adopting either the atrous spatial pyramid pooling  or the 
inception modules . Atrous spatial pyramid pooling  requires 
less number of parameters than the inception module. 
However, invariance to rotation and especially large rotation 
needs to be investigated. Deep learning techniques are 
commonly handle small cloned regions by performing multi-
level matching. In other words, the matching process is 
performed between the low level features of early layers as 
well as the high level features of subsequent layers. 

Although deep learning systems have several achievements 
in many areas, their use in the CMFD problem still needs more 
research to improve performance. In deep learning models, it is 
common to resize the training/testing images to specific size to 
fit the input layer. The effect of this resizing operation as well 
as the image resolution on the detection performance should be 
investigated. Some deep learning based models apply a 
preprocessing step to suppress the image content and highlights 
the relationship between image pixels to reveal the forgery. 
More preprocessing operations need to be investigated 
especially to resist against noise addition and blurring. 

Depending on visual similarity to reveal CMF could result 
in false alarms. Conventional CMFD techniques are usually 
verifying the suspected regions by assessing the geometric 
transform between them. While in deep learning based CMFD 
techniques such verification step is missed. It is true that 
relying on tampering artifacts to reveal CMF isn’t the best 
choice. But, combining it with the visual similarity based 
detection methodology helps to enhance the performance, 
reduce false alarms and discriminate forged regions from its 
source regions. Such hybrid training can be accomplished 
through deep learning from two streams: the image stream and 
the image residual stream. 

The most recent CMFD techniques are summarized in 
Table III. All the reported performance results are at the pixel 
level. In case of measuring the performance of certain CMFD 
technique with respect to several attacks, the reported 
performance result is expressed as a range. From Table III, we 
can find that the performance of most CMFD techniques isn’t 
mature enough, varies from dataset to another, and needs more 
enhancements. Some CMFD techniques are deceiving in terms 
of their efficiency as they were either evaluated with small 
subset of test images or evaluated under simple conditions. 
Detecting the forgeries in certain dataset may be more difficult 
than other dataset because some datasets include more 
challenges/attacks than other datasets. Also, it is common to 
have many datasets include certain challenge. But, the strength 
of applying such challenge could vary from one dataset to 
another. 
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TABLE III. SUMMARY OF THE RECENT CMFD TECHNIQUES 

Paper Details Performance Reviews 

Block based CMFD techniques  

[44] 

Overlapping square blocks division, Gaussian 
hermite moments, assess similarity through 
euclidian distance, RANSAC, Morphological 
opening. 

CoMoFoD small: 
𝐹1𝑝=[0.9555,0.8144] 
GRIP: 𝐹1𝑝= 0.9805 [Plain CMF] 
CVIP: 𝐹1𝑝= 0.9497 [Plain CMF] 

Pros: less sensitive to noise, able to detect 
small/multiple CMF. 
Cons: high time complexity, detect scaling only in 
the range [80% -140%], test with simple rotations. 

[45] 

Overlapping square blocks division, tetrolet 
features,  assess similarity through the absolute 
difference, Fast outliers filtering method, 
Morphological opening and closing. 

CoMoFoD small: 
𝐹1𝑝=[0.9564,0.8282] 
 

Pros: enhanced time complexity, able to detect small 
/multiple CMF. 
Cons: detect CMF only where scaling in the range 
[80% -135%] and the quality factor is 80 or more. 

[29] 
SWT, overlapping square blocks division, DCT 
mean features, similarity through euclidian 
distance, Morphological opening. 

CoMoFoD small: 
𝐹1𝑝=[0.941,0.834] 

Pros: adopting descriptors of reduced dimension. 
Cons: a tiny subset of the dataset has been utilized for 
evaluation, false alarms are exist. 

[46] 
Square blocks division, tchebichef moments, SVD, 
similarity through euclidian distance, 
Morphological opening. 

CoMoFoD: 𝐹1𝑖=  [0.9586-0.7786] 
Pros: adopting descriptors of reduced dimension. 
Cons: robustness test against geometric 
transformations was missed. 

[42] 
Image size reduction, Pyramid model construction, 
overlapping circular blocks division, zernike 
moments, KD tree, RANSAC. 

FAU: 𝐹1𝑖= 0.9717 
Pros: able to handle large scaling & rotation. 
Cons: slow, bad performance against noise addition, 
and small cloned  regions. 

[2] 
Circular blocks division, PCET+ SVD, similarity 
through euclidian distance, PSO optimization of the 
matching threshold. 

374 test images from CoMoFoD & 
CASIA: 𝐹1𝑖= [0.9913-0.8572] 

Pros: adopting descriptors of reduced dimension. 
Cons: fail to handle images with large smooth 
regions, small cloned regions, and large scaling. 

Keypoint based CMFD techniques  

[8] SIFT keypoints are described by Hu’s moments, 
Global threshold, Region growing. 

CoMoFoD small: 𝐹1𝑝=0.7672 
[Plain CMF] 

Pros: able to detect CMF with rotation/flipping. 
Cons: unable to detect small CMF. 

[5] 
Keypoints are detected by Harris-Laplace+Hessian-
Laplace+SIFT and described by SIFT, G2NN, 
RANSAC, Bag of Word 

FAU: 𝐹1𝑝=0.8022 [Plain CMF] 
MICC-F600: 𝐹1𝑝=0.7011 

Pros: able to detect small /multiple CMF. 
Cons: false alarms are exist which reduced the 
precision. 

[50] 
SIFT+LIOP, G2NN+transitive matching, Require 
matching density through SLIC superpixels 
segmentation, RANSAC 

FAU: 𝐹1𝑝=0.7442 [Plain CMF] 
Pros: able to handle cloned regions with few 
keypoints, enhance the matching relationship. 
Cons: the precision needs enhancement. 

