
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 7, 2021

416 | P a g e

www.ijacsa.thesai.org

Impact of Data Compression on the Performance of

Column-oriented Data Stores

Tsvetelina Mladenova1, Yordan Kalmukov2, Milko Marinov3, Irena Valova4

Department of Computer Systems and Technologies

University of Ruse, Ruse, 7017, Bulgaria

Abstract—Compression of data in traditional relational

database management systems significantly improves the system

performance by decreasing the size of the data that results in less

data transfer time within the communication environment and

higher efficiency in I/O operations. The column-oriented

database management systems should perform even better since

each attribute is stored in a separate column, so that its

sequential values are stored and accessed sequentially on the

disk. That further increases the compression efficiency as the

entire column is compressed/decompressed at once. The aim of

this research is to determine if data compression could improve

the performance of HBase, running on a small-sized Hadoop

cluster, consisted of one name node and nine data nodes. Test

scenario includes performing Insert and Select queries on

multiple records with and without data compression. Four data

compression algorithms are tested since they are natively

supported by HBase - SNAPPY, LZO, LZ4 and GZ. Results

show that data compression in HBase highly improves system

performance in terms of storage saving. It shrinks data 5 to 10

times (depending on the algorithm) without any noticeable

additional CPU load. That allows smaller but significantly faster

SSD disks to be used as cluster’s primary data storage.

Furthermore, the substantial decrease in the network traffic is an

additional benefit with major impact on big data processing.

Keywords—Column-oriented data stores; data compression;

distributed non-relational databases; benchmarking column-

oriented databases

I. INTRODUCTION

The main factors that put pressure on the centralized
relational model and play a key role in the development of
NoSQL DBMS are: Volume, Velocity, Variety and Agility [1].
Volume and Velocity are referred to the possibility of
management of big sets of data that is generated with high
speed and should be processed fast. Variety is the existence of
various structures and formats of data (structured, semi-
structured and unstructured). Agility is the likelihood of an
organization reacting to changes in the business [2].

Usually, the relational database management systems are
seen as the best possibility of data storage, data retrieval and
data processing. Regardless, the constant growing needs of
scalability and the emerging needs for specific applications
posed various challenges to the conventional relational
databases [3,4]. For example, the continuous growth of user-
generated data led to an increase in the types (structured, semi-
structured and unstructured) and the volume of the data that
has to be stored and processed. In practice, the fast growth in
the volume of the data created a big problem for the

conventional databases that require a pre-known defined
schema of the data, based on relations. In fact, the pre-known
schema became inadequate in many different scenarios.

The desire to meet this challenge led to the creation of
NoSQL DBMS [2,5]. For the purposes of the distributed
databases, NoSQL is defined in [6] as follows: NoSQL is a set
of ideas and concepts that allow for fast and efficient
processing of datasets with an emphasis on performance,
reliability and speed. One of the challenges for the users of
NoSQL is that there are a large number of different
architectural data models to choose from (key-value, column-
oriented, document-based, graph stores).

Compression of data elements in traditional database
management systems significantly improves system
performance by [7,8]: (1) decreasing the size of the data, (2)
increase the productivity of input/output operations by
reducing search time, (3) reduction of data transfer time in the
communication environment (less data is transferred to the
computer network) and (4) increasing the relative speed of the
input-output buffer. For requests that are limited in terms of
data input or retrieval speed, the CPU load resulting from the
decompression is offset by I/O system improvements at the
operating system level. All this has a significant effect when
working with large amounts of data.

In the column store, each attribute is stored in a separate
column, so that the sequential values of this attribute are stored
sequentially on disk [4,9]. This data model provides more
opportunities for improved performance as a result of applying
algorithms to compress data elements compared to row-
oriented architectures. In the column-oriented model, the use of
different compression schemes that encode multiple values at
once is natural. In tuple-oriented systems, such schemes do not
work well because the individual attribute is stored as part of
the whole tuple, so combining the same attribute from different
tuples together into one value will require some way to "mix"
tuples.

The main objective of the current research is to test the
capabilities of a small-sized cluster when performing the
operations Insert and Select to Hbase. The operations are
performed with and without the supported Hbase compression
algorithms. This article aims to observe the behavior of the
cluster when performing the experiments.

The article is structured as follows: Section 2 reviews some
related research. Section 3 presents column-oriented data
model properties. Section 4 outlines the nature of Hbase.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 7, 2021

417 | P a g e

www.ijacsa.thesai.org

Section 5 presents the conducted experiment. Finally, in
Section 6 the authors make conclusions and offer ideas for
further research.

