
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

Applying Custom Algorithms in Windows Active
Directory Certificate Services

Alaev Ruhillo
Faculty of Applied Mathematics and Intelligent Technologies

National University of Uzbekistan named after Mirzo Ulugbek, NUUz
Tashkent, Uzbekistan

Abstract—The article presents a solution to the problem
of not recognizing the O’zDst 1092:2009 algorithm by the
operating system and the problem of using digital certificates
generated using the O’zDst 1092:2009 algorithm and O’zDst
1106:2009 algorithm. These algorithms were adopted in 2009.
But these algorithms are still not recognized by the operating
system. For other cryptographic algorithms used in Windows,
cryptographic service providers have been developed that provide
cryptographic operation functions to other software. These cryp-
tographic service providers do not support the above algorithms.
From here it becomes necessary to develop the cryptographic
provider supporting the O’zDSt 1106:2009 hashing algorithm and
the O’zDSt 1092:2009 signature algorithm. But to work with
digital certificates, one cryptographic provider is not enough.
Special extensions are also required to encode and decode digital
certificate data. Therefore, the development of an extension for
cryptographic providers is given. Also, for managing digital cer-
tificates and key lifecycle, a method of integrating cryptographic
providers with Windows Active Directory Certificate Services is
presented. Developed cryptographic providers are composed of
3 types of providers such as hash provider, signature provider,
and key storage provider. The architecture of the key storage
provider, a method for secure storage of cryptographic keys,
as well as key access control are proposed. The description of
the O’zDst 1092:2009 algorithm and the implementation of the
functions of the Key storage provider interface are shown.

Keywords—O’zDSt 1106:2009 hashing algorithm; the O’zDSt
1092:2009 signature algorithm; active directory certificate services;
digital certificate; key access control; key storage provider

I. INTRODUCTION

Electronic digital signature technology is widely used to
ensure the integrity and identification of the owner of an elec-
tronic document. Presently in Uzbekistan, tools and methods
that allow using O’zDst 1092:2009 signature algorithm do
not provide document signing, signature validation and key
management, through standard interfaces such as CryptoAPI,
Cryptography Next Generation API [1] and PKCS [2], [3],
[4], [5], [6]. This raises the problem of using the O’zDst
1092:2009 algorithm in information systems, such as not
recognizing the O’zDst 1092:2009 algorithm by the operating
system, working with digital certificates generated using the
O’zDst 1092:2009 algorithm and O’zDst 1106:2009 algorithm.
In Windows, cryptographic service providers are used to
work with digital certificates, signing an electronic document,
checking the digital signature. Starting with Windows Vista,
Microsoft is offering a new Cryptography Next Generation
API (CNG API) [1] to perform cryptography operations for
applications. Microsoft provides several CNG providers that
work with CNG API.

The list of CNG providers developed by Microsoft is shown
in Table I.

TABLE I. THE LIST OF CNG PROVIDERS DEVELOPED BY MICROSOFT

CNG Provider Description

Microsoft Primitive Provider

It supports the following functions:
hashing with SHA1, SHA256, SHA384,
SHA512, MD2, MD4, MD5 algorithms;

signing and signature verification with RSA,
DSA and ECDSA algorithms;

symmetric encryption and decryption with AES,
DES, 3DES, DESX, RC2 and RC4 algorithms;

asymmetric encryption and decryption with RSA
algorithm;

key exchange with DH and ECDH algorithms;
random number generation.

Microsoft Software Key
Storage Provider

It performs operations on key pairs, especially
persistent keys. It creates, exports, imports,

deletes and stores key pairs. Key pairs generated
by the Microsoft Primitive Provider are not

persisted, so the Software Key Storage Provider
is used for persistent keys.

Microsoft SSL Protocol
Provider

It performs key management operations in SSL
and TLS. It is used to establish a secure

connection using SSL and TLS on Windows.

Microsoft Smart Card Key
Storage Provider

It is used to store keys and digital certificates on
smart cards. It creates, exports, imports, deletes,

and stores key pairs as Software Key Storage
Provider, but unlike it stores keys on smart cards.

Microsoft Key Protection
Provider

It provides secure storage of keys. Also it allows
you to protect content to a group in an Active

Directory forest.

Vendors such as “CryptoPro”, “Infoteks”, “Validata”,
“Signal-COM” and “Lissi-Soft” develop CNG providers that
support both algorithms of international standards and Russian
cryptographic algorithms.

CNG providers such as CryptoPro CSP, ViPNet CSP,
Signal-COM CSP, Validata CSP, Lissi CSP, Tumar CSP and
AVEST CSP support GOST R 34.11-94, GOST 34.11-2012,
GOST R 34.10-2001, GOST 34.10-2012 and GOST 28147-89
algorithms. In addition AVEST CSP supports STB RB 1176.1-
99, STB RB 1176.2-99, STB 34.101.18-2009, STB 34.101.31-
2011, STB 34.101.45-2013, STB 34.101.47-2017 and STB
34.101.50-2019 algorithms.

CNG also offers a mechanism for implementing a new
cryptographic algorithm in the operating system. For each al-
gorithm, a separate cryptographic provider is developed, which
is registered in the system for a certain class of algorithms.
To manage cryptographic keys of digital signature algorithm,
the tools, that supports this algorithm, are required. Only some
digital signature algorithms support such tools. These tools can
be hardware or software.Some implementations of hardware
key management provide hardware-level key management ca-

www.ijacsa.thesai.org 568 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

pabilities; signing and signature verification is performed in
software.

Key management tools allow you to automate the process
of using keys in information systems, such as generating,
storing, exporting, importing, destroying keys, encryption and
decryption with a key, and key access control. Public Key
Infrastructure (PKI) provides cryptographic key management
[7]. PKI is a collection of services for managing keys and
digital certificates of users, systems and networks.

PKI uses public key cryptography to identification of
electronic exchange participants, control the integrity of in-
formation.

