
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

A Randomized Hyperparameter Tuning of Adaptive
Moment Estimation Optimizer of Binary

Tree-Structured LSTM

Ruo Ando1
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo
101-8430 Japan

Yoshiyasu Takefuji2
Musashino University

Musashino University Faculty of Data Science
3-3-3 Ariake, Koto-Ku, Tokyo 1358181, JAPAN

Abstract—Adam (Adaptive Moment Estimation) is one of
the promising techniques for parameter optimization of deep
learning. Because Adam is an adaptive learning rate method and
easier to use than Gradient Descent. In this paper, we propose a
novel randomized search method for Adam with randomizing
parameters of beta1 and beta2. Random noise generated by
normal distribution is added to the parameters of beta1 and
beta2 every step of updating function is called. In the experiment,
we have implemented binary tree-structured LSTM and adam
optimizer function. It turned out that in the best case, randomized
hyperparameter tuning with beta1 ranging from 0.88 to 0.92 and
beta2 ranging from 0.9980 to 0.9999 is 3.81 times faster than the
fixed parameter with beta1 = 0.999 and beta2 = 0.9. Our method is
optimization algorithm independent and therefore performs well
in using other algorithms such as NAG, AdaGrad, and RMSProp.

Keywords—Adaptive moment estimation; gradient descent; tree-
structured LSTM; hyperparameter tuning

I. INTRODUCTION

Optimization is involved in many deep learning algorithms.
Analytical optimization is the basis of design algorithms.
Neural network training is the most challenging problem of
all the many optimization fields.

Among the hyperparameters to tune, learning rate is one
of the most difficult because it drastically affects model
performance. In general, the momentum algorithm can handle
and mitigate the problem of being highly sensitive to some
directions in parameter space. Adopting a separate learning
rate for each parameter and these learning rates make sense
about the directions of sensitivity.

Adaptive optimization is the algorithm to adapt the learning
rate of model parameters based on many incremental or mini-
batch based methods. Naturally, the choice of which algorithm
to use is an unavoidable question. However, the algorithm
selection much depend on the user’s familiarity. In this paper,
we will follow the assumptions below.

Hypothesis 1. There is no theorem or algorithm to determine
which adaptive optimization is the best.

Then, as long as the optimal algorithm cannot be deter-
mined, we need to invent a method that can be commonly
used to refine any algorithm. Parameter randomization is the

promising approach to develop a speeding up procedure which
is the adaptive optimization independent.

Hypothesis 2. According to Hypothesis 1, no optimization
algorithms will be able to prove their own superiority over
another algorithm.

Concerning the solution for Hypothesis 2, we propose the
novel method concerning randomized hyperparameter tuning
of adaptive moment estimation optimizer. The thrust of this
paper is that the proposed method is adaptive optimization
independent.

This paper is organized as follows. In Section II, three basic
and popular algorithms are introduced: AdaGrad, RMSProp,
and Adam. In Section III of related work, we introduce the
related works of recurrent neural networks, recursive neural
networks, LSTM, and adaptive optimization algorithms. In
Section IV, we discuss the proposed method based on the
binary tree of LSTM, linear activation unit, and constrained
breadth-first search. In Section V, we discuss the research
methodology for improving backpropagation, recurrent neural
networks, and adaptive optimization algorithm. Experimental
results are shown in Section VI. Our randomized hyperparam-
eter tuning method is applied for Adam. In Section VII, we
provide insights into the current situation of the research efforts
of hyperparameter optimization. Then we conclude our paper
in Section VIII.

II. THEORETICAL BACKGROUND

A. AdaGrad

AdaGrad [18] algorithm adopting the learning rates with
gradually changing them in proportion to the square root of
the sum of all the historical squared values of the gradient.

s← s+▽θJ(θ) (1)
θ ← θ − η▽θ J(θ)⊘

√
s+ ϵ (2)

In equation (1), the square of gradients is accumulated
into the vector s. Each Si calculates the squares of the partial
derivative of the cost function corresponding to the point to the
parameter θi. In the case that the cost function is steep along
the ith dimension, sı will get larger and larger at each iteration.

www.ijacsa.thesai.org 623 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

Parameter sı will get larger and larger at each iteration as long
as the cost function is steep along the ith dimension,

Equation (2) is almost identical to one of Gradient Descent.
However, there is one big difference. That is, the gradient
vector is scaled down by a factor of

√
s+ ϵ.

