Feature Engineering Framework to detect Phishing Websites using URL Analysis

N.Swapna Goud¹

Research scholar Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation Vaddeswaram, AP, India

Abstract-Phishing is a most popular and dangerous cyberattack in the world of internet. One of the most common attacks in cyber security is to access the personal information of internet users through "Phishing Website". The major element through which hacker can do this job is through URL. Hacker creates an almost replica of original URL in which there is a very small difference, generally not revealed without keen observation. By pipelining various machine learning algorithms, the proposed model aims to recognize the important features to classify the URL using a recursive feature elimination process. In this work the data set of various URL records has been collected with 112 features including one target value. In this work a Machine Learning based model is proposed to identify the significant features, used to classify a URL, the wrapper method recursive feature elimination compares different bagging and boosting machine learning approaches .Ensemble algorithms, Bootstrap Aggregation Algorithms, Boosting and stacking algorithms are used for feature selection. The proposed work has five sections: work on the pre-processing phase, finding the relation between the features of the dataset, automatic selection of number of features using Extra Tree Classifier, comparison of the various ensemble algorithm and finally generates the best features for URL analysis. This paper, designs meta learner with XG BOOST classifier as base classifier and achieved an accuracy of 93% Out of 112 features, this model has performed an extensive comparative study on feature selection and identified 29 features as core features by performing URL analysis.

Keywords—Recursive feature elimination; principal component analysis; standard scalar transformation; eXtreme gradient boosting classifier; correlation matrix

I. INTRODUCTION

The world of digital suffers a lot from cyber security attacks. The phishing attack can be handled based on source code or URL or image. This research designed the model based on URL features. These URL features are further classified into 4 sub categories. The sub categorization is represented in the below Fig. 1.

With the increase of E-commerce applications, cybercrimes are also increasing rapidly [1]. To solve this issue, researchers are focusing on the detection of phishing websites using Machine Learning and Deep Learning techniques. The dataset contains 112 attributes but all the attributes may not be important. This research tries to find the most important attributes that can determine whether it is a phishing website or not. Some of the websites access are marked as unauthorized Dr. Anjali Mathur² Assistant Professor Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation Vaddeswaram, AP, India

by Google but it is difficult to identify all the unauthorized sites by Google search engine. In order to prevent those types of sites, the model compares the every component of the URL to mark it as "Phish Website" [7].

Fig. 1. Classification of URL based Features.

In the proposed research, the feature selection to detect the phishing website is solved using the ensemble algorithms. Ensemble algorithms are popular for their robust results and it designs the meta learners by combining the weak learners, which performed on the same dataset. There are three popular ensemble techniques. The algorithms are as follows.

1) Bootstrap aggregation algorithms: Bootstrap Aggregation is also known as "Bagging", in which execution of weak classifiers occurs concurrently (or) in parallel. In this method, a sample randomized subset is generated from the entire dataset. The traditional algorithms suffer from high variance. To solve this problem, a component known as "estimator" is added, which is used to create a random sub sample based on the classifier passed.

2) Boosting algorithms: In this type of algorithms, classifiers of same type are combined sequentially to generate a new model. In general, it solves the problem of label incorrectness, which is defined by the one or more models. Boosting also, address the problem of high variance by generating the output of various classifiers and then the average of their predictions are taken into account. It also plays an vital role in reduction of bias.

3) Stacking algorithms: It is more advanced than bagging and boosting algorithms because it combines heterogeneous classifiers rather than homogenous. It also designs a model in such way that it combines a meta learners with base learners. In these algorithms, after every iterations, it applies meta model based on the output generated by the previous iteration.

II. RELATED WORK

In [8] Mehmet Korkmaz et al. analyzed URL features by comparing the performance of the model using three different datasets and eight machine learning algorithms. This model has analyzed every part of the URL for detection of fake website. The model has recognized 58 features as important features in URL analysis.

Among all the algorithms, Random forest has given best performance on all the three datasets.

In [2] M Somesha et al, proposed an efficient deep learning techniques in which URL's are passed as the input to the model and features are extracted from the selenium testing tool. The major components of extraction are:

a) Obfuscation Features: These are features are extracted from the URL itself. In general, there are 5 types of features as shown in Table I.