A Certificate Authority (CA) is main part of the PKI that
issues a certificate to validate the rights of users or systems
requesting. It creates the certificate and signs it using the CA
private key. Another important part of PKI is the Certificate
repository. Certificate repository is a store of valid certificates
and certificate revocation lists (CRLs). Applications check the
validity of the certificate using the CRL in the repository.

PKI performs the following main functions:

1) Registration is the process of collecting information
about a user and verifying its authenticity.

2) Certificate Issuance. Once the CA has signed the
certificate, it is issued to the applicant and/or sent
to the certificate store. CA affixes a validity period
to the certificates, thus requiring periodic renewal of
the certificate.

3) Certificate Revocation. A certificate can become in-
valid before expiration for various reasons: the user
has left the company, changed his name, or if his
private key has been compromised. Under these cir-
cumstances, the CA will revoke the certificate by
entering its serial number on the CRL.

4) Key Recovery. A PKI function that allows to recover
data or key.

5) Key and certificate Lifecycle Management - main-
tenance of certificates in PKI, including renewal,
recovery and archiving of keys.

All international PKI standards are based on the ITU-T
X.509 standard [8], which defines the format of the digital
certificate and CRL.

In CNG to manage keys, the key storage providers are
used. Windows provides Active Directory Certificate Services
(ADCS) for working with key store providers. ADCS is
PKI system for Windows clients. ADCS by default works
with signature algorithms such as RSA[9], Diffie Hellman
(DH)[10], [11], Elliptic Curve Diffie Hellman (ECDH)[12] and
Elliptic Curve Digital Signature Algorithm (ECDSA) [13].

Only a key storage provider is not sufficient to per-
form cryptographic operations. The CNG provides the fol-
lowing types of providers for this purpose: hash provider,
cipher provider, asymmetric encryption provider, random num-
ber generator provider, secret agreement provider, signature
provider, key derivation provider. Applications interact with
CNG providers through CNG routers that provide CNG APIs
[14]. The CNG API is divided into two groups:

1) BCrypt API – CNG Cryptographic Primitive Func-
tions for cryptographic operations such as hashing,
signing and signature verification, random number
generation, encryption, asymmetric encryption, key
derivation;

2) NCrypt API – CNG Key Storage Functions for work-
ing with cryptographic keys and CNG SSL Provider
Functions.

Each type of algorithms has its own type of CNG router.
Several CNG providers can be implemented for the algorithm.

The organizational structure of this article is as follows.
Section 2 refers to related work. Section 3 provides a descrip-
tion of the O’zDSt 1092: 2009 signature algorithm, such as
key pair generation, signing, and verification process. Section 4
provides the system architecture of the created ARH Primitive
provider and ARH Key Storage provider. Section 5 presents
the OIDs of the algorithms and the main parameters of the
algorithms. Section 6 describes the implementations of the Key
Storage provider interface functions. Section 7 describes the
implementations of the Provider extension interface functions.
The results will be presented and discussed in Section 8.
Finally, Section 9 contains the conclusion.

II. RELATED WORK

A review of Microsoft’s next-generation providers and the
analysis of their supporting algorithms, types of providers
were discussed in [15]. Windows default CNG providers do
not support signature algorithm O’zDSt 1092:2009 [15]. The
design and implementation of the key storage provider, which
provides management keys’ life cycle, were discussed in [16].
But the detailed description and integration with the Active
Directory certification service has not been discussed. K. Lee
and others [17] analyzed the possible vulnerabilities of the
CNG library. The structures, functionality, and security issues
of CNG have been discussed in [18], [19]. Cryptographic mod-
ules are not only developed as a cryptographic provider. The
design and implementation of such elliptic curve cryptographic
electronic signature systems were discussed in [20], [21],
[22], [23]. But such cryptographic modules are not compatible
with CNG, and therefore such solutions are not suitable for
new custom algorithms. The development of a cryptographic
provider for the hashing algorithm and the encryption algo-
rithm was considered in the work [24]. It proposes a method
of applying the symmetric algorithm O’zDSt 1105:2009, and
the hashing algorithm O’zDSt 1106:2009 to ensure the confi-
dentiality of electronic documents in MS Office. The authors
of [25] discussed the development of a cryptographic provider
that supports the CryptoAPI interface. They gave a detailed
review of the cryptographic transformations of the encryption
algorithm O’zDst 1005:2009, presented the architecture and
modules of the CryptoAPI provider that they developed. But
the CryptoAPI is already being replaced by a more advanced
CNG API.

The above works analyze CNG libraries, the security of
their key storage, provide a review of CNG API, discuss the
development of the Key storage provider and the CryptoAPI
provider. But the application of the new algorithm presented in
this article in ADCS was not provided, and the problem of not
recognizing digital certificates based on the O’zDSt 1092:2009
signature algorithm has not been resolved.

www.ijacsa.thesai.org 569 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

Therefore, we created CNG providers that support the
above algorithms and provider extensions to address the issue
of Windows digital certificates not being recognized. This
article presents the architecture of these providers, describes
the functions and modules, and proposes a solution to the
problem of unrecognizing digital certificates.

III. THE FIRST SIGNATURE ALGORITHM OF THE O’ZDST
1092:2009 STANDARD

O’zDSt 1092:2009 is the State Standard of Uzbekistan. The
standard includes two algorithms for creating and verifying an
electronic digital signature. In this article, the first algorithm
of the standard is discussed.