[74] 
Keypoints are detected by SURF and described by 
RLBP, G2NN through Euclidean distance, 
Hierarchal clustering, RANSAC 

COVERAGE: 𝐴𝑐𝑐=  [0.705 - 0.645] 
CoMoFoD small: 𝐴𝑐𝑐= 0.701 
FAU: Acc = 0.833 

Pros: distinguish SGO regions from cloned regions. 
Cons: tested mostly without post processing 
operations. Only consider jpeg compression and 
blurring for the COVERAGE dataset. 

[11] 

Image is segmented into rough and smooth regions. 
In rough regions: SIFT + G2NN + HAC + 
RANSAC. In smooth regions: Fourier Mellin + 
Patchmatch. Morphological operations. 

FAU: F1i=[0.9697,0.7407] 
GRIP: F1i=0.9581 [Plain CMF] 

Pros: able to detect smooth /multiple CMF as well as 
CMF with large scaling/rotation. 
Cons: evaluation at the pixel level isn’t provided. 

[57] 
SIFT, the histogram of the reduced LBP, 2NN, 
RANSAC, Correlation coefficient computation, 
standard thresholding. 

MICC-F220: 𝐴𝑐𝑐𝑖=0.9682 
CMH: 𝐴𝑐𝑐𝑝= [0.9772-0.9766] 
CVIP: 𝐴𝑐𝑐𝑝= [0.982- 0.9583] 
COVERAGE: 𝐴𝑐𝑐𝑖=0.675 

Pros: combining the histogram of the reduced LBP 
with SIFT for enhancing the performance. 
Cons: not consider multi CMF, evaluated with 
datasets with minimal post-processing. 

Deep learning based CMFD techniques 

[88] 

BusterNet: DNN with two parallel branches. 
Mani-Det branch: VGG16, bilinear up-sampling 
layers, inception modules, binary classifier. 
Simi-Det branch: same as Mani-Det branch + Self-
Correlation, Percentile Pooling. 

CAISA ITDE v2.0: 𝐹1𝑝=0.456 
COVERAGE: 𝐹1𝑝=0.618 
CoMoFoD small: 𝐹1𝑝=0.493 

Pros: discriminate forged regions from its source 
regions. 
Cons: contextual information is lost, difficulty in 
detecting small cloned regions. 

[97] 

DNN with  single stream. 
VGG16, atrous convolution, attention module, 
hierarchical feature matching, ASPP, residual 
refinement network. 

CAISA ITDE v2.0: 𝐹1𝑝= 0.455 
COVERAGE: 𝐴𝑈𝐶=  0.8488 
CoMoFoD small: 𝐹1𝑝= 0.501 

Pros: Enrich the extracted features, the CMF 
localization mask is refined. 
Cons: Not distinguish well SGO regions from really 
cloned regions. 

[98] 

DNN with  two serial sub-networks. 
CMSDNet: VGG16, atrous convolution, double 
level self-correlation, attention module, ASPP.  
STRDNet: constrained conv. layer, 4 conv. groups, 
fully connected classification network. 

CAISA ITDE v2.0: 𝐹1𝑝= 0.538  
COVERAGE: 𝐹1𝑝=   0.677  
CoMoFoD small: 𝐹1𝑝=  0.511 

Pros: enhances the performance of BusterNet [88] as 
well as the computational time, able to discriminate 
forged regions from its source regions. 
Cons: The performance still needs enhancement. 

[86] 
End to end DNN. 
three dense inception blocks, hierarchical 
feature matching and post processing. 

CAISA ITDE v2.0: 𝐹1𝑝= 0.6429  
CoMoFoD small: 𝐹1𝑝=  0.441 
[averaged for several attacks] 

Pros: detect unseen forged regions through learning 
the correlations of multi scale dense features. 
Cons: bad performance for the FAU dataset. 

[89] 
Adaptive over segmentation by COB, keypoints 
detection using DoG, keypoints description using 
CKN, matching through KD tree, RANSAC. 

CoMoFoD small: 𝐹1𝑝=  0.6318 
[with no post processing] 

Pros: the processing time is reduced due to the GPU 
implementation of CKN and COB. 
Cons: scale invariance needs further enhancement. 

[95] 
Overlapping square blocks division, feature 
extraction using AlexNet, matching through global 
threshold, Morphological operations. 

GRIP: F1p=0.93 [Plain CMF] 
 

Pros: able to handle CMF with SGO regions and 
smooth cloned regions. 
Cons: robustness test was missed. 
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VIII. CONCLUSION 
In this survey, we have studied the CMFD problem in 

depth. We have categorized the CMFD techniques based on 
their detection methodology, their detection paradigm, and 
their detection capability. Different detection methodologies 
and paradigms have been analyzed and discussed regarding 
their advantages and disadvantages. Moreover, we have deeply 
examined the challenges that face the CMFD techniques in 
general and the conventional CMFD techniques in specific. 
Consequently, this survey gives an integrated and in-depth 
view of the CMFD techniques, challenges and recent trends. 

The CMFD is a very challenging problem and still an open 
research area. The majority of the CMFD techniques aren’t 
achieved yet good enough performance due to many 
conflicting challenges. In order ensure that a specific CMFD 
technique has achieved satisfactory results, it should be 
evaluated at the pixel level and evaluate its robustness against a 
wide range of challenges that might face the CMFD 
techniques. Consequently, additional work should be carried 
out to solve several conflicting  challenges and there is a great 
need to further investigate and employ diverse deep learning 
capabilities in tackling the CMFD problem. 
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