S.NO	Feature Name
1	Number of dots in host name
2	@symbol in URL
3	URL Length
4	IP presence
5	HTTPS presence

TABLE I.OBFUSCATION FEATURES

b) Hyperlink-based Features: These features are extracted from the code snippet of the HTML page. Among 8 features, this model has identified six features as important to design the concept of information gain.

c) Third-Party-based Features: These features are extracted from the search engines and assisting devices. In this type of features, Alexa has obtained highest information gain. In information gain, it assumes that every feature is dependent on class label and all other features are independent of other features. Every feature is allocated with rank and the ranks less than the threshold value are ignored.

In the next step, the model splits the data into trained and cross validated data. The model had designed a multi feed forward network, with five DNN layers with hyper parameters. In this design, weight values are considered randomly. A Recurrent Neural Network as LSTM is designed to find the relation between the extracted. LSTM is good at handling the vanishing gradient problem. To avoid long term dependencies, LSTM has designed three gates with every gate has its own equation. A CNN with eight layers are designed with back propagation method to classify the URL as suspicious or not. In [3] Paulius Vaitkevicius et al. conducted a comparative study on various machine learning algorithms and designed a unified ranking model for the detection of phishing website. During the training phase, the model has implemented a cross validation process with setting of hyper parameters and also it has the solved the problem of memorizing the data by decreasing the number of weak learning algorithms. Similarly, at the same time, overfitting and underfitting issues are handled by defining the high bias and high variance. Welch's T-test, compare the accuracies generated by the two classifiers and compute the statistical difference. Based on the accuracies produced, each classifier has assigned a unique value. Finally, the model has given unique ranking depending on the related work and libraries used.

In [9] Jitendra Kumar et al. proposed five classifiers for detecting phishing websites. Among these random forest and decision tree classifiers are given almost the same accuracy. Author used regular expressions to extract the components from the URL. The author has mainly focused on the three important features namely, URL based features, page based features and domain based features. The data are randomly distributed for forming training and testing dataset.

In [4] Ammar Odeh et al. designed a Multi-Layer Perceptron by considering the URL features. On the extracted features, performed selection, combination of ranking and single attribute evaluation is performed. Later, a subset from these features is generated and is passed as input to the neural network. In this, model is designed with fixed values of hyper parameters and has obtained an accuracy of 93.7%.

In [5] Yazan A et al, proposed AI meta learners combined with base algorithm known as "Extra Tree Classifier". The first meta learner is "ABET", this process is carried for 100 iterations and later normal distribution is performed. After training the classifier, it generated a hypothesis and computed the error rate. For every iteration, it updated the weight value and checked whether the threshold value 0.5 is satisfied or not. For the entire generated hypothesis, it computed the argmax function. The second meta learner is "RoFET", in which the dataset is randomly divided into five subsets, with each containing six features. It created a new dataset by using the bootstrap induction. The newly constructed dataset generated coefficients with the help of sparse rotation matrix. It generated class confidence to determine the class label of each record. The third meta learner is "BET", 150 iterations are performed over the training dataset and a new dataset is generated by inducer for base algorithm. Argmax concept is applied to find the most frequent predicted class label of the record. The fourth meta classifier is "LBET", all the weights are initialized to 1/n, where n is number of records in the dataset. The probability estimators are initialized as 0.5. For all the 100 iterations, calculated the weight based probability estimators, then fitted the least square regression function to the weights and updated the values of the weight. Summation of all the classifiers are used to predict the class label. Out of these 4 meta classifiers, LBET has performed better with 97.5% accuracy.

In [6] Waleed Ali et al. proposed PSO based feature weighting approach by encoding the features in a particle. The position and velocities are generated randomly to calculate the fitness of the function. The major goal of the fitness function is to update the local and global values by checking the threshold values regularly. After reaching the termination condition, it generates the optimal weights of all the features. Based on the weights, important features are considered for classification process. These features are passed as input to the five traditional machine learning algorithms and one neural network algorithm. The model has compared all the six algorithms in terms of all evaluation metrics and stated that back propagation neural network has achieved highest accuracy.

In [10] Suleiman Y. Yerima et al, designed 2-layer CNN and 3-layer CNN to detect the phishing websites. The 2-layered architecture contains one convolution and one max pooling layer. The flattened data is transferred to the eights units of neurons that are activated with the help of ReLu function. To prove the efficiency, author has constructed the network with different number of neurons and has achieved 96.6% accuracy for 64 neurons. In the 3-layered architecture additional max pooling layer is added and has achieved 97.1% accuracy for 64 neurons. This model clearly depicted that with the increase of layers and neurons, the accuracy of the model also increases.