A. Definition

The following definitions are defined in the algorithm:

M– message to be signed, represented in binary code,
arbitrary finite length; p – module, prime number, for software
cryptographic module p < 21023;
q – a prime number that is a factor (prime factor) of p − 1,
where 2254 < q < 2256;
R – a natural number, parameter;
(x, u) – a pair of integers – the private key of the signature
algorithm;
(y, z) – a pair of integers – the public key of the signature
algorithm;
(r, s) – a pair of integers – the signature value of M ;
H(M) – hash function that computes the hash value of M ;
md – mode of signing; for the mode with a session key
md = 1, and for the mode without a session key md = 0.
R1 – an integer number – the control key
y1 – an integer number – the session key

B. Special Operations

X\e (mod p) - the operation of raising the base x to the
power e modulo p with the parameter R. For example, for
e = 41.

x\41(mod p) => x\32+8+1(mod p) =
(((((x\2)\2)\2)\2)\2 ∗ ∗(x\2)\2)\2 ∗ ∗x(mod p).

where x\2(mod p) ≡ x(2 + xR)(mod p).

X ∗ ∗Y (mod p) – the operation of multiplication of two
integer numbers modulo p with parameter R. It is defined as
follows:

X ∗ ∗Y mod p ≡ X + (1 +XR)Y mod p (1)

‘

X\−1 – the operation of the modular inverse of an integer
X modulo p with parameter R. It is defined as follows:

X\−1 ≡ −X (1 +XR)
−1

(mod p) (2)

C. Key Generation

Algorithm 1 uses a one-way function in a group with a
parameter, which is used in multiplication, exponentiation, and
group inversion. Each user of Algorithm 1 has a private key
and a public key:

1) (x, u) - private key numbers, randomly or pseudo-
randomly generated integers satisfying the condition
1 < x, u < q;

2) (y, z) - public key numbers calculated by the formula:

y ≡ g\x(mod p) (3)

z ≡ g\u(mod p) (4)

where g is a private or public parameter, which is an
integer, calculated according to the formula:

g ≡ h(p−1)/q(mod p) (5)

where: h < p – is a natural number satisfying the
condition gω (modp) ≡ 0, ω in the range of values
1, . . . , q if and only if ω = q

D. Sign Process

Input parameters: M,md, x, u,R1

Output: if (md = 0) {r, s}, else {r, s, y1}

Step 1: m = H(M), c = x

Step 2: k = H(m+ (1 +mR)c)

Step 3: if (k = 0) then c = c+ 2 and go to Step 2.

Step 4: T ≡ g\−k(mod p) with parameter R

Step 5: r ≡ m+ (1 +mR)T (mod p)

Step 6: if (r = 0) then k = k + 1(mod p) and go to Step
4.

Step 7: s1 ≡ k − rx(mod q)

Step 8: if (s1 = 0) then k = k+1(mod p) and go to Step
4.

Step 9: s ≡ s1u
−1(mod q)

Step 10: if (md = 0) then return {r, s} as signature values,
else go to Step 11.

Step 11: r1 ≡ R1 + (1 +RR1)r(mod q)

Step 12: if (r1 = 0) then k = k + 1(mod p) and go to
Step 4.

Step 13: x1 ≡ (k − suR1)r
−1
1 (mod q)

Step 14: if (x1 = 0) then k = k + 1(mod p) and go to
Step 4.

Step 15: y1 ≡ gR
\x1

1 (mod p) with parameter RR1.

Step 16: return {r, s, y1} as signature values.

www.ijacsa.thesai.org 570 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

E. Signature Verification Process

Input parameters: M,md, {y, z}, r, s; and y1 if md = 1

Step 1: m = H(M)

Step 2: if L(s) ≤ L(q) and L(r) ≤ L(p) then go to Step
3 else signature is not valid

Step 3: z0 ≡ z\s(mod p) with parameter R

Step 4: r′ ≡ r(mod q)

Step 5: y2 ≡ y\r
′
(mod p) with parameter R

Step 6: z1 ≡ z0 + (1 + z0R)y2(mod p)

Step 7: y3 ≡ z1 + (1 + z1R)r(mod p)

Step 8: if (md = 0) and (m = y3) then signature is valid
else if (md = 0) and (m = y3) then go to Step 9, else if
(m ̸= y3) then signature is not valid;

Step 9: g3 ≡ z1R
−1
1 (mod p)

Step 10: s1 ≡ sR1(mod q)

Step 11: r1 ≡ R1 + (1 +RR1)r
′(mod q)

Step 12: z2 ≡ z +R−1
1 (mod p)

Step 13: y4 ≡ y1(mod p)

Step 14: z3 ≡ z
\s1
2 (mod p) with parameter RR1

Step 15: y5 ≡ y
\r1
4 (mod p) with parameter RR1

Step 16: g4 ≡ z3(1 + z3RR1)y5(mod p)

Step 17: if (g3 = g4) then signature is valid else signature
is not valid

IV. SYSTEM ARCHITECTURE

Applications for working with cryptographic keys use the
key storage provider, for symmetric encryption they use the
cipher provider, for hashing data they use the hash provider,
for signing and verifying the signature they use the signature
provider, etc. In turn, the key storage provider uses the signa-
ture provider to generate, export and import keys, sign data and
verify the signature. To encrypt data with simmetric algorithms
it uses the cipher provider, to compute a hash value of data,
it uses the hash provider. Therefore, a key storage provider
and a custom algorithm provider were developed to integrate
with ADCS. The custom algorithm provider implements three
interfaces: hash interface for algorithm O’zDst 1006:2009,
signature interface for algorithm O’zDst 1092:2009 and cipher
interface for algorithm O’zDst 1005:2009. The architecture of
the developed system consists of four main parts (Fig. ??):
ARH Primitive Provider – the custom algorithm provider, ARH
Key Storage Provider – the key storage provider, Provider
extension – the extension module of provider, PKCS #11 -
a module that implements the functions of the PKCS #11
interface and cryptographic algorithms.