AdaGrad is called an adaptive learning rate because Ada-
Grad decays the learning rate so that the learning rate for steep
dimensions is faster than gentler slopes. The parameters of
AdaGrad decrease rapidly in their learning rate corresponding
to the largest partial derivative of the loss. On the other hand,
the parameters decrease in their learning rate with the small
partial derivatives. As a result, if the learning process has
the more moderately directions of parameter space, the effect
whole becomes greater.

B. RMSProp

RMSProp [19] algorithm improves AdaGrad to perform
better in the nonconvex setting. AdaGrad is designed to
converge with changing the gradient accumulation into an ex-
ponentially weighted moving average. Generally, a nonconvex
function is used to train a neural network. The learning trajec-
tory eventually reaches a region that is a locally convex bowl
after the trajectory goes through many different structures.
RMSProp has advantages compared with AdaGrad in the point
that AdaGrad slows down rapidly and consequently finished
never converging the global optimum.

For doing this, the RMSProp accumulates only the gradi-
ents from the most recent iterations.

s← βs+ (1− β)▽θ J(θ)⊗▽θJ(θ) (3)
θ ← θ − η▽θ J(θ)⊘

√
s+ ϵ (4)

In equation (3), exponential decay is used. The decay rate
β is typically set to 0.9. Except for very simple problems, this
optimizer almost always performs much better than AdaGrad.
In fact, it was the preferred optimization algorithm of many
researchers until Adam algorithm came around.

C. Adam

Adam [20] is an adaptive learning rate optimization al-
gorithm. The name Adam derives from the phase Adaptive
moments. Adam can be described as a variant on the hybrid
of momentum and RMSProp with some important distinctions.
Adam incorporates momentum directly as an estimation value
of the first-order moment. The first-order moment is called
as exponential weighting. Adam adopts momentum and bias
corrections. Momentum is used in combination with rescaling,
which have a clear theoretical motivation. Bias corrections are
used to estimate both first-order moments and second-order
moments to account for their initialization at the origin.

III. RELATED WORK

Recurrent neural networks [1], or RNNs are feedforward
neural networks for processing sequential data by extending
with incorporating edges that span adjacent time steps. In
general, RNNs suffer the difficulty of training by gradient-
based optimization procedures. Local numerical optimization

includes stochastic gradient descent or second-order methods,
which causes the exploding and the vanishing gradient prob-
lems [13][14][15]. Werbos et al. [11] propose the backprop-
agation through time (BPTT), which is a training algorithm
for RNN. BPTT is derived from the popular backpropagation
training algorithm used in MLPN training [12]. Derivatives of
errors are computed with backpropagation over structures [6].

Recursive neural networks are yet another representation of
the generalization of recurrent networks by using a different
form of computation graph. The computation graph adopted
in recursive neural networks is a deep tree instead of the
chain-like structure of RNNs. Pollack [2] proposes recursive
neural networks. Bottou [3] discuss the potential use of the
recursive neural network in learning to reason. In [4] and [5],
recursive neural networks are more effective in performing
on different problems such as semantic analysis in natural
language processing and image segmentation.

There is a long line of research efforts on extending
the standard LSTM [7] in order to adopt more sophisticated
structures. Tai et al. [8] and Zhu et al. [9] tree-structured
LSTMs extended from chain-like structured LSTMs by adopt-
ing branching factors. They demonstrated that such extensions
outperform competitive LSTM baselines on several tasks such
as semantic relatedness prediction and sentiment classification.
Furthermore, Li et al. [10] show the effectiveness of tree-
structured LSTM on various tasks and situations in which tree-
like structure is effective.

Boris Polyak proposes Momentum optimization with ter-
minal velocity [21]. In 1983, Yurii Nesterov proposes Nesterov
Momentum Optimization (NAG) [22]. NAG adopts the gradi-
ent of the cost function which is not measured in the local
position but slightly ahead in the direction of the momentum.
RMSProp [19] is an improved version of AdaGrad. RMSProp
extends AdaGrad by accumulating the gradients from the most
recent iterations. Adam [20] is based on the idea of both
Momentum optimization and RMSProp. Adam keeps track of
an exponentially decaying average of past gradients and an
exponentially decaying average of past squared gradients.

