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Abstract—Compression of data in traditional relational 

database management systems significantly improves the system 

performance by decreasing the size of the data that results in less 

data transfer time within the communication environment and 

higher efficiency in I/O operations. The column-oriented 

database management systems should perform even better since 

each attribute is stored in a separate column, so that its 

sequential values are stored and accessed sequentially on the 

disk. That further increases the compression efficiency as the 

entire column is compressed/decompressed at once. The aim of 

this research is to determine if data compression could improve 

the performance of HBase, running on a small-sized Hadoop 

cluster, consisted of one name node and nine data nodes. Test 

scenario includes performing Insert and Select queries on 

multiple records with and without data compression. Four data 

compression algorithms are tested since they are natively 

supported by HBase - SNAPPY, LZO, LZ4 and GZ. Results 

show that data compression in HBase highly improves system 

performance in terms of storage saving. It shrinks data 5 to 10 

times (depending on the algorithm) without any noticeable 

additional CPU load. That allows smaller but significantly faster 

SSD disks to be used as cluster’s primary data storage. 

Furthermore, the substantial decrease in the network traffic is an 

additional benefit with major impact on big data processing. 
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I. INTRODUCTION 

The main factors that put pressure on the centralized 
relational model and play a key role in the development of 
NoSQL DBMS are: Volume, Velocity, Variety and Agility [1]. 
Volume and Velocity are referred to the possibility of 
management of big sets of data that is generated with high 
speed and should be processed fast. Variety is the existence of 
various structures and formats of data (structured, semi-
structured and unstructured). Agility is the likelihood of an 
organization reacting to changes in the business [2]. 

Usually, the relational database management systems are 
seen as the best possibility of data storage, data retrieval and 
data processing. Regardless, the constant growing needs of 
scalability and the emerging needs for specific applications 
posed various challenges to the conventional relational 
databases [3,4]. For example, the continuous growth of user-
generated data led to an increase in the types (structured, semi-
structured and unstructured) and the volume of the data that 
has to be stored and processed. In practice, the fast growth in 
the volume of the data created a big problem for the 

conventional databases that require a pre-known defined 
schema of the data, based on relations. In fact, the pre-known 
schema became inadequate in many different scenarios. 

The desire to meet this challenge led to the creation of 
NoSQL DBMS [2,5]. For the purposes of the distributed 
databases, NoSQL is defined in [6] as follows: NoSQL is a set 
of ideas and concepts that allow for fast and efficient 
processing of datasets with an emphasis on performance, 
reliability and speed. One of the challenges for the users of 
NoSQL is that there are a large number of different 
architectural data models to choose from (key-value, column-
oriented, document-based, graph stores). 

Compression of data elements in traditional database 
management systems significantly improves system 
performance by [7,8]: (1) decreasing the size of the data, (2) 
increase the productivity of input/output operations by 
reducing search time, (3) reduction of data transfer time in the 
communication environment (less data is transferred to the 
computer network) and (4) increasing the relative speed of the 
input-output buffer. For requests that are limited in terms of 
data input or retrieval speed, the CPU load resulting from the 
decompression is offset by I/O system improvements at the 
operating system level. All this has a significant effect when 
working with large amounts of data. 

In the column store, each attribute is stored in a separate 
column, so that the sequential values of this attribute are stored 
sequentially on disk [4,9]. This data model provides more 
opportunities for improved performance as a result of applying 
algorithms to compress data elements compared to row-
oriented architectures. In the column-oriented model, the use of 
different compression schemes that encode multiple values at 
once is natural. In tuple-oriented systems, such schemes do not 
work well because the individual attribute is stored as part of 
the whole tuple, so combining the same attribute from different 
tuples together into one value will require some way to "mix" 
tuples. 

The main objective of the current research is to test the 
capabilities of a small-sized cluster when performing the 
operations Insert and Select to Hbase. The operations are 
performed with and without the supported Hbase compression 
algorithms. This article aims to observe the behavior of the 
cluster when performing the experiments. 

The article is structured as follows: Section 2 reviews some 
related research. Section 3 presents column-oriented data 
model properties. Section 4 outlines the nature of Hbase. 
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Section 5 presents the conducted experiment. Finally, in 
Section 6 the authors make conclusions and offer ideas for 
further research. 

II. RELATED WORK 

Many authors are doing extensive research on the topic of 
data compression in Hbase and are proposing some additional 
algorithms and strategies for optimization of the compression 
process. 

To avoid the hot-spot issue in the Regional Servers, the 
authors in [10] are proposing sorting of the data before the 
compression. Another part of the proposed solution is the 
usage of different compression algorithms for different data 
types. 

