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Abstract—The principal curvatures, eigenvalues of the shape
operator, are an important differential geometric features that
characterize the object’s shape, as a matter of fact, it plays
a central role in geometry processing and physical simulation.
The shape operator is a local operator resulting from the matrix
quotient of normal derivative with the metric tensor, and hence,
its matrix representation is not symmetric in general. In this
paper, the local differential property of the shape operator is
exploited to propose a local mean value estimation of the shape
operator on triangular meshes. In contrast to the stat-of-art
approximation methods that produce a symmetric operator, the
resulting estimation matrix is accurate and generally not symmet-
ric. Various comparative examples are presented to demonstrate
the accuracy of proposed estimation. The results show that the
principle curvature arising from the estimated shape operator
are accurate in comparison with the standard estimation in the
literature.
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I. INTRODUCTION

Surface curvatures are a significant intrinsic geometry
component that describe the geometrical structure of a regular
object surface. As the three-dimensional shape of objects is
progressing substantially, measuring such curvatures is becom-
ing more common in a variety of areas such as physics-based
modeling, variational modeling, geometric data processing and
computer graphics.

Although differential geometry has a longstanding heritage
of computing curvatures on smooth surfaces, such curvatures,
as well as other features, lose their continuity when a smooth
surface is approximated by a triangle mesh due to the mesh’s
discrete nature. There is therefore the necessity to create
approaches for the estimate of surface curvatures of triangular
meshes, as precision and effectiveness remain the essential
ingredients for the development of discrete evaluation methods.
Over the last years, curvatures estimations problem has been
extensively studied, since it is a crucial phase in mesh data
processing due to its several applications in computer and robot
vision, computer graphics, geometric modeling, and industrial
and biomedical engineering [4], [13], [16], [17], [3]. Although
there are various proposed methods for estimating curvature in
the literature, the algorithm that aims for maximum estimation
precision still always needed to be developed.

The shape operator, whose eigenvalues are the principal
curvatures, has captivate a lot of attention since it is an
essential ingredient to construct an accurate curvature estimate.
In the smooth setting, computing a surface’s shape operator is

crucial, since the shape operator is equal to the gradient of the
surface normal field. The first discretization of shape operator
dates back to Taubin [18], who described the operator as a
weighted average of normal curvatures. Since then, several
other approaches to discretize shape operator on triangular
meshes has been developed in the literature [2], [20], [7], [10],
[22], [6], and most of these methods treated the shape operator
as a local operator extracted from the matrices quotient of
normal derivative with the metric tensor, which generally
result a symmetrical matrix representation, even for object
with unsymmetrical shape operator. In this paper, we use the
local differential property of the shape operator to propose a
convolutional based approach to estimate the shape operator on
triangular meshes. The resulting estimation matrix is accurate
and not necessarily symmetrical, unlike the stat-of-the-art
approximation methods producing a symmetric operator.

II. RELATIVE WORK

Curvatures estimation has been the subject of considerable
research due to its several practical applications, leading to the
development of a variety of curvature estimators. Most of the
existing estimation approaches can be classified into two cate-
gories depending on whether the approach based on directional
normal derivative approximation or local surface interpolation.
In what follows, we briefly review some curvature estimation
approaches from each category.

The first category estimate to shape operator on triangular
face to develop an estimation of the curvature directly or
through the curvature tensor. In [2], a discretization of the
curvature surface tensor is based on the theory of normal cycles
that estimates the curvature at the sampled smooth surfaces.
Another approach based on degrees of freedom associated with
normal vector is represented in [8], the curvature is estimated
by formulating the shape operator from variational problems
on general meshes. In [22], the finite difference approach is
applied to discretize the directional derivative normal surface
on each face. This method was later adopted by [1] using a
collection of nearby sampling points combining the quadratic
difference forms and the finite-difference normal directional
derivative approximation. Another approach to estimating the
surface’s principal curvatures based on inversion-invariant lo-
cal surface-based differential forms is proposed [23].

In [11], a per-face discrete curvature estimation approach
is proposed in terms of discrete shape operator, the method is
based on adapting the optimal estimation technique into a non-
linear diffusion process for normal and curvature consistencies.
Another face-based method for estimating the curvature of
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triangle meshes focused on the concept of osculating circles in
regular planes is discussed in [24]. More recently, a component
analysis-based method is presented to estimate the curvatures
in [25]. The approach identifies principal components that are
dominant in the shape fields, resulting the first and second
fundamental forms used in the curvature estimation.