Santa (Stochastic Annealing Thermostats with Adaptive
Momentum) [23] is an adaptation method of Adam and
RMSprop by leveraging MCMC (Markov Chain Monte Carlo)
methods. In GD by GD (Gradient Descent by Gradient De-
scent) [24] is based on the idea that the optimization algo-
rithm is a learning problem, and the optimization structure is
determined by learning. They also propose LSTM optimizer.

In Adam, RMSProp, exponential decay by exponential
moving average was adopted. However, it has been reported
that when the gradient in that mini-batch disappears imme-
diately due to exponential decay, consequently, Adam and
RMSProp does not converge to the optimal solution. Therefore,
AMSGrad [25] is an improved version of Adam that prevents
important gradient information from disappearing immediately.

In Adam, the adaptive learning rate is efficient for fast
learning, but even after learning has progressed, the validation
error is not well converged due to high volatility in the learning
rate. On the other hand, in SGD, which uses a fixed learning
rate, the final validation error can be reduced, but it takes too
much time to get to that point. Concerning these drawbacks,
AdaBound and AMSBound were proposed as optimization

www.ijacsa.thesai.org 624 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

Fig. 1. True-structured LSTM with Arbitrary Branching Factor.

methods as the combination Adam in the beginning and like
SGD, in the end, [26].

As we have introduced in this section, adaptive optimiza-
tion algorithms are constantly evolving, but there is still no
theorem or algorithm to judge which algorithm is the best.
Even one of the latest algorithm of [26] has not proven to be
superior to everything else.

IV. PROPOSAL MODEL AND METHOD

A. Binary Tree of LSTM

The Tree-LSTM is a generalization of long short-term
memory (LSTM) networks to tree-structured network topolo-
gies, introduced in [9]. Here, the core design concept intro-
duces syntactic information for language tasks by extending
the chain-structured LSTM to a tree-structured LSTM.

Fig. 1 shows the comparison of two kinds of LSTM
network structures. The upper side of Fig. 1 shows a chain-
structured LSTM network. The lower side of Fig. 1 depicts
a tree-structured LSTM network with an arbitrary branching
factor. It is shown that Tree-structured LSTM has a good
performance in the case that the networks cope with the com-
bination of words and phrases in natural language processing
[8].

Recursion is a fundamental process in any different modal-
ities. It is associated with many phases. A recursive procedure
and hierarchical structure is formed commonly indifferent
modalities. Also, recursion is a core technique for traversing
the binary tree. Fig. 2 depicts the representation of binary-tree-
LSTM with the unary operator. A binary tree is a tree whose
elements have at most two children.

If each element in a binary tree includes only two children,
these two children are typically called as the left and right
child. In the case of the forward computation of a S-LSTM
memory block, it is represented in the following equations.

Fig. 2. Binary-tree-LSTM with Unary Operator.

Fig. 3. Implementation of Linear Activation unit by Object-oriented
Programming Language. The base Class of Function has the Inheritance of

FunctionLinear.

it = σ(WL
hih

L
t−1 +WR

hih
R
t−1 +WL

cic
L
t−1

+WR
ci ct−1R+ bi) (5)

fLt = σ(WL
flh

L
t−1 +WR

hflh
R
t−1

+WL
cflc

L
t−1 +WR

cflct−1R+ bfl) (6)

fRt = σ(WL
fth

L
t−1 +WR

hfrh
R
t−1

+WL
cfrc

L
t−1 +WR

cfrct−1R+ bfr) (7)

xt =WL
hxh

L
t−1

+WR
hxh

R
t−1 + bx) (8)

ct = fLt ∗ cLt−1 + fRt ∗ it ∗ tanh(xt) (9)
ot = σ(WL

hoh
L
t−1 +WR

hoh
R
t−1 +Wcoct + bo) (10)
ht = ot ∗ tanh(ct) (11)

Here, σ is the element-wise logistic function. σ is adopted
to restricts the gating signals to be in the range of [0, 1].
fL and fR denotes the left (L) and right (R) forget gate. b
is biased, and W is the weighting matrices of the network.
Finally, the sign * is a Hadamard product which is also called
element-wise product.

www.ijacsa.thesai.org 625 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

More importantly, equation (14)-(20) consists of a binary
operator. Therefore, this equation can be represented as a
binary tree. A binary tree is a fundamental data structure
in different modalities. In binary tree, the elements have at
most two children. We typically name them the left and right
children because each element in a binary tree can have only
two children, In computation, a binary tree consists of nodes,
where each node contains a L(“left”) reference, a R(“right”)
reference, and a data element. The topmost (or bottommost)
node in the tree is called the root node.