III. METHODOLOGY

In this research, the major focus is to reduce the number of features for classifying a URL as phishing website or not. This research work is organized into five sections: Section 1 describes the pre-processing, Section 2 describes the process of finding the relation between the features of the dataset using correlation and principal component analysis (PCA), Section 3 describes the automatic selection of number of features using Extra Tree Classifier, Section 4 compares the bagging and boosting algorithms on the number of features generated using the pipeline mechanism and Section 5 generates the best features based on the best algorithm generated in Section 4.

The feature engineering helps the model to construct the explanatory attributes which plays a vital role in training the model. The major goal of feature selection is to reduce the computation time of the complex models. The process of feature engineering is illustrated in the Fig. 2.

Fig. 2. Feature Engineering Framework for Detection of Phishing Websites.

A. Pre-Processing

The process of cleaning and transforming the data is known as "Pre-processing". A dataset with missing and inconsistent values leads to the poor performance of the model. The dataset used in this research contains 112 features (Table VII in Appendix A) and all the features are numerical values. Used wrangling process to deal with missing and inconsistent values to reduce the computational time, the data should be normally distributed. Normal distribution is achieved by applying standard scalar mechanism.

The equation is

$$SC = \frac{A[i] - \mu}{\sigma} \tag{1}$$

Where,

A[i], represents attribute(columns) of ith index

 μ , represents the mean

 σ , represents the standard deviation

After applying standard scalar mechanism, for further processing of the model, the dataset is divided into 80% training data and 20% testing data.

B. Dependency between the Features

Implementing correlation function and PCA functions to find the relation among the features of the dataset. In correlation, the coefficient r, is denoted by 3 possible values [-1, 0, 1], which indicates negative, no relation and positive relation. In this research, Pearson method is implemented, which tries to draw a best fit line between the features. The calculation of Pearson coefficient is represented in the equation 2.

$$PC = \frac{np*\Sigma_{i=0}^{np}A_{i}A_{j}}{\sqrt{(np\sum_{i=0}^{np}(A_{i})**2 - (\sum_{i=0}^{np}(A_{i}))**2)*(np\sum_{i=0}^{np}(A_{j}))**2 - (\sum_{i=0}^{np}(A_{j}))**2)}}$$
(2)

Where,

np, represents number of pairs.

Ai, A j, represents attribute values of corresponding indexes.

After applying PCA on our dataset, the result is observed as followed (the attributes whose coefficient value, PC is less than 0.95 and self-denoting correlation values are ignored) Table II.

Principal Component Analysis (PCA) creates a linear relationship among the attributes. The explained variance measures as rank in terms of PCA. It iterates from 1 to n components specified in the algorithm. It is a two-step process in which first one calculates the covariance matrix and second one computes the Eigen values, Eigen vectors for the covariance matrix. This proposed research made the threshold for covariance as 0.90 and obtained 20 features as important features. The results are tabulated in Table III.

TABLE II. TEARSON COEFFICIENT VALUES IN CORRELATION MATRIX						
S.No	Attribute 1	Attribute 2	PC Value			
1	qty_percent_url	qty_percent_params	0.950514			
2	qty_equal_url	qty_and_params	0.960387			
3	qty_and_params	qty_equal_params	0.966137			
4	tld_present_params	qty_at_params	0.967140			
5	qty_plus_params	qty_questionmark_params	0.969952			
6	qty_plus_params	qty_exclamation_params	0.969952			
7	qty_equal_url	qty_equal_params	0.970317			
8	qty_equal_directory	qty_asterisk_directory	0.974202			
9	qty_hashtag_params	qty_plus_params	0.976315			
10	qty_slash_directory	qty_slash_url	0.977222			
11	qty_equal_directory	qty_tilde_directory	0.978526			
12	qty_equal_params	qty_params	0.979225			
13	qty_equal_directory	qty_and_file	0.980746			
14	qty_and_directory	qty_equal_directory	0.982878			
15	qty_questionmark_directory	qty_equal_directory	0.983013			
16	qty_asterisk_directory	qty_and_directory	0.986722			
17	qty_exclamation_params	qty_questionmark_params	0.987444			
18	qty_asterisk_directory	qty_and_file	0.988919			
19	qty_dollar_directory	qty_asterisk_directory	0.988919			
20	qty_tilde_directory	qty_and_directory	0.991102			
21	qty_comma_file	qty_asterisk_directory	0.991163			
22	qty_percent_file	qty_percent_directory	0.991288			
23	qty_and_directory	qty_dollar_directory	0.993309			
24	qty_and_file	qty_tilde_directory	0.993309			
25	qty_dollar_params	qty_questionmark_params	0.993776			
26	qty_exclamation_params	qty_space_params	0.993776			
27	qty_dollar_directory	qty_and_file	0.995510			
28	qty_hashtag_directory	qty_and_directory	0.995562			
29	qty_dollar_file	qty_tilde_directory	0.995562			
30	qty_plus_directory	qty_and_file	0.997758			
31	qty_space_file	qty_dollar_directory	0.997758			
32	qty_and_directory	qty_and_file	0.997778			