In [11] the authors are overviewing some common 
compression algorithms and through experiments are 
comparing the methods. The results from these experiments are 
used for the decision of how to compress a particular data 
column. As a result, they propose an architecture for query 
executor. The authorsalso pay attention to the order of the 
columns. 

A short survey of data compression techniques for column-
oriented databases is presented in [12]. The results show that 
the LZO and Snappy compressions have comparable 
compression rates and speeds. 

An analysis on compression of data, presented in relational 
format is done in [13] resulting in the authors proposing a 
strategy for compressing similar data together. The authors are 
noting that the traversal strategy has a significant impact on the 
compression ratio. 

The compression algorithms of Hbase are considered in 
[14]. A series of experiments are conducted and several aspects 
are analyzed - used memory, CPU utilization, network 
utilization and disk space usage. The results show that the 
usage of some form of compression is beneficial when dealing 
with large clusters and large jobs. In terms of query time 
execution, Snappy is the best performing algorithm. 

III. COLUMN-ORIENTED DATA MODEL PROPERTIES 

The systems based on column families are important 
architecture models of NoSQL data because they can easily 
expand (scale horizontally) while processing big volumes of 
data. Column-oriented data models can be viewed as one 
multi-dimensional table (Table I), to which queries can be 
made using the primary key. In this type of data storage, the 
key can be the identifier of the row (Row ID) and the name of 
the column. The first dimension of the table is the RowKey, 
which denotes the row of the physical storage of the data in the 
table. The second dimension is the column family, which is 
similar of the attributes in the relational data model. The third 
dimension is the qualificator of the column. In theory, every 
column can have an unlimited number of qualificators. The 
fourth dimension is the timestamp which is automatically 
assigned and represents the moment of the cell creation in 
nanoseconds. The structure of the key can be seen in the 
following manner: 

The advantages of column-oriented systems are as follows 
[1,2,5,9]: 

 A high degree of scalability – in essence, column-
oriented systems have the property of scalability, which 
means that when there is a high intensity of data 
addition, more general-purpose nodes have to be added 
to the cluster. With a good design of the cluster can be 
achieved a linear relation between the way the data is 
expanding and the number of the needed nodes. The 
main reason for this relation is the manner in which the 
Row identifier and the column names are being used 
when identifying a cell. With the maintenance of a 
simple interface, the system which works in a 
background mode, can distribute the queries between a 
large number of nodes without the need of performing 
any merge and join operations. 

 A high degree of availability – by building a system that 
is easily scalable, the need for data duplication arises. 
Because column-oriented systems use effective 
communication, the replication cost is low. The lack of 
join operations allows the storage of individual portions 
of the column matrix on remote servers. This means 
that if one of the nodes that contain some of the matrix 
data, falls, and the other nodes will provide the services 
to these cells. 

 Easy data addition – the column-oriented model does 
not require a pre-detailed design before the data 
insertion begins. The column names should be known 
prior to the insertion, but the identifier of the rows and 
the column qualifiers can be created at any given 
moment. 

Improved data compression – storing data from the same 
domain increases the locality of the processing and thus 
improves the degree of data compression (especially if the 
attribute is sorted). The requirements for the transfer speed in 
the computer network are further reduced when transferring 
compressed data. The coefficient of the compression is higher 
in the column-oriented data storages as the sequential values 
that are being stored in the column are from the same data type, 
while the neighboring attributes in the tuple can be different 
types. When every value in the column has the same size, the 
speed of decompression can be high, especially when taking 
into account the super-scalar properties of today’s processors. 
The columns can be further sorted which in turn will increase 
the potential of compression. The compression methods used in 
the column-oriented systems improve the CPU performance by 
allowing data manipulators to work directly on the compressed 
data without having to decompress. 

TABLE I. KEY STRUCTURE IN COLUMN-ORIENTED SYSTEMS 

Key  

Row-ID 
Column 

family 

Column 

qualifier 
Time stamp Value 
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IV. HBASE OVERVIEW 

Apache HBase (http://hbase.apache.org) is a distributed, 
fault-tolerant, column-oriented database modeled after 
Google's Bigtable [15]. Similarly, as Bigtable is built on top of 
the Google’s distributed file system, HBase relies on the data 
storage provided by the Hadoop’s distributed file system 
(HDFS). It is an open-source software, written in Java. Its 
primary goal is to provide random, fast (real-time) read/write 
access to very large tables (containing billions of rows and 
millions of columns) running on clusters of cheap commodity 
servers. 

As a non-relational database, it does not rely on SQL to 
access the data; however the Apache Phoenix project [16] 
offers an additional SQL layer on top of HBase, and a JDBC 
driver that allows external JAVA applications to communicate 
with the database. Furthermore, data are accessible through 
Java API, REST API and Avro or Thrift gateway APIs. 