Algorithm 1 recursive function

1: variable→ generator → backward(grad)
2: while i ≤ variable→ generator.inputs size() do
3: nv = variable→ generator.inputs()
4: if nv = isGetGrad then
5: this→ backward(nv.get())
6: end if
7: end while

B. Linear Activation Unit

Fig. 3 depicts our implementation of a linear activation unit
for the reverse-mode auto diff of linear activation. In artificial
neural networks, a node’s activation function defines the output
of that node given an input or set of inputs. The input-output
model is defined as follows:

f(x) = ψ ∗ (
n∑

i=0

wi ∗ xi + b)

Here, ψ is an activation function such as Tanh and RELU.
Class FunctionLinear implements the function of

∑n
i=0 wi ∗

xi + b. The notation of *creator is the pointer to the function
which generates its variable. For example, FunctionLinear
outputs r which is equal to

∑n
i=0 wi ∗ xi + b and is passed

to FunctionTanh. The creator of variable r is FunctionLinear.
Fig. 3 also illustrates the detailed implementation of the
inheritance of functions and variables of tree-structured LSTM.
Inheritance in the middle of Fig. 3 enables us to define classes
for modeling relationships among types by sharing what is
common and specializing only on that which is inherently
different. Its derived classes inherit members defined by the
base class. We can use derived class without change. Deriving
class do not depend on the specifics of the derived type.
Those operations redefine those member functions depending
on its type, specializing the function to take into account the
peculiarities of the derived type. Consequently, a derived class
may define additional members beyond those it inherits from
its base class.

C. Constrained Breadth-first Search

As we discussed in Section I-B, a tree-structured LSTM
graph is generated for each mini-batch. Fig. 4 depicts the
model of a few tree-structured LSTM graphs for mini-batches.
As usual, a breadth-first search (BFS) is applied for the recur-
sive search of the tree structure. However, other procedures on
our model, such as loss, MSE (Mean-Square Error), and Tanh
should be skipped before the program reaches the LSTM tree,
as shown in the lower-left side of Fig. 4.

Fig. 4. Constrained Breadth First Search.

We modify the recursion algorithm as shown in Algorithm
1. Broadly, the breadth-first search is an algorithm for the
traversal of tree (or graph) data structures. BFS begins at the
tree root. It then searches all of the neighbor nodes at the
present depth before it proceed to the nodes at the next depth.

Algorithm 2 Constrained model traversal

1: if v → lastopt ̸= NULL∧ → opt = ∗v → lastopt then
2: ∗v → is last backward = true
3: end if
4: if if(v → is last backward ̸= NULL ∧ ∗v →
is last backward = false then

5: return
6: end if
7: back propagation()

V. RESEARCH METHODOLOGY

A. Truncated Backpropagation through Time

Backpropagation through Time, or BPTT, is a specific
application of backpropagation in neural networks for coping
with sequence to sequence data like a time series. A recurrent
neural network has one input each time step and predicts one
output. Conceptually, BPTT performs by unrolling all input
time steps, as shown in Fig. 5. In each time step, BPTT has
one input time step and one copy of the network st , and one
output ot. Errors are then calculated and accumulated for each
time slot with w.

Fig. 5 has outputs at each time step. The network is
rolled back up, and the weights are updated. BPTT would be
impractical in an online manner because its memory footprint
grows linearly with time.

Truncated Backpropagation Through Time (TBPTT),
which is an online version of BPTT, is proposed in [16].
TBPTT works analogously to BPTT. But, the sequence is
calculated one-time step at a time periodically. The BPTT
update is performed back for a fixed number of time steps.
In [16], the accumulation stops after a fixed number of time
steps. Truncated BPTT performs well if the truncated chains
are effective in learning the recursive target functions.

www.ijacsa.thesai.org 626 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

Fig. 5. Back Propagation through Time. It Works by Unrolling All Input
Time Steps.