II. RELATED WORK

Many authors are doing extensive research on the topic of
data compression in Hbase and are proposing some additional
algorithms and strategies for optimization of the compression
process.

To avoid the hot-spot issue in the Regional Servers, the
authors in [10] are proposing sorting of the data before the
compression. Another part of the proposed solution is the
usage of different compression algorithms for different data
types.

In [11] the authors are overviewing some common
compression algorithms and through experiments are
comparing the methods. The results from these experiments are
used for the decision of how to compress a particular data
column. As a result, they propose an architecture for query
executor. The authorsalso pay attention to the order of the
columns.

A short survey of data compression techniques for column-
oriented databases is presented in [12]. The results show that
the LZO and Snappy compressions have comparable
compression rates and speeds.

An analysis on compression of data, presented in relational
format is done in [13] resulting in the authors proposing a
strategy for compressing similar data together. The authors are
noting that the traversal strategy has a significant impact on the
compression ratio.

The compression algorithms of Hbase are considered in
[14]. A series of experiments are conducted and several aspects
are analyzed - used memory, CPU utilization, network
utilization and disk space usage. The results show that the
usage of some form of compression is beneficial when dealing
with large clusters and large jobs. In terms of query time
execution, Snappy is the best performing algorithm.

III. COLUMN-ORIENTED DATA MODEL PROPERTIES

The systems based on column families are important
architecture models of NoSQL data because they can easily
expand (scale horizontally) while processing big volumes of
data. Column-oriented data models can be viewed as one
multi-dimensional table (Table I), to which queries can be
made using the primary key. In this type of data storage, the
key can be the identifier of the row (Row ID) and the name of
the column. The first dimension of the table is the RowKey,
which denotes the row of the physical storage of the data in the
table. The second dimension is the column family, which is
similar of the attributes in the relational data model. The third
dimension is the qualificator of the column. In theory, every
column can have an unlimited number of qualificators. The
fourth dimension is the timestamp which is automatically
assigned and represents the moment of the cell creation in
nanoseconds. The structure of the key can be seen in the
following manner:

The advantages of column-oriented systems are as follows
[1,2,5,9]:

 A high degree of scalability – in essence, column-
oriented systems have the property of scalability, which
means that when there is a high intensity of data
addition, more general-purpose nodes have to be added
to the cluster. With a good design of the cluster can be
achieved a linear relation between the way the data is
expanding and the number of the needed nodes. The
main reason for this relation is the manner in which the
Row identifier and the column names are being used
when identifying a cell. With the maintenance of a
simple interface, the system which works in a
background mode, can distribute the queries between a
large number of nodes without the need of performing
any merge and join operations.

 A high degree of availability – by building a system that
is easily scalable, the need for data duplication arises.
Because column-oriented systems use effective
communication, the replication cost is low. The lack of
join operations allows the storage of individual portions
of the column matrix on remote servers. This means
that if one of the nodes that contain some of the matrix
data, falls, and the other nodes will provide the services
to these cells.

 Easy data addition – the column-oriented model does
not require a pre-detailed design before the data
insertion begins. The column names should be known
prior to the insertion, but the identifier of the rows and
the column qualifiers can be created at any given
moment.

Improved data compression – storing data from the same
domain increases the locality of the processing and thus
improves the degree of data compression (especially if the
attribute is sorted). The requirements for the transfer speed in
the computer network are further reduced when transferring
compressed data. The coefficient of the compression is higher
in the column-oriented data storages as the sequential values
that are being stored in the column are from the same data type,
while the neighboring attributes in the tuple can be different
types. When every value in the column has the same size, the
speed of decompression can be high, especially when taking
into account the super-scalar properties of today’s processors.
The columns can be further sorted which in turn will increase
the potential of compression. The compression methods used in
the column-oriented systems improve the CPU performance by
allowing data manipulators to work directly on the compressed
data without having to decompress.

TABLE I. KEY STRUCTURE IN COLUMN-ORIENTED SYSTEMS

Key

Row-ID
Column

family

Column

qualifier
Time stamp Value

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 7, 2021

418 | P a g e

www.ijacsa.thesai.org

IV. HBASE OVERVIEW

Apache HBase (http://hbase.apache.org) is a distributed,
fault-tolerant, column-oriented database modeled after
Google's Bigtable [15]. Similarly, as Bigtable is built on top of
the Google’s distributed file system, HBase relies on the data
storage provided by the Hadoop’s distributed file system
(HDFS). It is an open-source software, written in Java. Its
primary goal is to provide random, fast (real-time) read/write
access to very large tables (containing billions of rows and
millions of columns) running on clusters of cheap commodity
servers.