V. MAIN PARAMETERS

The following constants are defined for the algorithms:

“ARH Primitive Provider” – the name of the custom
algorithm provider

“ARH Key Storage Provider” – the name of the key storage
provider

“O’zDSt 1092:2009 Alg1” – the name of the 1st algorithm
of the O’zDst 1092:2009 standard

“O’zDSt 1092:2009 Alg2” – the name of the 2nd algorithm
of the O’zDst 1092:2009 standard

“O’zDSt 1006:2009 Alg1” – the name of the 1st algorithm
of the O’zDst 1006:2009 standard

“O’zDSt 1006:2009 Alg2” – the name of the 2nd algorithm
of the O’zDst 1006:2009 standard

“O’zDSt 1005:2009 Alg1” – the name of the algorithm of
the O’zDst 1005:2009 standard

“O’zDSt 1106:2009 Alg1/1092:2009 Alg1” – the name of
the double algorithms “O’zDSt 1092:2009 Alg1” and “O’zDSt
1106:2009 Alg1”

“O’zDSt 1106:2009 Alg2/1092:2009 Alg2” – the name of
the double algorithms “O’zDSt 1092:2009 Alg2” and “O’zDSt
1106:2009 Alg2”

1.2.860.3.15.1.1.1.1 – the OID of the 1st algorithm of the
O’zDst 1092:2009 standard for sign

1.2.860.3.15.1.1.1.1.1 – the OID of test parameters of the
first algorithm of the O’zDst 1092:2009 standard for sign

1.2.860.3.15.1.1.2.1 – the OID of the 2nd algorithm of the
O’zDst 1092:2009 standard for sign

1.2.860.3.15.1.1.2.1.1 – the OID of test parameters of the
second algorithm of the O’zDst 1092:2009 standard for sign

1.2.860.3.15.1.3.1 – the OID of the 1st algorithm of the
O’zDst 1006:2009 standard

1.2.860.3.15.1.3.1.1 – the OID of test parameters of the
first algorithm of the O’zDst 1006:2009

1.2.860.3.15.1.3.2 – the OID of the 2nd algorithm of the
O’zDst 1006:2009 standard

1.2.860.3.15.1.3.2.1 – the OID of test parameters of the
second algorithm of the O’zDst 1006:2009

1.2.860.3.15.1.1.1.2.2.1 the OID of the double algorithm
“O’zDSt 1106:2009 Alg1/1092:2009 Alg1”

1.2.860.3.15.1.1.2.2.2.2 the OID of the double algorithm
“O’zDSt 1106:2009 Alg2/1092:2009 Alg2”

The OIDs of algorithms and parameters are registered with
the operating system.

VI. IMPLEMENTING KEY STORAGE PROVIDER
INTERFACE FUNCTIONS

The following functions are implemented according to the
requirement for the key storage provider interface:

www.ijacsa.thesai.org 571 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

Fig. 1. The System Architecture.

• GetKeyStorageInterface function

• Key storage provider interface functions:
◦ OpenProvider
◦ OpenKey
◦ CreatePersistedKey
◦ GetProviderProperty
◦ GetKeyProperty
◦ SetProviderProperty
◦ SetKeyProperty
◦ FinalizeKey
◦ DeleteKey
◦ FreeProvider
◦ FreeKey
◦ FreeBuffer
◦ Encrypt
◦ Decrypt
◦ IsAlgSupported
◦ EnumAlgorithms
◦ EnumKeys
◦ ImportKey
◦ ExportKey
◦ SignHash
◦ VerifySignature
◦ PromptUser
◦ NotifyChangeKey
◦ SecretAgreement
◦ DeriveKey
◦ FreeSecret
◦ KeyDerivation

The GetKeyStorageInterface function is used by the CNG
router to get the address of the Key storage provider in-
terface functions. The function takes the name of the key
storage provider as an input parameter. An object of the
NCRYPT KEY STORAGE FUNCTION TABLE structure is
returned as an output parameter, which stores the addresses of
the key storage provider interface functions. Later, the GNG
router uses it to call interface functions of the Key storage
provider.

The OpenProvider function is called by the CNG router
when an application establishes a connection to the key storage
provider. The function takes the name of the key storage
provider as an input parameter and returns the handle of the
provider. This handle serves as an identifier for the current
connection. Also, this handle is used as an input parameter in
many interface functions. The function initializes a provider
object of type ALPKSP PROVIDER and returns provider ob-
ject addresses as handle of the provider.

ALPKSP PROVIDER struct:

t y p e d e f s t r u c t ALPKSP PROVIDER
{

ALP OBJECT HEADER Header ;
/ / t h e s i z e o f t h e o b j e c t
/ / and magic number

DWORD dwFlags ;
LPWSTR pszName ;
/ / t h e name o f t h e p r o v i d e r

BCRYPT ALG HANDLE hAlgor i thm ;

www.ijacsa.thesai.org 572 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

/ / t h e ha nd l e o f t h e
/ / ARH Key S t o r a g e P r o v i d e r

LPWSTR p s z C o n t e x t ;
/ / c o n t e x t

} ALPKSP PROVIDER
t y p e d e f s t r u c t ALP OBJECT HEADER
{

DWORD cbLength ;
/ / t h e s i z e o f t h e o b j e c t

DWORD dwMagic ;
/ / magic number

}
ALP OBJECT HEADER

The CreatePersistedKey function is called by the CNG
router when generation of a key pair is required. It takes
as input parameters the handle of the provider, the name
of the algorithm, the name of the key, the type of key
{ AT KEYEXCHANGE the key is a key exchange key,
AT SIGNATURE the key is a signature key, 0}, as well as a
flag indicating the key of the current user or the local computer.
If the key was created for the current user, then the user who
created the key can use this key. In the case of a local computer,
the key can be used by all users of the local computer. This
method is often used in service applications. The function
initializes a key object of type ALPKSP KEY. The function
will not generate key pair, it starts the key generation process
of the key pair. Typically, after calling the CreatePersistedKey
function, the SetKeyProperty function is used to specify the
length of the key, and the value of other parameters. The key
generation process ends with a call to the FinalizeKey function.
To generate the key pair, the CreatePersistedKey function uses
the ARH Primitive Provider through the signature interface
and calls the GenerateKeyPair function.

