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Abstract—The detection of resource-intensive queries which 

consume an excessive amount of time, processor, disk, and 

memory resources is one of the most popular vulnerabilities of 

Database Management Systems (DBMS). The tools for 

monitoring and optimizing queries typically used in modern 

DBMS were analyzed, and their shortcomings were identified. 

Subsequently, the relevance of new intelligent tools’ development 

for timely and reliable detection of resource-intensive queries to 

databases was distinctly justified. The study concluded a set of 

analysis of an extended statistical parameter which indicated to 

be of interest for identifying resource-intensive queries. The 

initial set of queries’ parameters reduced by two consecutive 

methods. Firstly, normalizing the set of indicators using a 

sigmoid function. Secondly, selecting a finite number of principal 

components based on the Cattell test. Whereas the clustering of a 

set of queries performed using self-organizing Kohonen maps. 

Suggestions for further studies in the classification algorithm 

context were indicated in lights of the study’s conclusions. 

Keywords—Resource-intensive queries; database; detecting; 

self-organizing Kohonen maps; statistical parameters 

I. INTRODUCTION 

A resource-intensive request to the database will be 
considered as such when a request uses an excessive amount 
of time, processor, disk, and memory resources to process that 
request. Search and conversion of resource-intensive queries is 
carried out by Data Base Administrators (DBAs) based on 
information from clients. The gradual decline in the 
performance of distributed clients’ systems requires proactive 
optimization measures. 

Queries to databases are programmed based on special 
tools which are part of the Structured Query Language (SQL) 
[1]. The existing methods currently used in system utilities for 
searching and identifying problematic queries do not always 
identify resource-intensive SQL statements. Correspondingly, 
there are instances where those queries would wrongfully not 
be classified as resource-intensive. This is due to the fact that 
utilities only exploit a limited number of performance 
parameters or incorrect analysis’s algorithms based on simple 
ranking. Furthermore, the functional redundancy and high cost 
of such utilities are yet other drawbacks for the effects of 
those inefficient queries. 

It is perceived that manual searches could provide correct 
detection of problematic SQL queries. Notwithstanding, the 
complexity and time-consuming processes of analyzing large 

amounts of information does not allow a person to process 
data at a reasonable speed. Manual searches involve continued 
time-wasting and require experience in Database Management 
Systems (DBMS). Especially the knowledge on the 
architecture, features of storing system information, the 
language of structured queries, data structures and models of 
application programs. 

The identification of resource-intensive SQL queries 
entails the purchase of expensive tools. Likewise, it compels 
the involvement of highly qualified specialists with relevant 
knowledge and experience in writing unique scripts for the 
necessary data acquisition. 

This article presents the results of research obtained by the 
authors on the analysis and development of intelligent tools 
designed for timely and reliable automatic detection of 
resource-intensive database queries. 

II. LITERATURE REVIEW 

There are many approaches is use today to either prevent 
or minimize the impact of inter-query interactions on a shared 
cluster. Despite these measures, performance issues due to 
concurrent executions of mixed workloads still prevail causing 
undue waiting times for queries [2]. The foundation of modern 
database query optimization is the collection of statistics 
describing the data to be processed, but when a database or 
Big Data computation is partially obscured by user-defined 
functions, good statistics are often unavailable [3]. 
H.Bodepudi [4] mentioned how the Relational DBMS 
reporting scripts performance can be improved by 
incorporating the Spark framework without changing the 
existing queries in the RDBMS. In paper [5] presents 
Intermittent Slow Query Anomaly Diagnoser, a framework 
that can diagnose the root causes of Intermittent Slow Queries 
with a loose requirement for human intervention. Intermittent 
Slow Queries are slow queries which might be more 
hazardous to database users than other slow queries. 

Z.Miao [6] proposes a system designed to help users 
understand SQL query evaluation and debug SQL queries. 
The system lets users interactively "trace" the evaluation of 
complex SQL queries, including those with correlated 
subqueries. 