As a non-relational database, it does not rely on SQL to
access the data; however the Apache Phoenix project [16]
offers an additional SQL layer on top of HBase, and a JDBC
driver that allows external JAVA applications to communicate
with the database. Furthermore, data are accessible through
Java API, REST API and Avro or Thrift gateway APIs.

HBase features linear horizontal scalability, strictly
consistent reads and writes, automatic failover support between
RegionServers, data compression, in-memory operation, and
Bloom filters on a “per-column” basis as implemented in
Bigtable [10].

HBase is a widely deployed database, used by large number
of companies, ranging from IT giants (Facebook, Twitter,
Yahoo!, Adobe, Meetup, OCLC – WorldCat’s data storage,
and others) to smaller companies and research projects. Before
2018 Facebook fully relied on HBase to store private messages
(multimedia content) exchanged through “Messenger”. Then
they switch to MyRocks - Facebook’s open source database
project that integrates RocksDB as a MySQL storage engine
[17]. Twitter uses HBase as a distributed backup of their
production database (implemented in MySQL). Benipal
Technologies utilizes a 35-node HBase cluster that holds over
10 billion rows with hundreds of datapoints per row. They
compute over 1018 calculations daily using MapReduce
directly on HBase.

Data compression is a method that is used to improve the
performance and reduce the storage space. Hbase supports four
different compression algorithms, which can be directly
applied on the ColumnFamily. That includes SNAPPY [18],
LZO [19], LZ4 [20] and GZ [21] compressions. When creating
a table every ColumnFamily is defined separately meaning that
some families can have a compression algorithm applied to
them and some may not. Using a compression algorithm can
lead to a significantly reduced storage space as it is seen from
the conducted experiments.

V. EXPERIMENTAL ANALYSIS

A. Experimental Environment and Dataset

A cluster of 10 servers is being used to conduct this
experiment. A Name Node having two CPUs: Intel Xeon
Silver 4110, 8 cores and a total of 32 threads, and 64GB RAM;
9 data nodes – each data node have one CPU Intel Xeon E-
2124, 4 cores and 4 threads, and 16GB RAM; and 1 additional
server, having the same technical specifications as the data
nodes, that is not being featured in the cluster but is located in
the same network as the cluster.

Every experiment consists of a Python code that initiates an
Insert or Select queries to the Name Node. The python code is
developed with the help of some additional Python libraries
and packages. Most important of which is the HappyBase
library. HappyBase is a library, developed on the ThriftPy2
Package. Essentially, the ThriftPy2 is used to establish the
connection between the cluster (more precisely - the Name
Node) and the client. All of the test scenarios are being
performed from the additional server, the one that is located in
the same network but is not featured in the cluster.

The data that is being sent and retrieved to the server
consist of over 4 900 000 different sensor measurements. The
description of the dataset can be seen in Table II.

TABLE II. DATASET DESCRIPTION

Attribute Column Family

house_id house:mac

date_time house:datetime

ch1_watts to ch3_watts ch:1 to ch:3

temp readings:temp

gas_reading readings:gas

appliance_1 to

appliance_10

app:1 to

app:10

While performing the experiment the sequential data
transmission from the sensors is stimulated, as can be expected
in real-life scenarios. Therefore, all of the Insert tests are done
in the manner of several thousand queries being sent to the
server instead of performing a single Load Dump. We strive to
test the capabilities of the cluster as close to real-life situations
as possible. Nevertheless, the experiments are performed in an
almost sterile environment, as the cluster does not handle any
additional tasks while inserting and selecting the data.

B. Comparative Experiment on Query Execution Time

1) Insert queries: The Insert Test Cases are done under

the following conditions:

 The table that will store the row is created at the
beginning of the test.

 The number of the versions of the cells is left at the
default value – three.

 A total of fifteen Insert tests cases are performed – three
tests without any compression and twelve tests with
compression (four compressions multiplied by three
times).

 Every test is performed with 200 000, 400 000, 600
000, 800 000 and 1 000 000 different queries send to
the server.

