
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 7, 2021

32 | P a g e

www.ijacsa.thesai.org

Development of Intelligent Tools for Detecting

Resource-intensive Database Queries

Salah M.M. Alghazali1, Konstantin Polshchykov2, Ahmad M. Hailan3, Lyudmila Svoykina4

Department of Applied Informatics and Information Technology, Belgorod State University, Belgorod, Russia1

Institute of Engineering and Digital Technologies, Belgorod State University, Belgorod, Russia2

College of Computer Science and Mathematics, Thi-Qar University, Thi-Qar, Iraq3

Institute of Intercultural Communication and International Relations, Belgorod State University, Belgorod, Russia4

Abstract—The detection of resource-intensive queries which

consume an excessive amount of time, processor, disk, and

memory resources is one of the most popular vulnerabilities of

Database Management Systems (DBMS). The tools for

monitoring and optimizing queries typically used in modern

DBMS were analyzed, and their shortcomings were identified.

Subsequently, the relevance of new intelligent tools’ development

for timely and reliable detection of resource-intensive queries to

databases was distinctly justified. The study concluded a set of

analysis of an extended statistical parameter which indicated to

be of interest for identifying resource-intensive queries. The

initial set of queries’ parameters reduced by two consecutive

methods. Firstly, normalizing the set of indicators using a

sigmoid function. Secondly, selecting a finite number of principal

components based on the Cattell test. Whereas the clustering of a

set of queries performed using self-organizing Kohonen maps.

Suggestions for further studies in the classification algorithm

context were indicated in lights of the study’s conclusions.

Keywords—Resource-intensive queries; database; detecting;

self-organizing Kohonen maps; statistical parameters

I. INTRODUCTION

A resource-intensive request to the database will be
considered as such when a request uses an excessive amount
of time, processor, disk, and memory resources to process that
request. Search and conversion of resource-intensive queries is
carried out by Data Base Administrators (DBAs) based on
information from clients. The gradual decline in the
performance of distributed clients’ systems requires proactive
optimization measures.

Queries to databases are programmed based on special
tools which are part of the Structured Query Language (SQL)
[1]. The existing methods currently used in system utilities for
searching and identifying problematic queries do not always
identify resource-intensive SQL statements. Correspondingly,
there are instances where those queries would wrongfully not
be classified as resource-intensive. This is due to the fact that
utilities only exploit a limited number of performance
parameters or incorrect analysis’s algorithms based on simple
ranking. Furthermore, the functional redundancy and high cost
of such utilities are yet other drawbacks for the effects of
those inefficient queries.

It is perceived that manual searches could provide correct
detection of problematic SQL queries. Notwithstanding, the
complexity and time-consuming processes of analyzing large

amounts of information does not allow a person to process
data at a reasonable speed. Manual searches involve continued
time-wasting and require experience in Database Management
Systems (DBMS). Especially the knowledge on the
architecture, features of storing system information, the
language of structured queries, data structures and models of
application programs.

The identification of resource-intensive SQL queries
entails the purchase of expensive tools. Likewise, it compels
the involvement of highly qualified specialists with relevant
knowledge and experience in writing unique scripts for the
necessary data acquisition.

This article presents the results of research obtained by the
authors on the analysis and development of intelligent tools
designed for timely and reliable automatic detection of
resource-intensive database queries.

II. LITERATURE REVIEW

There are many approaches is use today to either prevent
or minimize the impact of inter-query interactions on a shared
cluster. Despite these measures, performance issues due to
concurrent executions of mixed workloads still prevail causing
undue waiting times for queries [2]. The foundation of modern
database query optimization is the collection of statistics
describing the data to be processed, but when a database or
Big Data computation is partially obscured by user-defined
functions, good statistics are often unavailable [3].
H.Bodepudi [4] mentioned how the Relational DBMS
reporting scripts performance can be improved by
incorporating the Spark framework without changing the
existing queries in the RDBMS. In paper [5] presents
Intermittent Slow Query Anomaly Diagnoser, a framework
that can diagnose the root causes of Intermittent Slow Queries
with a loose requirement for human intervention. Intermittent
Slow Queries are slow queries which might be more
hazardous to database users than other slow queries.