B.G.Lekshmi [7] focuses on the hardware-conscious the 
query optimization in a relational DBMS using extended rules 
and cost models as well as on refining the optimization 
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strategies for changes in the hardware state of execution. 

Cost-based optimizer studied in paper [8] is adopted in 
almost all current database systems. A cost-based optimizer 
introduces a plan enumeration algorithm, and then uses a cost 
model to obtain the cost of that plan, and selects the plan with 
the lowest cost. In the cost model, cardinality, the number of 
tuples through an operator, plays a crucial role. The research 
[9] aims to provide approximate query processing as a 
middleware solution using query optimization for 
heterogeneous databases. 

A large scale of resource requirements can be reduced by 
minimizing query execution time that maximizes resource 
utilization [10]. Recently, parallel DBMSs have significantly 
improved query processing performance [11]. 

Thus with the growing volume of data being analyzed, 
more and more advanced monitoring, preventive analysis, and 
proactive optimization tools are required to identify 
problematic SQL queries. The above reasons determine the 
relevance of developing new intelligent tools for timely and 
reliable resource-intensive database queries’ detection. 

III. MATERIALS AND METHODS 

During processing of the request, a plan for executing a 
SQL statement should be formed to get the information 
requested from the database more quickly and cost-effectively. 
Modern tools for monitoring and optimizing queries in Oracle 
DBMS, MS SQL Server, and DB2 sort and evaluate SQL 
statements based on the values of one, less often two, or three 
indicators that characterize the speed of query processing. 
Further, the use of these indicators could be used to assess the 
resources used for the processing of queries. These methods 
were found to be causing an erroneous diagnostics of the 
resource-intensive queries and beg the need for an optimized 
method. 

Advanced data collection technologies for resource-
intensive queries searching are implemented in the automatic 
workload storage of the Oracle DBMS [12]. These include the 
Advanced Workload Repository (AWR). This infrastructure 
provides services to Oracle DBMS components for collecting, 
maintaining, and using statistics for problem detection and 
self-tuning [13]. AWR makes it possible to collect various 
information about requests and the operation of the system. 
The statistics on executed SQL statements contained in the 
DBA_HIST_SQLSTAT table are best suited for searching and 
subsequent optimization of resource-intensive queries. 

The main source of information useful for identifying 
problematic SQL statements is statistical data on the query 
execution period. Most often, a resource-intensive SQL query 
detection is performed using the following parameters: 

1) for a large number of disk reads; 

2) by the number of logical reads or buffer gets 

operations; 

3) by the number of parse calls; 

4) by the number of executions. 

However, studies had shown that the extended set of 
parameters contained in Table I is of interest for identifying 

resource-intensive queries. The initial statistical analysis of the 
initial data on various test sets showed that almost all 
parameters have sharply asymmetric right-hand distributions 
with long thin tails. The asymmetry coefficients take values 
from 10 to 15, and the excesses take values from 150 to 400. 

TABLE I.  EXTENDED SET OF SQL QUERY PARAMETERS 

Parameter Name 

Executions number of request executions 

sharable_mem 
the size of the sharable memory occupied by the 

child cursor (bytes) 

loaded_versions 
the number of child cursors for which memory is 

allocated 

version_count total number of child cursors 

physical_read_bytes the number of bytes physically read from the disk 

physical_write_bytes number of bytes written to disk 

physical_read_requests number of disk reads 

physical_write_bytes number of bytes written to disk 

physical_read_requests number of disk reads 

physical_write_requests number of operations to write information to disk 

rows_processed number of rows processed and returned 

parse_calls number of calls to the parsing procedure 

px_servers_execs 
the number of runs of auxiliary server processes 

for parallel execution of the request 

end_of_fetch_count 
the number of times the query returned a full set 

of data on successful completion 

Fetches 
the number of calls to the procedure for extracting 

rows with data from the cursor 

buffer_gets 
number of gets from the buffer cache (logical 

read) 