TABLE III. EXPLAINED VARIANCE MEASURE OF PCA

S.No	Explained Variance Ratio
1	0.40925027
2	0.16526287
3	0.05252565
4	0.03512697
5	0.03213711
6	0.02153855
7	0.02043802
8	0.01887185
9	0.01696678
10	0.01528985
11	0.01430187
12	0.01369579
13	0.01319472
14	0.01253416
15	0.01178374
16	0.01158423
17	0.01125422
18	0.01058307
19	0.01013929
20	0.0098498

C. Automatic Selection of Number of Features

In this research, an ensemble technique known as "Extra Tree Classifier" is implemented. This model constructs unpruned decision trees and it considers majority voting to predict the class labels. It follows reverse approach to decision trees and random forest; it tries to fit the decision trees generated by the dataset. The algorithm has three hyper parameters, change of which may lead different evaluations. The hyper parameter k, determines the attribute selections, nmin determines the output noise average and m determines variance level. To evaluate the model, repeated stratified cross validation is performed. This research paper has opted repeated cross validation because in K-fold cross validation, because of the random distribution of the data, every time it is executed, and the output values may vary. To reduce this noisy data problem, in the proposed model the repeated cross validation, performs the same task for multiple times and the average of all the executions is taken into account. The number of models generated and executed is shown in the equation 3.

Number of models generated= k*r

Where,

k, represents K-folded cross validation

r, represents number of repetitions

Algorithm 1: Explore Number of Features					
Input: Phishing Dataset, D					
Output: Accuracy for 2 to n-1 features					
Start					
Step 1: Load the dataset, D					
Step 2: number_features=111					
Step 3: create an empty dictionary, models					
Step 4: for $i \leftarrow 1$ to number_features:					
a. call ExtraTreeClassifier(max_features=i)					
b. append to the models					
Step 5: cv					
Step 6: scores <- cross_val_score()					
Step 7: for names, model in models.items():					
Step 8: print scores					
Stop					

D. Comparative Study

Bagging and boosting algorithms are identified as powerful ensemble algorithms. Pipelined four ensemble algorithms to study the performance of an algorithms on the number of features generated by the Extra Tree Classifier among them three are boosting algorithms and other is bagging algorithm with meta base estimator each algorithm is illustrated.

1) Bagging with meta base estimator: This model fits the randomly generated subsets to the base classifiers. The average predicted values of all the models generated by the subsets are taken in to consideration and the outcome is predicted based on the majority voting. The random subsets are generated based on the estimator specified in the model. In this research, the estimator considered is "Logistic Regression", which is better to draw the relationships between nominal, interval and ordinal data. The base classifier considered is "Decision Tree Classifier", in this at every node to split the data, it takes number of conditions into consideration. Using the concept of divide and conquer, the decision tree recursively partitions the data. The splitting of the data is taken care by the parameter, information gain. Here, the information gain is computed by subtracting the weighted sum node impurity of two child nodes from the node impurity of the parent node. The node impurity defines the homogeneity of the labels to which it belongs to.

2) Adaptive boost (AdaBoost) classifier: This algorithm trains the model sequentially by correcting the errors generated by the previous models. In this classifier, initially every record is assigned with a random weight (Generally, it is considered as 1/n, where n represents number of record in the dataset). A decision tree is constructed and is used to classify the records. The predictive labels generated by the decision tree are compared against the actual class labels of the training dataset. This comparison gives the results of correctly and

incorrectly classified records. This misclassified data weights summation is assumed as error rate and theses errors are corrected by increasing the weights of incorrect decisions and decreasing the weights of correct decisions. This process is repeated continuously until correct predictions are made.