Z.Miao [6] proposes a system designed to help users
understand SQL query evaluation and debug SQL queries.
The system lets users interactively "trace" the evaluation of
complex SQL queries, including those with correlated
subqueries.

B.G.Lekshmi [7] focuses on the hardware-conscious the
query optimization in a relational DBMS using extended rules
and cost models as well as on refining the optimization

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 7, 2021

33 | P a g e

www.ijacsa.thesai.org

strategies for changes in the hardware state of execution.

Cost-based optimizer studied in paper [8] is adopted in
almost all current database systems. A cost-based optimizer
introduces a plan enumeration algorithm, and then uses a cost
model to obtain the cost of that plan, and selects the plan with
the lowest cost. In the cost model, cardinality, the number of
tuples through an operator, plays a crucial role. The research
[9] aims to provide approximate query processing as a
middleware solution using query optimization for
heterogeneous databases.

A large scale of resource requirements can be reduced by
minimizing query execution time that maximizes resource
utilization [10]. Recently, parallel DBMSs have significantly
improved query processing performance [11].

Thus with the growing volume of data being analyzed,
more and more advanced monitoring, preventive analysis, and
proactive optimization tools are required to identify
problematic SQL queries. The above reasons determine the
relevance of developing new intelligent tools for timely and
reliable resource-intensive database queries’ detection.

III. MATERIALS AND METHODS

During processing of the request, a plan for executing a
SQL statement should be formed to get the information
requested from the database more quickly and cost-effectively.
Modern tools for monitoring and optimizing queries in Oracle
DBMS, MS SQL Server, and DB2 sort and evaluate SQL
statements based on the values of one, less often two, or three
indicators that characterize the speed of query processing.
Further, the use of these indicators could be used to assess the
resources used for the processing of queries. These methods
were found to be causing an erroneous diagnostics of the
resource-intensive queries and beg the need for an optimized
method.

Advanced data collection technologies for resource-
intensive queries searching are implemented in the automatic
workload storage of the Oracle DBMS [12]. These include the
Advanced Workload Repository (AWR). This infrastructure
provides services to Oracle DBMS components for collecting,
maintaining, and using statistics for problem detection and
self-tuning [13]. AWR makes it possible to collect various
information about requests and the operation of the system.
The statistics on executed SQL statements contained in the
DBA_HIST_SQLSTAT table are best suited for searching and
subsequent optimization of resource-intensive queries.

The main source of information useful for identifying
problematic SQL statements is statistical data on the query
execution period. Most often, a resource-intensive SQL query
detection is performed using the following parameters:

1) for a large number of disk reads;

2) by the number of logical reads or buffer gets

operations;

3) by the number of parse calls;

4) by the number of executions.

However, studies had shown that the extended set of
parameters contained in Table I is of interest for identifying

resource-intensive queries. The initial statistical analysis of the
initial data on various test sets showed that almost all
parameters have sharply asymmetric right-hand distributions
with long thin tails. The asymmetry coefficients take values
from 10 to 15, and the excesses take values from 150 to 400.

TABLE I. EXTENDED SET OF SQL QUERY PARAMETERS

Parameter Name

Executions number of request executions

sharable_mem
the size of the sharable memory occupied by the

child cursor (bytes)

loaded_versions
the number of child cursors for which memory is

allocated

version_count total number of child cursors

physical_read_bytes the number of bytes physically read from the disk

physical_write_bytes number of bytes written to disk

physical_read_requests number of disk reads

physical_write_bytes number of bytes written to disk

physical_read_requests number of disk reads

physical_write_requests number of operations to write information to disk

rows_processed number of rows processed and returned

parse_calls number of calls to the parsing procedure

px_servers_execs
the number of runs of auxiliary server processes

for parallel execution of the request

end_of_fetch_count
the number of times the query returned a full set

of data on successful completion

Fetches
the number of calls to the procedure for extracting

rows with data from the cursor

buffer_gets
number of gets from the buffer cache (logical

read)