HBase features linear horizontal scalability, strictly 
consistent reads and writes, automatic failover support between 
RegionServers, data compression, in-memory operation, and 
Bloom filters on a “per-column” basis as implemented in 
Bigtable [10]. 

HBase is a widely deployed database, used by large number 
of companies, ranging from IT giants (Facebook, Twitter, 
Yahoo!, Adobe, Meetup, OCLC – WorldCat’s data storage, 
and others) to smaller companies and research projects. Before 
2018 Facebook fully relied on HBase to store private messages 
(multimedia content) exchanged through “Messenger”. Then 
they switch to MyRocks - Facebook’s open source database 
project that integrates RocksDB as a MySQL storage engine 
[17]. Twitter uses HBase as a distributed backup of their 
production database (implemented in MySQL). Benipal 
Technologies utilizes a 35-node HBase cluster that holds over 
10 billion rows with hundreds of datapoints per row. They 
compute over 1018 calculations daily using MapReduce 
directly on HBase. 

Data compression is a method that is used to improve the 
performance and reduce the storage space. Hbase supports four 
different compression algorithms, which can be directly 
applied on the ColumnFamily. That includes SNAPPY [18], 
LZO [19], LZ4 [20] and GZ [21] compressions. When creating 
a table every ColumnFamily is defined separately meaning that 
some families can have a compression algorithm applied to 
them and some may not. Using a compression algorithm can 
lead to a significantly reduced storage space as it is seen from 
the conducted experiments. 

V. EXPERIMENTAL ANALYSIS 

A. Experimental Environment and Dataset 

A cluster of 10 servers is being used to conduct this 
experiment. A Name Node having two CPUs: Intel Xeon 
Silver 4110, 8 cores and a total of 32 threads, and 64GB RAM; 
9 data nodes – each data node have one CPU Intel Xeon E-
2124, 4 cores and 4 threads, and 16GB RAM; and 1 additional 
server, having the same technical specifications as the data 
nodes, that is not being featured in the cluster but is located in 
the same network as the cluster. 

Every experiment consists of a Python code that initiates an 
Insert or Select queries to the Name Node. The python code is 
developed with the help of some additional Python libraries 
and packages. Most important of which is the HappyBase 
library. HappyBase is a library, developed on the ThriftPy2 
Package. Essentially, the ThriftPy2 is used to establish the 
connection between the cluster (more precisely - the Name 
Node) and the client. All of the test scenarios are being 
performed from the additional server, the one that is located in 
the same network but is not featured in the cluster. 

The data that is being sent and retrieved to the server 
consist of over 4 900 000 different sensor measurements. The 
description of the dataset can be seen in Table II. 

TABLE II. DATASET DESCRIPTION 

Attribute Column Family 

house_id house:mac 

date_time house:datetime 

ch1_watts to ch3_watts ch:1 to ch:3 

temp readings:temp 

gas_reading readings:gas 

appliance_1 to  

appliance_10 

app:1 to 

app:10 

While performing the experiment the sequential data 
transmission from the sensors is stimulated, as can be expected 
in real-life scenarios. Therefore, all of the Insert tests are done 
in the manner of several thousand queries being sent to the 
server instead of performing a single Load Dump. We strive to 
test the capabilities of the cluster as close to real-life situations 
as possible. Nevertheless, the experiments are performed in an 
almost sterile environment, as the cluster does not handle any 
additional tasks while inserting and selecting the data. 

B. Comparative Experiment on Query Execution Time 

1) Insert queries: The Insert Test Cases are done under 

the following conditions: 

 The table that will store the row is created at the 
beginning of the test. 

 The number of the versions of the cells is left at the 
default value – three. 

 A total of fifteen Insert tests cases are performed – three 
tests without any compression and twelve tests with 
compression (four compressions multiplied by three 
times). 

 Every test is performed with 200 000, 400 000, 600 
000, 800 000 and 1 000 000 different queries send to 
the server. 

The inconsistent manner of the insert query execution is 
notably visible in these tests. The number of requests per 
second is around 400 to 430. That difference is small enough to 
be considered insignificant. Fig. 1 shows the number of 
requests per second, per compression in detail. When inserting 
200 000 rows, the LZO Compression, the SNAPPY 
compression and the control test without compression behave 
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in similar manner. The GZ and LZ4 compressions are a 
fraction slower. The insertion of 400 000 rows is similar 
regardless of the chosen compression and starting from the 600 
000 and upward clearer differences in the execution time and 
the number of requests per second can be observed. What 
makes an impression are the spikes in the LZO compression 
and the test without any compression. In the tests with 800 000 
and 1 000 000 rows, the cases without compression and the 
LZO compression behave best, respectively. 