Invalidations 
the number of times the child cursor became 

invalid 

Loads number of memory downloads / reloads 

Sorts number of sorting operations 

direct_writes number of direct write operations to disk 

cpu_time 
processor time for parsing, executing, and 

fetching data for a given cursor (µs) 

elapsed_time total request duration time (µs) 

javexec_time_delta 
time elapsed in the execution of Java programs 

(µs) 

plsexec_time_delta PL/SQL code execution time (µs) 

iowait time spent waiting for user input / output (µs) 

apwait time spent waiting for the app (µs) 

ccwait 
time spent waiting for shared data and resources 

(µs) 

clwait 
time spent waiting for concurrency events to 

complete (µs) 

io_interconnect_bytes 
the number of bytes sent between the DBMS and 

the Exadata storage system 

io_offload_elig_bytes 
the number of bytes filtered for processing at the 

Exadata data store level 

io_offload_return_bytes 
number of bytes returned from the Exadata data 

store layer 

cell_uncompressed_byte

s 

number of bytes received during data 

decompression on Exadata data storage nodes 

optimized_physical_rea

ds 

number of optimized reads from the Exadata data 

store 
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Fig. 1. Distributions of the Sharable_Mem Parameter. 

 

Fig. 2. Distributions of the Physical_Read_Bytes Parameter. 

Fig. 1 depicts typical distributions of the sharable_mem 
parameter. Fig. 2 illustrate a typical distribution of the values 
of the physical_read_bytes parameter. 

Visual histogram analysis outlines most of the SQL query 
parameter values which were found to be concentrated in the 
range of 1-2% of the entire diapason of possible values. The 
parameter values that are in the tails of the distributions 
indicate the presence of resource-intensive queries in the 
analyzed sets. 

The extended set of parameters presented in Table I is 
redundant. To account for all these indicators in order to 
detect resource-intensive queries, algorithms with high 
computational complexity will be required, which is 
undesirable in the process of performing practical tasks. It is 
necessary to significantly reduce the number of analyzed 
parameters and leave the most informative ones. 

The ranges of changes in statistical parameters differ by 
several orders of magnitude, so to reduce the number of these 
parameters, a preliminary normalization of the indicators set 
was carried out using a sigmoid function: 
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where x~  is the normalized value of the parameter; x  is 

the initial value of the parameter; x is the average value of the 

parameter. 

The value of the sigmoid function of the value a  is 

calculated using the expression: 
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where с  is the extension coefficient of the sigmoid. For 

most parameters, the best value is c=8. 

Further, in order to reduce the number of parameters that 
characterize SQL queries, the Principal Component Analysis 
(PCA) method was used to get the better analyze and make 
best decision based upon detect the relevant parameters [14]. 

The PCA implementation allowed us to construct a new 
space of parameters to reduce dimensions. In this case, the 
variance of the initial parameter space was first calculated. 
Then, eigenvectors were obtained that determine the directions 
of the principal components and the value of the variance 
associated with them. In order to reduce dimensionality, the 
variance value associated with each principal component was 
divided by the sum of the variances for all components. As a 
result, the proportion of variance associated with each 
component is obtained. At the final step, so many components 
were discarded so that the proportion of the variance of the 
remaining components reached 80%. 

The results of applying the PCA method are presented in 
Table II. The second column shows the variances of the 
selected components. The third column shows the percentage 
of the total variance for each component. The first component 
explains 21% of the total variance, the second component 
explains 11.5% of the total variance, and so on. The fourth 
column contains the values of the accumulated variance. Each 
value shown in the fourth column is the sum of those values 
from the third column whose component numbers do not 
exceed the number of the calculated value of the accumulated 
variance. For example, the value of the accumulated variance 
in the fourth row of Table II was obtained by summing the 
values of the third column contained in rows 1, 2, 3, and 4. 