The inconsistent manner of the insert query execution is
notably visible in these tests. The number of requests per
second is around 400 to 430. That difference is small enough to
be considered insignificant. Fig. 1 shows the number of
requests per second, per compression in detail. When inserting
200 000 rows, the LZO Compression, the SNAPPY
compression and the control test without compression behave

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 7, 2021

419 | P a g e

www.ijacsa.thesai.org

in similar manner. The GZ and LZ4 compressions are a
fraction slower. The insertion of 400 000 rows is similar
regardless of the chosen compression and starting from the 600
000 and upward clearer differences in the execution time and
the number of requests per second can be observed. What
makes an impression are the spikes in the LZO compression
and the test without any compression. In the tests with 800 000
and 1 000 000 rows, the cases without compression and the
LZO compression behave best, respectively.

2) Select queries: The select test cases are performed on

the same tables that have been created when conducting the

Insert experiments. Meaning that the select queries are

performing full table scans on the compressed data. For every

combination of dataset and compression, a total of three test

scenarios are done – querying 25%, 50% and 75% of the data.

Fig. 2 shows the execution time of the conducted tests. Almost

every compression is behaving as expected – with the increase

of the queried rows, the execution time increases linearly.

LZO is the only compression that does not follow this

behavior – it has some notable spikes when selecting 150 000,

300 000 and 450 000 rows. A possible explanation of that can

be the locality of the data and it is worth a further

examination.

C. Comparative Experiment on Physical Storage

The physical storage of the data (the Persistent Memory) is
also an area that is worth looking into. The column-oriented
systems are characterized by improved data compression.
Moreover, that can be seen in Fig. 3 in which it is obvious that
the tests run with no compression are taking up a lot of
physical memory on the cluster. Tables with more than 1 000
000 rows can be as large as 1GB. Fig. 4 shows the physical
memory of the data without the outlier – the tests with no
compression. In this figure, the difference between the four
compressions is more distinguishable.

Fig. 1. Comparison of Insert Operation.

Fig. 2. Comparison of Select Queries.

Fig. 3. Comparison of Physical Memory for all Test Cases.

Fig. 4. Comparison of Physical Memory for the Compression Tests.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 7, 2021

420 | P a g e

www.ijacsa.thesai.org

The GZ compression is clearly the most sparing of the four,
storing 1 000 000 rows in little more than 100MB; in other
words, 10 times less than the insertion without compression.
The GZ compression is followed by SNAPPY compression
and the LZ4 compression is the one that takes up most storage
space.

D. Comparative Experiment on Number of RegionServers

The number of the RegionServers is another indicator that
is taken into consideration. It confirms the benefit of using data
compression algorithms. Although the difference in the number
of RegionServers when using compression and not, is small, it
does affect the whole performance of the cluster when inserting
and selecting multiple records. The number of the occupied
RegionServers while inserting rows without compressions is up
to two for more than 600 000 inserted rows, while using any
compression results in one reserved server every time.

E. Cluster CPU Load

Fig. 5 shows the load of the Cluster CPU while performing
400 000 insert queries. The left part of the figure shows the
CPU load of the cluster when insert data without any
compression and the right part shows the CPU with the LZO
compression. Clear from the figure is that regardless of the
used compression, or the lack of, the CPU is loaded the same.

Fig. 6 denotes the data transferred through the HDFS with
and without any compression. The left side of the figure is the
insertion of 400 000 rows of uncompressed data and the right
side – the same number of rows with LZO compression. As
expected, the compressed data is less and therefore the I/O
operations on the HDFS are less. What makes an impression is
that regardless of the data that is being transferred and the
additional processed linked to the compression, the time of the
whole insert operation is almost even.

Fig. 5. Cluster CPU Load.

Fig. 6. HDFS I/O.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 7, 2021

421 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSIONS AND FUTURE WORK

The aim of this research is to determine if data compression
could improve the performance of HBase, running on a
Hadoop cluster, consisted of one name node and nine data
nodes. After performing a series of experiments, we can
conclude that:

 Data compression highly improves system performance
in terms of storage saving. It could shrink data 5 to 10
times (depending on the algorithm) without any
noticeable additional CPU load.

 The substantial decrease in the network traffic could
have a significant positive impact on large clusters with
many data nodes or in clusters with higher data
replication factors.

 The GZ algorithm achieves the highest compression
ratio from all four applied algorithms.

 The cluster does not need any additional computational
resources or CPU time to compress or decompress data,
as it was expected.

 Regardless of the used compression, or the lack of it,
the time for inserting and selecting thousands of rows
does not change in noticeable manner. Neither the
requests per second. When running the experiments, the
active nodes’ CPU load was less than 20%. All these
measurements may suggest that there is some kind of
limitation setting in the Thrift server or in the ThriftPy2
package. Further research and analysis are needed.