Invalidations
the number of times the child cursor became

invalid

Loads number of memory downloads / reloads

Sorts number of sorting operations

direct_writes number of direct write operations to disk

cpu_time
processor time for parsing, executing, and

fetching data for a given cursor (µs)

elapsed_time total request duration time (µs)

javexec_time_delta
time elapsed in the execution of Java programs

(µs)

plsexec_time_delta PL/SQL code execution time (µs)

iowait time spent waiting for user input / output (µs)

apwait time spent waiting for the app (µs)

ccwait
time spent waiting for shared data and resources

(µs)

clwait
time spent waiting for concurrency events to

complete (µs)

io_interconnect_bytes
the number of bytes sent between the DBMS and

the Exadata storage system

io_offload_elig_bytes
the number of bytes filtered for processing at the

Exadata data store level

io_offload_return_bytes
number of bytes returned from the Exadata data

store layer

cell_uncompressed_byte

s

number of bytes received during data

decompression on Exadata data storage nodes

optimized_physical_rea

ds

number of optimized reads from the Exadata data

store

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 7, 2021

34 | P a g e

www.ijacsa.thesai.org

Fig. 1. Distributions of the Sharable_Mem Parameter.

Fig. 2. Distributions of the Physical_Read_Bytes Parameter.

Fig. 1 depicts typical distributions of the sharable_mem
parameter. Fig. 2 illustrate a typical distribution of the values
of the physical_read_bytes parameter.

Visual histogram analysis outlines most of the SQL query
parameter values which were found to be concentrated in the
range of 1-2% of the entire diapason of possible values. The
parameter values that are in the tails of the distributions
indicate the presence of resource-intensive queries in the
analyzed sets.

The extended set of parameters presented in Table I is
redundant. To account for all these indicators in order to
detect resource-intensive queries, algorithms with high
computational complexity will be required, which is
undesirable in the process of performing practical tasks. It is
necessary to significantly reduce the number of analyzed
parameters and leave the most informative ones.

The ranges of changes in statistical parameters differ by
several orders of magnitude, so to reduce the number of these
parameters, a preliminary normalization of the indicators set
was carried out using a sigmoid function:

xx
x sigmoid~

 (1)

where x~ is the normalized value of the parameter; x is

the initial value of the parameter; x is the average value of the

parameter.

The value of the sigmoid function of the value a is

calculated using the expression:

сae
a

1

1
)(sigmoid

. (2)

where с is the extension coefficient of the sigmoid. For

most parameters, the best value is c=8.

Further, in order to reduce the number of parameters that
characterize SQL queries, the Principal Component Analysis
(PCA) method was used to get the better analyze and make
best decision based upon detect the relevant parameters [14].

The PCA implementation allowed us to construct a new
space of parameters to reduce dimensions. In this case, the
variance of the initial parameter space was first calculated.
Then, eigenvectors were obtained that determine the directions
of the principal components and the value of the variance
associated with them. In order to reduce dimensionality, the
variance value associated with each principal component was
divided by the sum of the variances for all components. As a
result, the proportion of variance associated with each
component is obtained. At the final step, so many components
were discarded so that the proportion of the variance of the
remaining components reached 80%.

The results of applying the PCA method are presented in
Table II. The second column shows the variances of the
selected components. The third column shows the percentage
of the total variance for each component. The first component
explains 21% of the total variance, the second component
explains 11.5% of the total variance, and so on. The fourth
column contains the values of the accumulated variance. Each
value shown in the fourth column is the sum of those values
from the third column whose component numbers do not
exceed the number of the calculated value of the accumulated
variance. For example, the value of the accumulated variance
in the fourth row of Table II was obtained by summing the
values of the third column contained in rows 1, 2, 3, and 4.

The choice of a finite number of principal components was
carried out on the basis of the Cattell criterion, which allows
us to preserve from 65 to 80% of the information concentrated
in the original set of significant features. The selection of the
first main components based on the Cattell test is shown in Fig.
3. The number of principal components according to the
Cattell criterion was determined by the inflection point on the
graph of eigenvalues. In this case, the inflection point is the
boundary between the interval of the sharp decline of the
analyzed graph and the subsequent interval of the flat curve.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 7, 2021