2) Select queries: The select test cases are performed on 

the same tables that have been created when conducting the 

Insert experiments. Meaning that the select queries are 

performing full table scans on the compressed data. For every 

combination of dataset and compression, a total of three test 

scenarios are done – querying 25%, 50% and 75% of the data. 

Fig. 2 shows the execution time of the conducted tests. Almost 

every compression is behaving as expected – with the increase 

of the queried rows, the execution time increases linearly. 

LZO is the only compression that does not follow this 

behavior – it has some notable spikes when selecting 150 000, 

300 000 and 450 000 rows. A possible explanation of that can 

be the locality of the data and it is worth a further 

examination. 

C. Comparative Experiment on Physical Storage 

The physical storage of the data (the Persistent Memory) is 
also an area that is worth looking into. The column-oriented 
systems are characterized by improved data compression. 
Moreover, that can be seen in Fig. 3 in which it is obvious that 
the tests run with no compression are taking up a lot of 
physical memory on the cluster. Tables with more than 1 000 
000 rows can be as large as 1GB. Fig. 4 shows the physical 
memory of the data without the outlier – the tests with no 
compression. In this figure, the difference between the four 
compressions is more distinguishable. 

 

Fig. 1. Comparison of Insert Operation. 

 

Fig. 2. Comparison of Select Queries. 

 

Fig. 3. Comparison of Physical Memory for all Test Cases. 

 

Fig. 4. Comparison of Physical Memory for the Compression Tests. 
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The GZ compression is clearly the most sparing of the four, 
storing 1 000 000 rows in little more than 100MB; in other 
words, 10 times less than the insertion without compression. 
The GZ compression is followed by SNAPPY compression 
and the LZ4 compression is the one that takes up most storage 
space. 

D. Comparative Experiment on Number of RegionServers 

The number of the RegionServers is another indicator that 
is taken into consideration. It confirms the benefit of using data 
compression algorithms. Although the difference in the number 
of RegionServers when using compression and not, is small, it 
does affect the whole performance of the cluster when inserting 
and selecting multiple records. The number of the occupied 
RegionServers while inserting rows without compressions is up 
to two for more than 600 000 inserted rows, while using any 
compression results in one reserved server every time. 

E. Cluster CPU Load 

Fig. 5 shows the load of the Cluster CPU while performing 
400 000 insert queries. The left part of the figure shows the 
CPU load of the cluster when insert data without any 
compression and the right part shows the CPU with the LZO 
compression. Clear from the figure is that regardless of the 
used compression, or the lack of, the CPU is loaded the same. 

Fig. 6 denotes the data transferred through the HDFS with 
and without any compression. The left side of the figure is the 
insertion of 400 000 rows of uncompressed data and the right 
side – the same number of rows with LZO compression. As 
expected, the compressed data is less and therefore the I/O 
operations on the HDFS are less. What makes an impression is 
that regardless of the data that is being transferred and the 
additional processed linked to the compression, the time of the 
whole insert operation is almost even. 

 

Fig. 5. Cluster CPU Load.

 

Fig. 6. HDFS I/O. 
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VI. CONCLUSIONS AND FUTURE WORK 

The aim of this research is to determine if data compression 
could improve the performance of HBase, running on a 
Hadoop cluster, consisted of one name node and nine data 
nodes. After performing a series of experiments, we can 
conclude that: 

 Data compression highly improves system performance 
in terms of storage saving. It could shrink data 5 to 10 
times (depending on the algorithm) without any 
noticeable additional CPU load. 

 The substantial decrease in the network traffic could 
have a significant positive impact on large clusters with 
many data nodes or in clusters with higher data 
replication factors. 

 The GZ algorithm achieves the highest compression 
ratio from all four applied algorithms. 

 The cluster does not need any additional computational 
resources or CPU time to compress or decompress data, 
as it was expected. 

 Regardless of the used compression, or the lack of it, 
the time for inserting and selecting thousands of rows 
does not change in noticeable manner. Neither the 
requests per second. When running the experiments, the 
active nodes’ CPU load was less than 20%. All these 
measurements may suggest that there is some kind of 
limitation setting in the Thrift server or in the ThriftPy2 
package. Further research and analysis are needed. 

In future, we plan to extend our work and: 

 Find a way to increase the number of processed requests 
per second. Obviously not the hardware is the limitation 
factor in the present experiments. 

 Add more sources of data and simulate a parallel cluster 
usage from multiple clients. 

 Increase the replication factor and analyze how data 
compression impacts the cluster performance in that 
case. 
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