Syntax of the ALPKSP KEY struct:

t y p e d e f s t r u c t ALPKSP KEY
{

ALP OBJECT HEADER Header ;
PALPKSP PROVIDER hAlgo r i tm ;
DWORD dwKeyBitLen ;
BOOL i s F i n i s h e d ;
/ / whe ther t h e key i s f i n a l i z e d

BCRYPT KEY HANDLE hPubl icKey ;
/ / t h e ha nd l e o f p u b l i c key

BCRYPT KEY HANDLE h P r i v a t e K e y ;
/ / t h e ha nd l e o f p r i v a t e key

DWORD d w E x p o r t P o l i c y ;
/ / t h e e x p o r t p o l i c y f l a g

DWORD dwFlags ;
/ / {NCRYPT MACHINE KEY FLAG ,
/ / NCRYPT OVERWRITE KEY FLAG}

LPWSTR pszKeyName ;
/ / t h e name o f t h e key (key f i l e)

DWORD dwKeyUsagePolicy ;
/ / t h e key usage p o l i c y

DWORD dwLegacyKeySpec ;
/ / t h e t y p e o f t h e key
/ / {AT KEYEXCHANGE , AT SIGNATURE , 0}
/ / e n c r y p t e d p r i v a t e key b lob
PBYTE p b P r i v a t e K e y ;
DWORD c b P r i v a t e K e y ;

/ / hash v a l u e o f p i n
PBYTE pbPinHash ;
DWORD cbPinHash ;
/ / ha nd l e t o c r y p t o g r a p h y
/ / p r o v i d e r s needed t o per form
/ / o p e r a t i o n s w i t h t h e key .

BCRYPT ALG HANDLE h B C r y p t P r o v i d e r ;
/ / s e c u r i t y d e s c r i p t o r t o be
/ / s e t on t h e p r i v a t e key f i l e .

DWORD d w S e c u r i t y F l a g s ;
PBYTE p b S e c u r i t y D e s c r ;
DWORD c b S e c u r i t y D e s c r ;
NCRYPT UI POLICY BLOB * p k e y U I P o l i c y ;
LIST ENTRY P r o p e r t y L i s t ;
/ / l i s t o f p r o p e r t i e s .

} ALPKSP KEY ;

The FinalizeKey function is called by the CNG router
when an application needs to complete the key pair generation
process. The function takes as input parameters the handle of
the provider, the handle of the key. This function sequentially
calls ARH Primitive Provider signature interface functions
such as FinalizeKeyPair and ExportKey. The function encrypts
the key blob and stores it on disk. If a pin code is specified,
then the key is encrypted using the formula (6):

Ke = E(Kp,Kb) (6)

Kp – the encryption key, Kb – the generated private key,
E – the O’zDst 1105:2009 encryption algorithm.

The encryption key Kp calculated using the formula (7):

Kp = H(H(H(pin))) (7)

pin – the pin code value, H – the O’zDst 1106:2009 hash
function.

If the pin code is not specified, then the private key is
encrypted using the CryptProtectData function.

The “system” and “hidden” attributes are set for the key
file. If the key is applied to the local computer, full permission
on the key file is assigned to the System account and the
Administrators group, otherwise, to the current user account.

The GetProviderProperty function is used by the CNG
router when an application needs to determine the value of
the Key storage provider properties.

The GetKeyProperty function is used by the CNG router
when an application needs to determine the value of the key
properties. The function takes the handle of the key, property
name as input parameters and returns the attribute value as an
output parameter.

The SetProviderProperty function is used by the CNG
router when an application needs to set the value of the Key
storage provider properties.

The SetKeyProperty function is used by the CNG router
when the value of the key attributes needs to be set. The
function accepts the handle of the key, the attribute name, the
new value of the attribute as input parameters.

www.ijacsa.thesai.org 573 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

The OpenKey function is called by the CNG router when
an application opens an existing key. The function accepts as
input parameters the handle of the provider, the key name, the
key type, a flag indicating whether the key is for the current
user or the local computer. The function initializes the key
object of the ALPKSP KEY type from the key file.

The DeleteKey function takes the handle of the key as an
input parameter, deletes the key file from persistent storage,
and also destroys the key object.

The FreeProvider function is called by the CNG router
when an application closes the current connection to the
key storage provider. The function takes the handle of the
provider as an input parameter, frees the memory occupied
by the provider object, which was created when calling the
OpenProvider function. It closes the session with the pkcs11
module.

The FreeKey function takes the handle of the key as an
input parameter and destroys the key object.

The FreeBuffer function takes a buffer address as an input
parameter and frees memory.

The Encrypt function encrypts a block of data. The function
uses the ARH Primitive Provider.

The Decrypt function decrypts the data block. The function
uses the ARH Primitive Provider.

The ImportKey function imports the key that is exported
by the ExportKey function. The function takes a key blob, a
key blob type {BCRYPT PUBLIC KEY BLOB – public key
blob, BCRYPT PRIVATE KEY BLOB – private key blob} as
input parameters, and returns the handle of the key. If the key
blob type is BCRYPT PRIVATE KEY BLOB, then it saves the
key to a file. The function initializes a key object of type
ALPKSP KEY.

The ExportKey function exports the key. The function takes
as input parameters, the handle of the key, the key blob
type, and returns the key blob through the pbOutput output
parameter. The public key blob consists of the key identifier,
key version, OID of the key, algorithm parameter values, and
public key parameters. The private key blob consists of the key
identifier, key version, OID of the key, algorithm parameter
values, public/private key.

The SignHash function is used by the CNG router when an
application needs to sign data. The function takes the handle
of the key, a hash value as input parameters, and returns
the generated signature. The function uses the ARH Primitive
Provider.

The VerifySignature function is called by the CNG router
when the signature needs to be verified. The function takes
as input parameters the handle of the key, a hash value, the
signature to be verified, and returns the verification result. The
function uses the ARH Primitive Provider.