35 | P a g e

www.ijacsa.thesai.org

TABLE II. RESULTS OF THE PCA METHOD APPLICATION

Component

number

Component

value

Explained variance

proportion

Accumulated

variance

1 6.819 21.31 21.31

2 3.670 11.47 32.78

3 2.673 8.35 41.13

4 2.531 7.91 49.04

5 3.670 11.47 32.78

6 1.838 5.74 54.78

7 1.660 5.19 59.97

8 1.299 4.06 64.03

9 1.112 3.48 67.51

10 1.066 3.33 70.84

11 1.031 3.22 74.06

12 1,005 3.14 77.20

13 0.999 3.12 80.32

14 0.997 3.12 83.44

15 0.949 2.97 86.40

16 0.913 2.85 89.26

17 0.790 2.47 91.73

18 0.716 2.24 93.97

19 0.693 2.17 96.13

20 0.350 1.09 97.22

21 0.262 0.82 98.04

22 0.247 0.77 98.81

23 0.199 0.62 99.44

24 0.101 0.32 99.75

25 0.065 0.20 99.96

26 0.013 0.04 100.00

27 0.001 0.00 100,.0

Fig. 3. The Selection of the First Main Components based on the Cattell

Test.

The first eight components can be recognized as the main
components. For the remaining components, there is a
significant slowdown in the values decrease. The selected
main eight components contain a fairly high percentage of the
explained variance, approaching 70%. The selection of the
main components using the PCA method and the Cattell test
was performed for different sets of parameter values that
characterize SQL queries. As a result, it was found that to
detect problematic database queries, it is enough to use from
four to nine significant parameters instead of the original
thirty-two.

The set of all possible SQL queries must be divided into an
unknown number of clusters. For this purpose, the device of
Kohonen’s Self-Organizing Maps (hereinafter SOM) is used
[15, 16, 17]. The SOM training algorithm is developed, based
on the use of a rational value of the winning neuron
topological neighborhood width, which makes it possible to
configure the neural network to prevent its overfitting. The
implementation of neural network clustering using more than
200,000 instances of SQL statements processed in the past
made it possible to form 4 main subsets of queries, of which
two clusters can be classified as resource-intensive queries.

The further process of automating the search for
problematic queries can be associated with the construction of
a Bayesian classifier [18,19,20], which can be trained on a
limited, independent, pre-researched and marked-up subset of
SQL queries. The classifier can be trained to assign the
studied elements to one of two classes (resource-intensive and
non-resource-intensive queries). Further training and
improvement of the classifier for subsequent use for
operational and proactive optimization can be carried out on
newly identified resource-intensive queries. Information about
such requests can be received from DBA specialists in an
interactive mode.

IV. CONCLUSION

Thus, in the process of detecting problematic SQL
statements, it is proposed to use up to nine significant
statistical parameters that characterize the speed of query
processing, as well as the resources used for this purpose. The
original set of thirty-two analyzed parameters contained in the
DBA_HIST_SQLSTAT table of the Oracle DBMS workload
storage was reduced by first normalizing the set of indicators
using a sigmoid function and then selecting a finite number of
principal components based on the Cattell criterion. Clustering
a set of SQL statements based on SOM made it possible to
form four main subsets of queries. At the same time, resource-
intensive requests were concentrated in two clusters.

As a result of this study, the authors were able to
substantiate the correctness of using a reduced set of statistical
parameters to detect resource-intensive queries. This made it
possible to successfully perform neural network clustering of
the analyzed queries.

The subject of further research would be the development
of a classification algorithm designed to determine the ratio of
the analyzed SQL statement to one of the previously allocated
clusters, which will automatically detect resource-intensive
queries.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 7, 2021

36 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] C. Wang, A.Cheungc and R. Bodik,“Synthesizing highly expressive
SQL queries from input-output examples,” Proceedings of the 38th ACM
SIGPLAN Conf. on Programming Language Design and
Implementation, pp. 452-466, June 2017.

[2] P. Kalmegh, S. Babu and S. Roy, “Analyzing Query Performance and
Attributing Blame for Contentions in a Cluster Computing Framework,”
arXiv:1708.08435v2, 2018.

[3] S. Sikdar and C. Jermaine, "MONSOON: Multi-Step Optimization and
Execution of Queries with Partially Obscured Predicates", Proceedings
of the 2020 ACM SIGMOD International Conference on Management
of Data (SIGMOD '20). Association for Computing Machinery, New
York, pp. 225–240, 2020.