In future, we plan to extend our work and:

 Find a way to increase the number of processed requests
per second. Obviously not the hardware is the limitation
factor in the present experiments.

 Add more sources of data and simulate a parallel cluster
usage from multiple clients.

 Increase the replication factor and analyze how data
compression impacts the cluster performance in that
case.

REFERENCES

[1] F. Bajaber, S. Sakr, O. Batarfi, A. Altalhi, A. Barnawi, “Benchmarking
big data systems: A survey,” Computer Communications, 149, 241–251,
2020.

[2] A.H. Abed, “Big Data with Column Oriented NOSQL Database to
Overcome the Drawbacks of Relational Databases,” Int. J. Advanced
Networking and Applications, 11(05), 4423–4428, 2020.

[3] W. Ali, M.U. Shafique, M.A. Majeed, A. Raza, “Comparison between
SQL and NoSQL databases and their relationship with big data
analytics,” Asian Journal of Research in Computer Science, 1–10, 2019.

[4] J. Agnelo, N. Laranjeiro, J. Bernardino, “Using Orthogonal Defect
Classification to characterize NoSQL database defects,” Journal of
Systems and Software, 159, 110451, 2020.

[5] R. Yangui, A. Nabli, F. Gargouri, “Automatic transformation of data
warehouse schema to NoSQL data base: comparative study,” Procedia
Computer Science, 96, 255–264, 2016.

[6] D. McCreary, A. Kelly, “Making sense of NoSQL,” Shelter Island:
Manning, 19–20, 2014.

[7] S. Wandelt, X. Sun, U. Leser, “Column-wise compression of open
relational data,” Information Sciences, 457, 48–61, 2018.

[8] P. Raichand, “A short survey of data compression techniques for column
oriented databases,” Journal of Global Research in Computer Science,
4(7), 43–46, 2013.

[9] R. Čereš\vnák, M. Kvet, “Comparison of query performance in
relational a non-relation databases,” Transportation Research Procedia,
40, 170–177, 2019.

[10] J. Sun, T. Lu, “Optimization of column-oriented storage compression
strategy based on HBase,” in 2018 International Conference on Big Data
and Artificial Intelligence (BDAI), 24–28, 2018.

[11] D. Abadi, S. Madden, M. Ferreira, “Integrating compression and
execution in column-oriented database systems,” in Proceedings of the
2006 ACM SIGMOD international conference on Management of data,
671–682, 2006.

[12] Raichand, P., & Aggarwal, R. R. (2013). A short survey of data
compression techniques for column oriented databases. Current Trends
in Information Technology, 3(2), 1-6.

[13] Wandelt, S., Sun, X., & Leser, U. (2018). Column-wise compression of
open relational data. Information Sciences, 457, 48-61.

[14] Raichand, P., & Aggarwal, R. R. G. (2013). Query execution and effect
of compression on nosql column oriented data-store using hadoop and
hbase (Doctoral dissertation).

[15] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M.
Burrows, T. Chandra, A. Fikes, R.E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems (TOCS), 26(2), 1–26, 2008.

[16] Apache Phoenix project: http://phoenix.apache.org/.

[17] X. Li, T. Georgiou, Migrating Messenger storage to optimize
performance. Facebook Engineering, 2018:
https://engineering.fb.com/2018/06/26/core-data/migrating-messenger-
storage-to-optimize-performance/

[18] Fang, J., Chen, J., Al-Ars, Z., Hofstee, P., & Hidders, J. (2018,
September). A high-bandwidth Snappy decompressor in reconfigurable
logic: work-in-progress. In Proceedings of the International Conference
on Hardware/Software Codesign and System Synthesis (pp. 1-2).

[19] Prasanth, T., Aarthi, K., & Gunasekaran, M. (2019, April). Big Data
Retrieval using HDFS with LZO Compression. In 2019 International
Conference on Advances in Computing and Communication
Engineering (ICACCE) (pp. 1-6). IEEE.

[20] Jiang, H., & Lin, S. J. (2020). A rolling hash algorithm and the
implementation to LZ4 data compression. IEEE Access, 8, 35529-
35534.

[21] Packer, C., & Holder, L. B. (2017, August). GraphZip: Mining graph
streams using dictionary-based compression. In SIGKDD Workshop on
Mining and Learning in Graphs (MLG).