To integrate CNG providers with Windows Active Direc-
tory Certificate Services, they must be registered with the CNG
router.

Therefore, the ARH Primitive Provider is registered to the
hash, signature and cipher interface.

The ARH Key Storage Provider is registered to the key
storage provider interface.

VII. IMPLEMENTATION OF INTEGRATION FUNCTIONS

The Provider extension is developed to work with digital
certificates. It implements the following callback functions:

The function
PFN CRYPT EXPORT PUBLIC KEY INFO EX2 FUNC
encodes and exports the public key blob. The function takes the
handle of the key, an encoding type {X509 ASN ENCODING,
PKCS 7 ASN ENCODING}, the public key as input
parameters, and returns an object of type
CERT PUBLIC KEY INFO, which contains information
about the public key. The function uses the ARH Key Storage
Provider.

The function
PFN IMPORT PUBLIC KEY INFO EX2 FUNC decodes
the public key algorithm identifier and imports the key. The
function uses the ARH Primitive Provider.

The function
PFN CRYPT SIGN AND ENCODE HASH FUNC signs and
encodes the hash value. The function takes the handle of the
key, encoding type, signature algorithm identifier, signature
parameters, OID of the double algorithm, hash algorithm iden-
tifier, hash value as input parameters and returns the created
signature. The function uses the ARH Primitive Provider.

The function
PFN CRYPT VERIFY ENCODED SIGNATURE FUNC de-
codes the signature and verifies the signature. The function
takes as input parameters the type of encoding, the address
of an object of type CERT PUBLIC KEY INFO, which con-
tains the public key, the OID of the signature algorithm, the
identifier of the signature algorithm, signature parameters, the
identifier of the hash algorithm, hash value, the signature to be
verified, and returns the verification result. The function uses
the ARH Primitive Provider.

These callback functions are called by the operating system
to decode the algorithm OID fields in the certificate and to
validate the certificate.

The provider extension is registered in the system using the
CryptRegisterOIDInfo function to encode and decode the data
of the digital certificate generated using the O’zDst 1092:2009
algorithm and O’zDst 1106:2009 hash algorithm.

VIII. RESULT AND DISCUSSION

After registering CNG providers and provider extension,
the Windows ADCS is installed and configured to work
with the O’zDst 1092:2009 signature algorithm and O’zDst
1106:2009 hash algorithm.

Registered algorithm OIDs are located in the registry under
the path HKEY LOCAL MACHINE\SOFTWARE\
Microsoft\Cryptography\OID\EncodingType 0\
CryptDllFindOIDInfo.

A Windows registry key is created for each algorithm OID.
For example: [HKEY LOCAL MACHINE\SOFTWARE\
Microsoft\Cryptography\OID\EncodingType 0\

www.ijacsa.thesai.org 574 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

CryptDllFindOIDInfo\1.2.860.3.15.1.1.1.2.2.1!4]
“Name” = “O’zDSt 1106:2009 Alg1/1092:2009 Alg1”
“Algid” = dword:ffffffff
“ExtraInfo” = hex:fe,ff,ff,ff
“Flags” = dword:00000001
“CNGAlgid” = “O’zDSt 1106:2009 Alg1”
“CNGExtraAlgid” = “O’zDSt 1092:2009 Alg1”

This registry key is created for the double algorithm(hash
and signature algorithm) used in certificates. The key name
includes the OID of the algorithm.

The registered provider extension functions are located in
the registry under the following paths, respectively:

1) HKEY LOCAL MACHINE\SOFTWARE\Microsoft\
Cryptography\OID\EncodingType 1\
CryptDllExportPublicKeyInfoEx2;

2) HKEY LOCAL MACHINE\SOFTWARE\Microsoft\
Cryptography\OID\EncodingType 1\
CryptDllImportPublicKeyInfoEx2

3) HKEY LOCAL MACHINE\SOFTWARE\Microsoft\
Cryptography\OID\EncodingType 1\
CryptDllSignAndEncodeHash

4) HKEY LOCAL MACHINE\SOFTWARE\Microsoft\
Cryptography\OID\EncodingType 1\
CryptDllVerifyEncodedSignature

For each OID of the signature algorithm and dual
algorithm, a key is created in the registry under the paths
listed above. For example: [HKEY LOCAL MACHINE\
SOFTWARE\Microsoft\Cryptography\OID\EncodingType
1\CryptDllVerifyEncodedSignature\1.2.860.3.15.1.1.1.2.2.1]
“Dll” = “C:\Program Files\ARHCrypto\ARHCNG\provext64.dll”
“FuncName” = “ARHVerifyEncodedSignature”.

“ARHVerifyEncodedSignature” is the name of the
PFN CRYPT VERIFY ENCODED SIGNATURE FUNC
function implemented in the provider extension.

Registered providers are in the path
HKEY LOCAL MACHINE\SYSTEM\ControlSet001\Control
\Cryptography\Providers.

The comparison results by supported algorithms of Mi-
crosoft CNG providers with the created CNG providers are
shown in Table II and Table III.

TABLE II. THE COMPARISON RESULTS OF MICROSOFT SOFTWARE KEY
STORAGE PROVIDER AND ARH KEY STORAGE PROVIDER

Functions
Microsoft

Software Key
Storage Provider

ARH Key Storage
Provider

Generate, export/import, use
and delete of key pairs of
RSA, DSA and ECDSA

algorithms

+ -

Generate, export/import, use
and delete of key pairs of

O’zDSt 1092:2009 algorithm
- +

PIN based Authentication - +
Machine key type support + +

User key type support + +
Kernel mode(using from

drivers) + -

User mode + +

TABLE III. THE COMPARISON RESULTS OF MICROSOFT PRIMITIVE
PROVIDER AND ARH PRIMITIVE PROVIDER

Functions Microsoft
Primitive Provider

ARH Primitive
Provider

Hashing with SHA1,
SHA256, SHA384, SHA512,
MD2, MD4, MD5 algorithms

+ -

signing and signature
verification with RSA, DSA

and ECDSA algorithms
+ -

symmetric encryption and
decryption with AES, DES,

3DES, DESX, RC2 and RC4
algorithms

+ -

asymmetric encryption and
decryption with RSA

algorithm
+ -

key exchange with DH and
ECDH algorithms + -

random number generation + +
signing and signature

verification with O’zDSt
1092:2009 algorithm

- +

hashing with O’zDSt
1106:2009 algorithm - +

symmetric encryption and
decryption with O’zDSt

1105:2009 algorithm
- +

Kernel mode(using from
drivers) + -

User mode + +

CNG providers, developed by Russian companies, work
with their national algorithms, they also do not support O’zDSt
1092:2009, O’zDSt 1105:2009 and O’zDSt 1106:2009 algo-
rithms.