[4] H. Bodepudi, "Faster The Slow Running RDBMS Queries With Spark
Framework," International Journal of Scientific and Research
Publications, volume 10(11), pp. 287-291, 2020.

[5] M. Ma, Z. Yin and S. Zhang et al. “Diagnosing Root Causes of
Intermittent Slow Queries in Cloud Databases,” PVLDB, vol. 13(8), pp.
1176-1189, 2020.

[6] Z. Miao, T. Chen, A. Bendeck, K. Day, S. Roy and J. Yang, “I-Rex: an
interactive relational query explainer for SQL,” Proc. VLDB Endow, vol
13, pp. 2997–3000, 2020.

[7] B.G. Lekshmi and K.Meyer-Wegener, “COPRAO: A Capability Aware
Query Optimizer for Reconfigurable Near Data Processors,” 2021 IEEE
37th International Conference on Data Engineering Workshops
(ICDEW), pp. 54-59, 2021.

[8] H. Lan., Z. Bao and Y.A. Peng, “Survey on Advancing the DBMS
Query Optimizer: Cardinality Estimation, Cost Model, and Plan
Enumeration,” Data Sci. Eng., vol 6, pp. 86–101, 2021.

[9] M. Muniswamaiah, T. Agerwala and C.C. Tappert, “Approximate Query
Processing for Big Data in Heterogeneous Databases,” 2020 IEEE
International Conference on Big Data, pp. 5765-5767, 2020.

[10] A. Bachhav, V. Kharat and M. Shelar, “An Efficient Query Optimizer
with Materialized Intermediate Views in Distributed and Cloud
Environment,” Tehnički glasnik, vol 15, pp. 105-111, 2021.

[11] X. Zhou and C. Ordonez, “Matrix Multiplication with SQL Queries for
Graph Analytics,” 2020 IEEE International Conference on Big Data
(Big Data), pp. 5872-5873, 2020.

[12] I. Fernandez, “Beginning Oracle Database 12c Administration. From
Novice to Professional,” Apress, p. 384, 2015.

[13] S.M.A.Fattah, M.A. Mahmoud and L.A.E. Abd-Elmegid, “An Adaptive
Hybrid Controller for DBMS Performance Tuning,” (IJACSA)
International Journal of Advanced Computer Science and Applications,
vol. 5(5), 2014.

[14] S. Belattar, O. Abdoun and H. El khatir, “New Learning Approach for
Unsupervised Neural Networks Model with Application to Agriculture
Field,” (IJACSA) International Journal of Advanced Computer Science
and Applications, vol. 11(5), 2020.

[15] S. Sinha, T.N. Singh, V.K. Singh and A.K. Verma, “Epoch
determination for neural network by self-organized map (SOM),”
Computational Geosciences, vol. 14, pp. 199-206, 2010.

[16] M. Sakkari and M. Zaied, “A convolutional deep self-organizing map
feature extraction for machine learning,” Multimedia Tools and
Applications, vol. 79, pp. 19451-19470, 2020.

[17] L.R.Clovis, C.A.Scapim, R.J.B. Pinto, M.Vivas, J.E.A. Filho and
A.T.A. Júnior, “Yield stability analysis of maize hybrids using the self-
organizing map of Kohonen,” Euphytica, vol. 216, p. 161, 2020.

[18] J. Yu, M. Bai, G. Wang and X. Shi, “Fault diagnosis of Planetary
Gearbox with incomplete information using assignment reduction and
flexible naive bayesian classifier,” Mechanical Science and Technology,
vol. 32, pp. 37-47, 2018.

[19] S.R.B. Shree and H.S. Sheshadri, “Diagnosis of alzheimer's disease
using naive bayesian classifier,” Neural Computing and Applications,
vol. 29, pp. 123-132 , 2018.

[20] W. Zhang, Z. Zhang, HC. Chao and FH. Tseng, “Kernel mixture model
for probability density estimation in Bayesian classifiers,” Data Mining
and Knowledge Discovery, 2018, vol. 32, pp. 675-707.