3) Gradient Boosting (GBM) Classifier: It is almost similar to AdaBoost classifier but it specifies the target values to the next model generator. The target value always depends on the rate of variation among the prediction models. If the error rate is high the target value is set to high otherwise it is set to low. The error value is determined by the gradient coefficient in the loss function. The loss function in this algorithm is considered as mean square error, the objective of this algorithm is to minimize it. It always tries to bring the error rate close to zero.

4) eXtreme Gradient BOOSTing (XGBOOST) Classifier: It is an extended version of gradient boosting algorithm. The major goal of this algorithm is to increase the computational power of the system and optimize the performance of the model as minimum as possible. All the trees construction occurs concurrently in this model. This parallelism improves the CPU utilization time.

Algorithm 2: Recursive Feature Elimination with pipeline Architecture

Input ← Phishing Dataset, D

Output← Accuracies of different machine learning algorithm

Start

Step 1: Load the Dataset, D

Step 2: create a two dimensional matrix, $ID \leftarrow$ store all the columns except the target column

Step 3: create a one dimensional matrix, $DD \leftarrow$ store the target column

Step 4: ID_train, DD_train, ID_test, DD_test ← split the dataset

Step 5: Update the ID_train and DD_train with the standard

scalar values and fit the transformation

Step 6: alg=get_alg()

Step 7: create two empty lists, res and name

Step 8: for n,m in alg:

a. sco←eval_alg(m,ID_train,DD_train)

b. append sco value to the res list

c. append n to the name list

d. print the mean of scores, mean(sco) and names n

Stop

The feature selection has done using filtering methods, wrapper methods and embedded methods. In this research, the popular wrapper method known as "Recursive Feature Elimination" (RFE) is implemented. In this method, different classifiers are applied on the same model to find the number of important features. Initially, RFE considers all the features as important and it starts constructing subset by eliminating the unwanted features. RFE ranks the features based on their importance. The features with least absolute value are removed.

Procedure for get_alg():

1) create an empty list, algorithms

2) add logistic regression with decision tree classifier as meta estimator to pipeline

3) add adaboost algorithm to pipeline

4) add XGBoost classifier to pipeline

5) add Gradient Boosting classifier to pipeline

Procedure for eval_alg(m, ID_train,DD_train):

a) call the repeated cross validation function

b) call the cross evaluation score function

E. Generation of Best Features

The best features are obtained by passing XGBoost as estimator to the recursive feature elimination algorithm and number of significant features are 29. Support and rank are achieved for all the features.

Algorithm 3		Recursive	Feature	Elimination	with	
XGBOOST Estimator						

Input← Phishing Dataset, D

Output ← Accuracies of different machine learning algorithm

Step 1: Load the Dataset, D

Step 2: create a two dimensional matrix, $ID \leftarrow$ store all the columns except the target column

Step 3: create a one dimensional matrix, DD ← store the target column

Step 4: ID_train, DD_train, ID_test,DD_test←split the dataset

Step 5: Update the ID_train and DD_train with the standard scalar values and fit the transformation

Step 6: Call RFE() method with XGBoostClassifier as estimator.

Step 7: fit the train data to the RFE() method

Step 8: for $i \leftarrow 0$ to len(D):

Print support[i], rank[i]

Stop

Start

IV. EXPERIMENTAL RESULTS

In this work the algorithms are good enough to find the significant features useful for classification process. The feature selection is based on their accuracy score and score for every feature is tabulated in Table IV.When the accuracy is calculated for all 111 features, it is observed that accuracy is more i.e., 94 % accuracy when the number of features are 29 and are tabulated in table new. The accuracy scores are plotted in Fig. 3. In the below graph, x-axis represents the number of features and y-axis represents the accuracy.