B. LSTM

Long short-term memory (LSTM) [7] is a family of re-
current neural networks. Like other recurrent neural networks,
LSTM has feedback connections. Concerning the memory cell
itself, it is controlled with a forget gate, which can reset
the memory. unit with a sigmoid function. In detail, given a
sequence data x1, ..., xT we have the gate definition as follows:

ft = σ(Wfhht−1 +Wfxxt + Pf ∗ ct−1 ∗ bf ) (12)
it = σ(Wixt + Uiht−1 + Pi ∗ ct−1 ∗ bi) (13)

gt = tanh(Wgxt + Ught−1 + bg) (14)
ct = itΘgt + ftΘct−1 (15)

ot = σ(Woxt + Uoht−1 + Po ∗ ct + bo) (16)
ht = otΘtanh(ct) (17)

where ft is forget gate, it input gate, ot output gate and
gtinput modulation gate. Particularly Pf , PiPo indicates the
peephole weights for the forget gate. The peephole connections
introduced in [17] enable the LSTM cell to inspect its current
internal states. Then, the backpropagation of the LSTM at the
current time step t is as follows:

δot = tanh(ct)δht (18)
δct = (1− tanh(ct)2)otδht (19)

δft = ct−1δct (20)
δct−1 = ftθδct (21)

δit = gtδct (22)
δgt = itδct (23)

C. Adam

Adam [20] stands for adaptive moment estimation. Adam
optimization is the hybrid based on the ideas of momentum
optimization and RMSProp. In Adam, momentum optimization
keeps track of an exponentially decaying average of past
gradients. On the other hand, RMSProp keeps track of an
exponentially decaying average of past squared gradients.

m← β1m− (1− β1)▽θ J(θ) (24)
s← β2 ∗ s+ (1− β2)▽θ J(θ)⊗ J(θ) (25)

m← m

1− βt
1

(26)

s← m

1− βt
2

(27)

θ ← θ + ηm⊘
√
s+ ϵ (28)

As far as steps 1, 2 and 5, Adam is closely similar to both
momentum optimization and RMSProp.

The only difference is that instead of an exponentially
decaying sum in momentum optimization and RMSProp, step
1 of Adam computes an exponentially decaying average rather
than an exponentially decaying sum. Actually, these decaying
sums are equivalent except for a content factor.

Steps 3 and 4 are technically specific detail. In steps 3
and 4, m and s are initialized at 0 at default. Then, m and
s will be biased towards 0 at the starting phase of training.
Consequently, steps 3 and 4 will help boost m and s in the
early phase of training.

VI. EXPERIMENT

In this section, we describe the experimental results of the
training and generating a sine wave. In the experiment, we
use a workstation with Intel(R) Xeon(R) CPU E5-2620 v4
(2.10GHz) and 252G RAM.

Adam uses the moving average of gradient mt as well as
vt, which is the squared moving average adopted by RMSProp
and AdaDelta.

mt = β1 ∗mt − 1 + (1− β1)gt (29)
vt = β2 ∗ vt − 1 + (1− β2)g2t (30)

Optimization problem requires the search for good hyper-
parameters. The hyperparameters are variable to decide. The
cost to be optimized is the validation set error. For evaluating
our method, we generate a sin wave with random noise by
the normal distribution. Then, we apply curve fitting to the
generated sin wave.

For hyperparameter tuning, we use three test scenarios. In
first case, we set the parameter β1 and β2 fixed to 0.9 and
0.999. In second case, we set the parameter β1 ranging from
0.89 to 0.91 and β2 ranging from 0.9985 to 0.9995. Finally,
we set the parameter β1 ranging from 0.88 to 0.92 and β2
ranging from 0.9980 to 0.9999.

Fig. 6, 7, and 8 are the results of the curve fitting of three
test cases. Fig. 9 shows the comparison of validation loss of
three test cases. It turned out that test case 3 with the parameter
β1 ranging from 0.88 to 0.92 and β2 ranging from 0.9980
to 0.9999 has the best performance. The plot of test case 3
decreases rapidly comaware to the other two cases.

The results in Fig. 9 suggest that early stopping may be
applicable. Early stopping is another approach to regularize
iterative learning algorithms, including Adam and Gradient

www.ijacsa.thesai.org 627 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

Fig. 6. β1 = 0.9/β2 = 0.999.

Fig. 7. β1 = 0.89− 0.91/β2 = 0.9985− 0.9995.

Descent, to stop training immediately after the validation loss
reaches out a minimum value. In other words, leveraging early
stopping, we control and terminate training as soon as the
validation loss falls to a minimum. Early stopping is a simple
and powerful regularization technique.