A new certificate request has been created to test the
system. Then a certificate is issued on request through ADCS.

The certificate content:

—–BEGIN CERTIFICATE—–
MIIDjDCCAtOgAwIBAgITLwAAAAc1JEX561oNaAAAAA
AABzAPBgsqhlwDDwEBAQICAQUAMBAxDjAMBgNVBA
MTBWFscENBMB4XDTIwMDgyMjExMTc1NloXDTIxMDg
yMjExMjc1NlowQTELMAkGA1UEBhMCVVoxDTALBgNV
BAoTBE5VVXoxIzAhBgkqhkiG9w0BCQEWFG1yLnJ1aGls
bG9AZ21haWwuY29tMIIBMDAlBgkqhlwDDwEBAQEwGA
YKKoZcAw8BAQEBAQYKKoZcAw8BAwEBAQOCAQUAB
IIBABQyfDPMWddMPpIIuRPC22IxhjlUw3ciPb2ugMQUsF8
ooshYXQyzkkL00BI8LQwmTEWcQJdGihZC0CCM+0KUYS
4A3aJbpjhnSWmkmE+v9gTfVUgUzdkA2uDcN4njUFJrSN7jz
/Fyo+IZutDze732QaIxC3ENwOkDtxNOsN/b//v/C6b7K/T0qsO
3LlJ1eH5VNF+rUdA9Ya9bRaLWzWE5UJGHz1NYJpSqld0R
8u6ft5Oo/lFPWWJH/S1qc1ku/tMw693Z8pVC4EzPzfJAyIsEO
V9O1KOkSKNJSI3wrE26pwZ8KDGkkWkC6WBwOxWMsu
IlbyHziNDuGdN6tyAUcBzbzbOjgfwwgfkwDgYDVR0PAQH/
BAQDAgSQMB0GA1UdDgQWBBREVPgsiLr5lss6Y5+uOR
w/An/jPzAfBgNVHSMEGDAWgBRBN7Hcr4RnJBtxH/f0i9d/
riFMTzA+BgNVHR8ENzA1MDOgMaAvhi1maWxlOi8vLy9
XSU4tN09FUkhLTFJDOUEvQ2VydEVucm9sbC9hbHBDQS
5jcmwwWQYIKwYBBQUHAQEETTBLMEkGCCsGAQUF
BzAChj1maWxlOi8vLy9XSU4tN09FUkhLTFJDOUEvQ2Vy
dEVucm9sbC9XSU4tN09FUkhLTFJDOUFfYWxwQ0EuY3J
0MAwGA1UdEwEB/wQCMAAwDwYLKoZcAw8BAQECAg
EFAAOBoQAhs9NcO8eECJIE8wmHlsNwL0HPB1aXpUolgk
NmN0mF8wpqFFRi90YREVsC3Kg/lTDy79yYNMZ8yRQ3Te
tE0Aj+w9n8T7THf9okYPDYE6xl4N+K4DQi+YulGyuPpzpLQ

www.ijacsa.thesai.org 575 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

Remr35snqXQj92KTJ8cgkkLjde5avD9V0eGVKKPNVPd4u5/
9wQPAoxn9sIiS1NuOwliwuyunVaVd6JgcyFC7Syq
—–END CERTIFICATE—–

By default Windows cannot verify the integrity of the
certificate and cannot recognize the OID algorithms (Fig. ??,
Fig. ??).

Fig. 2. Unrecognized Certificate.

Fig. 3. Unrecognized Certificate Details.

This certificate is recognized by Windows that has both the
ARH Primitive Provider and the ARH Key Storage Provider
installed (Fig. ??, Fig. ??).

Fig. 4. Certificate Details.

Fig. 5. Certification Path.

IX. CONCLUSION

The architecture of the custom algorithm provider and
key storage provider was provided. The description of the
key storage provider interface functions was discussed. The
implementation of the key storage provider interface func-
tions was presented. The ARH Primitive Provider has been
developed which implements the signature interface, the hash
interface and the cipher interface, and also supports the O’zDst
1105:2009, O’zDst 1106:2009 and O’zDst 1092:2009 algo-
rithms. The ARH Key Storage Provider has been developed,
which implements the key storage provider interface. The
ARH Key Storage Provider provides secure storage, use,
export and import of national signature algorithm keys. The

www.ijacsa.thesai.org 576 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

ARH Key Storage Provider supports storage, export/import of
signature keys in PKCS#7 and PKCS#8 formats, as well as
generation of PKCS#10 requests for a digital certificate via
the CertEnroll API. The description and implementation of
the ADCS integration functions were provided.

The developed system solves the problem of not rec-
ognizing digital certificates generated based on the O’zDst
1106:2009 and O’zDst 1092:2009 algorithms. The CNG
providers included in Windows by default do not address this
issue.

The solution to the problem allows users to verify the
integrity of the certificate generated based on the O’zDst
1106:2009 and O’zDst 1092:2009 algorithms. This, in turn,
allows users to verify the integrity of data and documents
signed with the private key of the certificate.