TABLE IV. ACCURACY VALUES OF EACH FEATURE

Feature	Accuracy								
Number	Score								
1	0.921	24	0.933	47	0.937	70	0.936	93	0.934
2	0.927	25	0.934	48	0.936	71	0.936	94	0.934
3	0.922	26	0.935	49	0.937	72	0.938	95	0.935
4	0.925	27	0.934	50	0.937	73	0.938	96	0.935
5	0.927	28	0.928	51	0.937	74	0.937	97	0.935
6	0.926	29	0.940	52	0.936	75	0.933	98	0.934
7	0.923	30	0.933	53	0.939	76	0.936	99	0.935
8	0.923	31	0.936	54	0.937	77	0.935	100	0.935
9	0.927	32	0.932	55	0.940	78	0.937	101	0.934
10	0.931	33	0.935	56	0.937	79	0.935	102	0.935
11	0.928	34	0.935	57	0.938	80	0.932	103	0.933
12	0.926	35	0.937	58	0.936	81	0.932	104	0.933
13	0.927	36	0.936	59	0.940	82	0.933	105	0.937
14	0.926	37	0.935	60	0.936	83	0.935	106	0.934
15	0.930	38	0.936	61	0.935	84	0.937	107	0.935
16	0.933	39	0.935	62	0.936	85	0.936	108	0.935
17	0.929	40	0.934	63	0.937	86	0.934	109	0.934
18	0.932	41	0.937	64	0.935	87	0.936	110	0.936
19	0.933	42	0.936	65	0.935	88	0.934	111	0.934
20	0.930	43	0.937	66	0.937	89	0.935		
21	0.932	44	0.938	67	0.937	90	0.937		
22	0.930	45	0.933	68	0.937	91	0.936		
23	0.930	46	0.939	69	0.935	92	0.937		

On the selected number of features, four different algorithms are passed to the recursive feature elimination and the accuracies are tabulated in Table V, and the comparative study is plotted in Fig. 4.

TABLE V. MACHINE LEARNING ALGORITHM ACCURACIES

Fig. 4. Comparative Study on Selected Features.

The XGBoost classifier identifies the top 29 features and remaining is allocated with different ranking. The results are tabulated in Table VI.

TABLE VI.	RANK AND SUPPORT VALUES FOR THE FEATURES
-----------	--

Feature Number	Feature Name	Support	Rank	Feature Number	Feature Name	Support	Rank
1	qty_dot_url	True	1.000	57	qty_percent_directory	True	1.000
2	qty_hyphen_url	True	1.000	58	directory_length	True	1.000
3	qty_underline_url	True	1.000	59	qty_dot_file	False	69.000
4	qty_slash_url	True	1.000	60	qty_hyphen_file	False	43.000
5	qty_questionmark_url	False	3.000	61	qty_underline_file	False	41.000
6	qty_equal_url	False	2.000	62	qty_slash_file	False	39.000
7	qty_at_url	True	1.000	63	qty_questionmark_file	False	37.000
8	qty_and_url	True	1.000	64	qty_equal_file	False	6.000
9	qty_exclamation_url	False	11.000	65	qty_at_file	False	10.000
10	qty_space_url	False	13.000	66	qty_and_file	False	12.000
11	qty_tilde_url	False,	15.000	67	qty_exclamation_file	False	14.000
12	qty_comma_url	False	17.000	68	qty_space_file	False	34.000
13	qty_plus_url	False	24.000	69	qty_tilde_file	False	35.000
14	qty_asterisk_url	False	19.000	70	qty_comma_file	False	16.000
15	qty_hashtag_url	False	21.000	71	qty_plus_file	False	33.000
16	qty_dollar_url	False	25.000	72	qty_asterisk_file	False	18.000
17	qty_percent_url	False	4.000	73	qty_hashtag_file	False	20.000
18	qty_tld_url	False	5.000	74	qty_dollar_file	False	22.000
19	length_url	True	1.000	75	qty_percent_file	True	1.000
20	qty_dot_domain	True	1.000	76	file_length	True	1.000
21	qty_hyphen_domain	False	38.000	77	qty_dot_params	False	48.000
22	qty_underline_domain	False	40.000	78	qty_hyphen_params	False	50.000
23	qty_slash_domain	False	42.000	79	qty_underline_params	False	52.000
24	qty_questionmark_domain	False	47.000	80	qty_slash_params	False	54.000
25	qty_equal_domain	False	49.000	81	qty_questionmark_params	False	56.000
26	qty_at_domain	False	51.000	82	qty_equal_params	False	58.000
27	qty_and_domain	False	53.000	83	qty_at_params	False	60.000
28	qty_exclamation_domain	False	55.000	84	qty_and_params	False	62.000
29	qty_space_domain	False	57.000	85	qty_exclamation_params	False	64.000
30	qty_tilde_domain	False	59.000	86	qty_space_params	False	66.000
31	qty_comma_domain	False	61.000	87	qty_tilde_params	False	68.000
32	qty_plus_domain	False	63.000	88	qty_comma_params	False	28.000
33	qty_asterisk_domain	False	65.000	89	qty_plus_params	False	7.000
34	qty_hashtag_domain	False	67.000	90	qty_asterisk_params	False	23.000