Table I shows the validation loss of three test cases. At
step 5 with epoch size 750, elapsed time of the third case with
β1 ranging from 0.88 to 0.92 and β2 ranging from 0.9980 to
0.9999 is 0.0493266. The elapsed time of 0.0493266 is 1.81
times faster than the second case and 3.81 times faster than
the first case.

Fig. 8. β1 = 0.88− 0.92/β2 = 0.9980− 0.9999.

TABLE I. COMPARISON OF THREE TEST CASES

Elaplse time in epoch=750 (sec)
0.9/0.999 0.89-0.91/0.9985-0.9995 0.88-0.92/0.9980-0.9999

1 0.392805 0.155601 0.140308
2 0.310886 0.130887 0.0976786
3 0.259277 0.113318 0.0733389
4 0.219546 0.100228 0.059955
5 0.187943 0.0893164 0.0493266

Fig. 9. Validation Loss with Parameter β1 and β2 Changed.

VII. DISCUSSION

In the process of discussing a series of optimization algo-
rithms, a question now arises - which algorithm should one
choose?

Schaul et al. [27] presents a comparative study of a
large number of optimization algorithms across a wide range
of learning tasks. According to this, although the series of
optimization algorithms with adaptive learning rates such as
RMSProp and AdaDelta works fairly robustly, no single best
algorithm has emerged.

On the other hand, the drawback common to most hyperpa-
rameter optimization algorithms is the need for a training ex-
periment to run before they can retrieve any information from
the experiment. A more sophisticated (automated) random
search is usually much less efficient than a manual search by a
human practitioner. Partly because the set of hyperparameters
is often completely pathological. Broadly, in this context, the
choice of which algorithm to use largely depends on the user’s
familiarity with the algorithm.

Generally, adaptive optimization algorithms are recom-
mended. However, Ashia C. Wilson et al. [28] pointed out that
AdaGrad, RMSProp, and Adam generalize poorly on some
datasets. According to this, it follows that we may stick to
other alternatives such as Momentum optimization or Nesterov
Accelerated Gradient as long as researchers have a better
understanding of this issue. In this situation, we can conclude
that our method is helpful and practical because our method
is optimization algorithm independent.

VIII. CONCLUSION

Adam (Adaptive Moment Estimation) is one of the promis-
ing techniques for parameter optimization of deep learning.

www.ijacsa.thesai.org 628 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

In this paper, we propose a novel random search method for
Adam with randomizing parameters of β1 and β2. Random
noise generated by normal distribution is added to the param-
eters of β1 and β2 every step of updating function is called.
In the experiment, we have implemented binary tree-structured
LSTM and adam optimizer function.

There have been lots of research efforts on algorithms
which each seek to address the challenge of optimizing deep
models by adapting the learning rate for each model parameter.
However, there is currently no consensus on which algorithm
is best to choose. Our method of randomized hyperparameter
tuning is an optimization method independent. Therefore, our
method can be applied for various kinds of algorithms such as
NAG, AdaGrad and RMSProp, and so on. Updating function
is called. In the experiment, we have implemented binary tree-
structured LSTM and adam optimizer function. It turned out
that in best case, randomized hyperparameter tuning with β1
ranging from 0.88 to 0.92 and β2 ranging from 0.9980 to
0.9999 is 3.81 times faster than the fixed parameter with β1
= 0.999 and β2 = 0.9. We can conclude that adding random
noise to the fixed-parameter of β1 and β2 is effective and
reasonable compared with a naive manual search.

REFERENCES

[1] Rumelhart, David E.; Hinton, Geoffrey E., Williams, Ronald J., Learning
representations by back-propagating errors. Nature 323 (6088): 533-536,
1986/10

[2] Jordan B. Pollack: Recursive Distributed Representations. Artif. Intell.
46(1-2): 77-105 (1990)

[3] Leon Bottou: From Machine Learning to Machine Reasoning. CoRR
abs/1102.1808 (2011)

[4] Socher, Richard, Lin, Cliff C., Ng, Andrew Y., and Manning, Christopher
D. Parsing Natural Scenes and Natural Language with Recursive Neural
Networks. In Proceedings of the 26th International Conference on
Machine Learning (ICML), 2011.

[5] Socher, Richard, Perelygin, Alex, Wu, Jean Y., Chuang, Jason, Man-
ning, Christopher D., Ng, Andrew Y., and Potts, Christopher. Recursive
deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, EMNLP ?f13, Seattle, USA, 2013. Association
for Computational Linguistics.