The choice of a finite number of principal components was 
carried out on the basis of the Cattell criterion, which allows 
us to preserve from 65 to 80% of the information concentrated 
in the original set of significant features. The selection of the 
first main components based on the Cattell test is shown in Fig. 
3. The number of principal components according to the 
Cattell criterion was determined by the inflection point on the 
graph of eigenvalues. In this case, the inflection point is the 
boundary between the interval of the sharp decline of the 
analyzed graph and the subsequent interval of the flat curve. 
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TABLE II.  RESULTS OF THE PCA METHOD APPLICATION 

Component 

number 

Component 

value 

Explained variance 

proportion  

Accumulated 

variance 

1 6.819 21.31 21.31 

2 3.670 11.47 32.78 

3 2.673 8.35 41.13 

4 2.531 7.91 49.04 

5 3.670 11.47 32.78 

6 1.838 5.74 54.78 

7 1.660 5.19 59.97 

8 1.299 4.06 64.03 

9 1.112 3.48 67.51 

10 1.066 3.33 70.84 

11 1.031 3.22 74.06 

12 1,005 3.14 77.20 

13 0.999 3.12 80.32 

14 0.997 3.12 83.44 

15 0.949 2.97 86.40 

16 0.913 2.85 89.26 

17 0.790 2.47 91.73 

18 0.716 2.24 93.97 

19 0.693 2.17 96.13 

20 0.350 1.09 97.22 

21 0.262 0.82 98.04 

22 0.247 0.77 98.81 

23 0.199 0.62 99.44 

24 0.101 0.32 99.75 

25 0.065 0.20 99.96 

26 0.013 0.04 100.00 

27 0.001 0.00 100,.0 

 

Fig. 3. The Selection of the First Main Components based on the Cattell 

Test. 

The first eight components can be recognized as the main 
components. For the remaining components, there is a 
significant slowdown in the values decrease. The selected 
main eight components contain a fairly high percentage of the 
explained variance, approaching 70%. The selection of the 
main components using the PCA method and the Cattell test 
was performed for different sets of parameter values that 
characterize SQL queries. As a result, it was found that to 
detect problematic database queries, it is enough to use from 
four to nine significant parameters instead of the original 
thirty-two. 

The set of all possible SQL queries must be divided into an 
unknown number of clusters. For this purpose, the device of 
Kohonen’s Self-Organizing Maps (hereinafter SOM) is used 
[15, 16, 17]. The SOM training algorithm is developed, based 
on the use of a rational value of the winning neuron 
topological neighborhood width, which makes it possible to 
configure the neural network to prevent its overfitting. The 
implementation of neural network clustering using more than 
200,000 instances of SQL statements processed in the past 
made it possible to form 4 main subsets of queries, of which 
two clusters can be classified as resource-intensive queries. 

The further process of automating the search for 
problematic queries can be associated with the construction of 
a Bayesian classifier [18,19,20], which can be trained on a 
limited, independent, pre-researched and marked-up subset of 
SQL queries. The classifier can be trained to assign the 
studied elements to one of two classes (resource-intensive and 
non-resource-intensive queries). Further training and 
improvement of the classifier for subsequent use for 
operational and proactive optimization can be carried out on 
newly identified resource-intensive queries. Information about 
such requests can be received from DBA specialists in an 
interactive mode. 

IV. CONCLUSION 

Thus, in the process of detecting problematic SQL 
statements, it is proposed to use up to nine significant 
statistical parameters that characterize the speed of query 
processing, as well as the resources used for this purpose. The 
original set of thirty-two analyzed parameters contained in the 
DBA_HIST_SQLSTAT table of the Oracle DBMS workload 
storage was reduced by first normalizing the set of indicators 
using a sigmoid function and then selecting a finite number of 
principal components based on the Cattell criterion. Clustering 
a set of SQL statements based on SOM made it possible to 
form four main subsets of queries. At the same time, resource-
intensive requests were concentrated in two clusters. 

As a result of this study, the authors were able to 
substantiate the correctness of using a reduced set of statistical 
parameters to detect resource-intensive queries. This made it 
possible to successfully perform neural network clustering of 
the analyzed queries. 

The subject of further research would be the development 
of a classification algorithm designed to determine the ratio of 
the analyzed SQL statement to one of the previously allocated 
clusters, which will automatically detect resource-intensive 
queries. 
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