35	qty_dollar_domain	False	44.000	91	qty_hashtag_params	False	46.000
36	qty_percent_domain	True	1.000	92	qty_dollar_params	False	36.000
37	qty_vowels_domain	True	1.000	93	qty_percent_params	True	1.000
38	domain_length	False	27.000	94	params_length	False	26.000
39	domain_in_ip	False	29.000	95	tld_present_params	False	9.000
40	server_client_domain	True	1.000	96	qty_params	False	8.000
41	qty_dot_directory	True	1.000	97	email_in_url	True	1.000
42	qty_hyphen_directory	True	1.000	98	time_response	True	1.000
43	qty_underline_directory	True	1.000	99	domain_spf	True	1.000
44	qty_slash_directory	False	71.000	100	asn_ip	True	1.000
45	qty_questionmark_directory	False	73.000	101	time_domain_activation	True	1.000
46	qty_equal_directory	False	72.000	102	time_domain_expiration	False	31.000
47	qty_at_directory	False	70.000	103	qty_ip_resolved	True	1.000
48	qty_and_directory	False	30.000	104	qty_nameservers	True	1.000
49	qty_exclamation_directory	False	32.000	105	qty_mx_servers	True	1.000
50	qty_space_directory	False	74.000	106	ttl_hostname	True	1.000
51	qty_tilde_directory	False	76.000	107	tls_ssl_certificate	True	1.000
52	qty_comma_directory	False	78.000	108	qty_redirects	False	75.000
53	qty_plus_directory	False	80.000	109	url_google_index	False	77.000
54	qty_asterisk_directory	False	82.000	110	domain_google_index	False	79.000
55	qty_hashtag_directory	False	83.000	111	url_shortened	True	1.000
56	qty_dollar_directory	False	81.000				

V. CONCLUSION

This proposed model of feature engineering, trained the dataset in split ratio of 80% and 20%. This model evaluates the correlation matrix values and principal component analysis values. The values don't specify the relation between the features clearly. While comparing PCA values and filter values with wrapper methods we found more clarity between the features in terms of exploratory and performance by using wrapper methods. The proposed developed algorithm eXtreme Gradient finds the important features among all the existing 112 features. The major reason for selecting the XGB classification algorithm is when meta classifier i.e., the bagging algorithm, Ada Boost (Ada), XGBoost (XGB), and Gradient Boost (gbm) classifiers are applied, the XGB algorithm has achieved an accuracy of 93%. The Ensemble based recursive feature elimination mechanism constructs a subset, by eliminating the weak features. RFE identify significant feature with minimum number so good classifier is designed. Recursive feature elimination is developed by combining Meta classifier with base classifier and decision tree as a bagging algorithm. The most significant features are highlighted under the column support on the basis of the rank values. All the true values in support column are considered as significant values, these significant features has accuracy value as 1.000. The bagging algorithm, Logistic regression obtained 89.8% accuracy whereas boosting algorithms achieved more than 90% accuracy apart from all XGBoost gave 93.0% accuracy to retrieve the features to detect Phishing websites.

REFERENCES

- Abdulhamit Subasi, Emir Kremic, Comparison of Adaboost with MultiBoosting for Phishing Website Detection, Procedia Computer Science, Volume 168, 2020, Pages 272-278, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2020.02.251.
- [2] Somesha, M., Pais, A.R., Rao, R.S. et al. Efficient deep learning techniques for the detection of phishing websites. Sādhanā 45, 165 (2020). https://doi.org/10.1007/s12046-020-01392-4
- [3] Vaitkevicius, Paulius, and Virginijus Marcinkevicius. "Comparison of Classification Algorithms for Detection of Phishing Websites." Informatica, 2020, pp. 143–60. DOI.org (Crossref), doi:10.15388/20-INFOR404.

[4] Odeh, A., Keshta, I. & Abdelfattah, E. (2020). Efficient Detection of Phishing Websites Using Multilayer Perceptron. International Association of Online Engineering. Retrieved March 27, 2021 from https://www.learntechlib.org/p/217754/.