The methods proposed here can be used to apply other
signature algorithms that are not supported by the Windows
by default.

In addition, these CNG providers provide the ability to
use these algorithms in existing information systems that work
with other CNG providers. Because they already work with the
CNG API to perform cryptographic operations. Sometimes this
is achieved with just a few system settings, as a result, it is
very easy to apply different algorithms in the system without
additional costs and resources.

ACKNOWLEDGMENT

I would like to acknowledge the reviewers for their valuable
feedback.

REFERENCES

[1] Singh, Abhishek. Identifying Malicious Code Through Reverse Engineer-
ing. 2009, 10.1007/978-0-387-89468-3.

[2] B. Kaliski. RFC2315: PKCS #7: Cryptographic Message Syntax Version
1.5. RFC Editor, 1998, USA.

[3] Kaliski, B. Public-Key Cryptography Standards (PKCS) #8: Private-Key
Information Syntax Specification Version 1.2. RFC, 5208, 2008.

[4] M. Nystrom and B. Kaliski. RFC2986: PKCS #10: Certification Request
Syntax Specification Version 1.7. RFC Editor, 2000, USA.

[5] PKCS #11 Cryptographic Token Interface Base Specification Version
2.40, Committee Specification 01. OASIS Open (September 2014),
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/cs01/pkcs11-base-
v2.40-cs01.html

[6] K. Moriarty, M. Nystrom, S. Parkinson, A. Rusch, and M. Scott, “PKCS
#12: Personal Information Exchange Syntax v1.1” RFC 7292, 2014.

[7] Johannes A. Buchmann, Evangelos Karatsiolis, and Alexander Wies-
maier. Introduction to Public Key Infrastructures. Springer Publishing
Company, Incorporated. 2013.

[8] ITU-T Recommendation X.509 ”Information technology - Open Systems
Interconnection - The Directory: Public-key and attribute certificate
frameworks ”. 2000.

[9] Qi, N., Wei, W., Zhang, J., Wang, W., Zhao, J., Li, J., Hu, J. Analysis
and research of the RSA algorithm. Information Technology Journal,
vol.12(9), pp. 1818–1824, 2013, 10.3923/itj.2013.1818.1824.

[10] Diffie, W., Diffie, W., & Hellman, M. E. New Directions in Cryptogra-
phy. IEEE Transactions on Information Theory, vol.22(6), pp. 644–654,
1976, 10.1109/TIT.1976.1055638.

[11] Maurer, U.M., Wolf, S. The Diffie–Hellman Protocol. Designs, Codes
and Cryptography 19, pp. 147–171, 2000, 10.1023/A:1008302122286.

[12] Wei, W., Chen, J., Li, D., & Zhang, B. Research on the Bit Security
of Elliptic Curve Diffie-Hellman. Journal of Electronics and Information
Technology, vol.42(8), pp. 1820–1827, 2020, 10.11999/JEIT2 190845.

[13] M. Al-Zubaidie, Z. Zhang, J. Zhang, Efficient and secure ECDSA
algorithm and its applications: A survey. International Journal of Commu-
nication Networks and Information Security. vol.11(1), pp. 7–35, 2019.

[14] Sean Turner and Russ Housley. Implementing Email and Security
Tokens: Current Standards, Tools, and Practices. Wiley Publishing. 2008.

[15] Y. Ahmad. “A study on algorithms supported by CNG of Windows
operating system” International Journal of Modern Engineering Research.
vol.2(1) pp. 276–280, 2012.

[16] Z. Lina. “Design and implementation of KSP on the next generation
cryptography API” Physics Procedia, International Conference on Medi-
cal Physics and Biomedical Engineering (ICMPBE2012). pp. 1640–1646,
2012.

[17] K. Lee, Y. Lee, J. Park, K. Yim, and I. You, “Security issues on
the CNG cryptography library (Cryptography API: Next generation)” in
2013 Seventh International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing. pp. 709–713, 2013.

[18] K. Lee, H. Lee, Y. Lee, and K. Yim, “Analysis on the key storage
mechanism of the CNG library” in 2016 10th International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS), pp. 499–502, 2016.

[19] K. Lee, I. You, and K. Yim, “Vulnerability analysis on the CNG crypto
library” in 2015 9th International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing, pp. 221–224, 2015.

[20] Khalique, A., Singh, K., & Sood, S. “Implementation of elliptic curve
digital signature algorithm” International Journal of Computer Applica-
tions. vol.2(2) 2010.

[21] A. Abidi, B. Bouallegue, and F. Kahri, “Implementation of elliptic
curve digital signature algorithm (ECDSA)” in 2014 Global Summit on
Computer Information Technology (GSCIT), pp. 1–6, 2014.

[22] S. F. Temitope O.S. Olorunfemi, B.K. Alese and O. Fajuyigbe. “Im-
plementation of elliptic curve digital signature algorithms” Journal of
Software Engineering, vol.1(1), pp. 1–12, 2007. 10.3923/jse.2007.1.12.

[23] B. Chen, W. Wu, and Y. Zhang, “The design and implementation of
digital signature system based on elliptic curve” in Proceedings of the
2012 International Conference on Cybernetics and Informatics, edited by
S. Zhong (Springer New York, New York, NY, 2014) pp. 2041–2047.

[24] M.M. Aripov, R. H. Alaev. “Research of the application of the
new cryptographic algorithms: Applying the cipher algorithm O’zDSt
1105:2009 for MS Office document encryption” in Proceedings of
the 5th International Conference on Engineering and MIS, ICEMIS’19
(Association for Computing Machinery, New York, NY, USA, 2019).
10.1145/3330431.3330434

[25] M. Nurullaev and R. D. Aloev, “Software, algorithms and methods of
data encryption based on national standards,” IIUM Engineering Journal,
vol.21(1), pp. 142–166, 2020. 10.31436/iiumej.v21i1.1179

www.ijacsa.thesai.org 577 | P a g e