[6] Goller, Christoph, and Kohler, Andreas. Learning task-dependent dis-
tributed representations by backpropagation through structure. In In Proc.
of the ICNN-96, pp. 347-352, Bochum, Germany, 1996. IEEE.

[7] Sepp Hochreiter and J.Nurgen Schmidhuber. 1997. Long short-term
memory. Neural Computation 9(8):1735-1780.

[8] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015.
Improved semantic representations from tree-structured long short-term
memory networks. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing. ACL, pages 1556-1566.

[9] Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. 2015. Long short-
term memory over recursive structures. In Proceedings of the 32nd
International Conference on Machine Learning. ICML, pages 1604-1612.

[10] Jiwei Li, Minh-Thang Luong, Dan Jurafsky, and Eduard Holy. 2015.
When are tree structures necessary for deep learning of representations.
In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing. EMNLP, pages 2304-2314.

[11] P. J. Werbos, Backpropagation through time: What does it does and
how to do it. In Proc. IEEE, vol. 78, no. 10, pp. 1550-1560, Oct. 1990.

[12] P. J.Werbos, The Roots of Backpropagation: From Ordered Derivatives
to Neural Networks and Political Forecasting, 1st ed. Hoboken, NJ:Wiley,
1994.

[13] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-
term dependencies with gradient descent is difficult. IEEE transactions
on neural networks, 5(2):157-166, 1994.

[14] John F. Kolen and Stefan C. Kremer. Gradient Flow in Recurrent Nets:
The Difficulty of Learning LongTerm Dependencies, pages 464-479.
Wiley-IEEE Press, 2001.

[15] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty
of training recurrent neural networks. In Proceedings of the 30th Inter-
national Conference on International Conference on Machine Learning -
Volume 28, ICML?f13, pages III310-III318. JMLR.org, 2013.

[16] Ronald J. Williams and Jing Peng. An efficient gradient-based algorithm
for online training of recurrent network trajectories. In Neural Compu-
tation, 1990.

[17] Gers, F. A., and Schmidhuber, J. (2001). LSTM recurrent networks learn
simple context-free and context-sensitive languages. IEEE Trans. Neural.
Netw., 12(6), 1333-1340.

[18] J. Duchi, E. Hazan, and Y. Singer., Adaptive subgradient methods for
online learning and stochastic optimization, Journal of Machine Learning
Research 12 (Jul): 2121–2159 (2011)

[19] Tijmen Tieleman, Geoffrey Hinton, Rmsprop: Divide the gradient by a
running average of its recent magnitude. Coursera: Neural networks for
machine learning, COURSERA Neural Networks Mach. Learn, 2012

[20] Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic
Optimization, ICLR (Poster) 2015

[21] BT Polyak, Some methods of speeding up the convergence of iteration
methods, USSR Computational Mathematics and Mathematical Physics
4 (5), 1-17,1964

[22] NESTEROV Y., A method for unconstrained convex minimization
problem with the rate of convergence o(1/k2̂), Doklady AN USSR 269,
543-547, 1983

[23] Changyou Chen, David E. Carlson, Zhe Gan, Chunyuan Li, Lawrence
Carin: Bridging the Gap between Stochastic Gradient MCMC and
Stochastic Optimization. ASSISTANTS 2016: 1051-1060

[24] Marcin Andrychowicz, Misha Denil, Sergio Gomez Colmenarejo,
Matthew W. Hoffman, David Pfau, Tom Schaul, Nando de Freitas:
Learning to learn by gradient descent by gradient descent. NIPS 2016:
3981-3989

[25] Alexandre Défossez, Léon Bottou, Francis R. Bach, Nicolas Usunier:
On the Convergence of Adam and Adagrad. CoRR abs/2003.02395
(2020)

[26] Liangchen Luo, Yuanhao Xiong, Yan Liu, Xu Sun: Adaptive Gradient
Methods with Dynamic Bound of Learning Rate. CoRR abs/1902.09843
(2019)

[27] Tom Schaul, Ioannis Antonoglou, David Silver: Unit Tests for Stochas-
tic Optimization. ICLR 2014

[28] Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, Ben-
jamin Recht: The Marginal Value of Adaptive Gradient Methods in
Machine Learning. NIPS 2017: 4148-4158

www.ijacsa.thesai.org 629 | P a g e