- [5] Y. A. Alsariera, V. E. Adeyemo, A. O. Balogun and A. K. Alazzawi, "AI Meta-Learners and Extra-Trees Algorithm for the Detection of Phishing Websites," in *IEEE Access*, vol. 8, pp. 142532-142542, 2020, doi: 10.1109/ACCESS.2020.3013699.
- [6] W. Ali and S. Malebary, "Particle Swarm Optimization-Based Feature Weighting for Improving Intelligent Phishing Website Detection," in *IEEE Access*, vol. 8, pp. 116766-116780, 2020, doi: 10.1109/ACCESS.2020.3003569.
- [7] C. Singh and Meenu, "Phishing Website Detection Based on Machine Learning: A Survey," 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2020, pp. 398-404, doi: 10.1109/ICACCS48705.2020.9074400.
- [8] M. Korkmaz, O. K. Sahingoz and B. Diri, "Detection of Phishing Websites by Using Machine Learning-Based URL Analysis," 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 2020, pp. 1-7, doi: 10.1109/ICCCNT49239.2020.9225561.
- [9] J. Kumar, A. Santhanavijayan, B. Janet, B. Rajendran and B. S. Bindhumadhava, "Phishing Website Classification and Detection Using Machine Learning," 2020 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 2020, pp. 1-6, doi: 10.1109/ICCCI48352.2020.9104161.
- [10] S. Y. Yerima and M. K. Alzaylaee, "High Accuracy Phishing Detection Based on Convolutional Neural Networks," 2020 3rd International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 2020, pp. 1-6, doi: 10.1109/ICCAIS48893.2020.9096869.

APPENDIX A

TABLE VII. DATASET USED IN RESEARCH WITH 112 FEATURES

Feature Number	Feature Name			
1	qty_dot_url			
2	qty_hyphen_url			
3	qty_underline_url			
4	qty_slash_url			
5	qty_questionmark_url			
6	qty_equal_url			
7	qty_at_url			
8	qty_and_url			
9	qty_exclamation_url			
10	qty_space_url			

11	qty_tilde_url	64	qty_equal_file
12	qty_comma_url	65	qty_at_file
13	qty_plus_url	66	qty_and_file
14	qty_asterisk_url	67	qty_exclamation_file
15	qty_hashtag_url	68	qty_space_file
16	qty_dollar_url	69	qty_tilde_file
17	qty_percent_url	70	qty_comma_file
18	qty_tld_url	71	qty_plus_file
19	length_url	72	qty_asterisk_file
20	qty_dot_domain	73	qty_hashtag_file
21	qty_hyphen_domain	74	qty_dollar_file
22	qty_underline_domain	75	qty_percent_file
23	qty_slash_domain	76	file_length
24	qty_questionmark_domain	77	qty_dot_params
25	qty_equal_domain	78	qty_hyphen_params
26	qty_at_domain	79	qty_underline_params
27	qty_and_domain	80	qty_slash_params
28	qty_exclamation_domain	81	qty_questionmark_params
29	qty_space_domain	82	qty_equal_params
30	qty_tilde_domain	83	qty_at_params
31	qty_comma_domain	84	qty_and_params
32	qty_plus_domain	85	gty_exclamation_params
33	qty_asterisk_domain	86	qty_space_params
34	qty_hashtag_domain	87	gty_tilde_params
35	gty dollar domain	88	gty comma params
36	gty percent domain	89	gty plus params
37	gty vowels domain	90	gty asterisk params
38	domain length	91	gty hashtag params
39	domain in ip	92	gty dollar params
40	server client domain	93	gty percent params
41	gty dot directory	94	params length
42	qty_hyphen_directory	95	tld_present_params
43	gty underline directory	96	gty params
44	gty slash directory	97	email in url
45	gty guestionmark directory	98	time response
46	gty equal directory	99	domain spf
47	gty at directory	100	asn ip
48	gty and directory	101	time domain activation
49	gty exclamation directory	102	time domain expiration
50	gty space directory	103	gty ip resolved
51	qty_tilde_directory	104	qty_nameservers
52	gty comma directory	105	gty mx servers
53	gty plus directory	106	ttl hostname
54	atv asterisk directory	107	tls ssl certificate
55	gty hashtag directory	108	gtv redirects
56	qty_dollar_directory	109	url_google_index
57	gty percent directory	110	domain google index
58	directory length	111	url shortened
59	aty dot file	112	Phishing(Target value)
60	aty hyphen file	L	
61	aty underline file		
62	aty slash file		
63	gty guestionmark file		