The second category deals with determining the most
accurate approximation of the surface patch for each data point
neighborhood. In this direction, Theisel in [19] proposed a
face-based approach for computing shape operators using lin-
ear interpolation of normal. In [21], an approach is introduced
for estimating mean and Gaussian curvature and the shape
operator matrix as well, it relies on the periodic structure of
the normal curvatures to ensure that the quadrature are exact.
In [14] a new method is proposed to estimate the curvature
at different scales by adapting suitable fitting technique and
applying it to different-sized neighborhood depending on scale.
In [12] the interpolation of three end points and the correspond-
ing normal vectors of each triangular vertex to construct a
curved patch was introduced as a curvature estimate approach
for meshes. In [15] a screen space method is proposed for
estimating the mean and Gaussian curvature at interactive rates
from the second fundamental form matrix by using positions
and normal.

A. Contribution

The most proposed approximations of the shape operator
are formulated in term of a symmetrical matrix that produces
an inaccurate curvatures estimation, especially for object with
unsymmetrical shape operator. As the shape operator is locally
defined by a directional differential normal vector, we propose
to estimate the shape operator by a mean value expression
of normal difference at each vertex of triangular mesh. In
contrast to the standard shape operator approximation methods,
the resulting estimation matrix is generally not symmetric. We
compare the principal curvatures, eigenvalues of the estimated
shape operator, to the one arising from analytic expression.
Various comparative examples are presented to demonstrate
the accuracy of proposed curvatures estimation method.

The rest of the paper is organized as follows: In Section
III we present a brief theoretical background that describes the
construction of shape operator. In Section IV, we formulate
the expression of the shape operator by neighborhood mean
value formulation, and then we propose the new shape operator
discretization algorithm whose evaluation through numerous
substantiating examples is provided in Section V. We finally
give some concluding remarks in Section VI.

III. PRELIMINARY BACKGROUND

In this section, we briefly review some definition related
to the shape operator background, for more rigorous details,
we refer interested reader to the standard differential geometry
textbooks [5], [26].

Let us consider a smooth regular surface M ⊆ R3 locally
parameterized by (x, y), where TpM denoted the tangent plane
of M at p = p(x, y) ∈ M. The space TpM is spanned by the
partial derivatives U = δp

δx and V = δp
δy and it is equipped with

Fig. 1. Discrete Vertex Neighbourhood.

the standard inner product (·) in R3. The Riemannian metric
tensor, called also first fundamental form, is defined as

I =

(
E F
F G

)
=

(
U · U U · V
V · U V · V

)
(1)

The matrix I is symmetric and positive definite. At every point
p(x, y) ∈M, the unit normal vector field is defined by

N(x, y) =
U × V

|U × V|
(2)

which allows to define the second fundamental form II =
II(u, v) by

II =

(
L M
M N

)
=

(
δp

δxδx · N
δp

δxδy · N
δp

δyδx · N
δp

δyδy · N

)
(3)

or in term of normal directional derivative

II = −

(
δp
δx ·

δN
δx

δp
δx ·

δN
δy

δp
δy ·

δN
δx

δp
δy · · ·

δN
δy

)
(4)

More generally, given a tangential vector E ∈ TpM at a point
p ∈M, then the directional derivative DEN of the the normal
vector in the direction of vector E is defined by

Sp (E) = −DEN(p) (5)

where S : TpM ↔ TpM is a linear map called Shape
operator that can be expressed in term of the first and second
fundamental forms as

S = I−1II =

( FM−GL
EG−F 2

FL−EM
EG−F 2

FN−GM
EG−F 2

FM−EN
EG−F 2

)
(6)

It should be noted that the above shape operator matrix need
not to be symmetric in general, its eigenvalues, denoted with
k1 and k2, are called the principal curvatures. The product and
the mean of the principal curvatures are respectively called the
Gaussian curvature K = k1k2 and the mean curvatures

H =
k1 + k2

2
(7)

In what follow, we propose a mean value based approach
toward shape operator matrix estimation on triangular surfaces.
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IV. SHAPE OPERATOR ESTIMATION ON MESHES

For an arbitrary surface, the exact expression of the shape
operator can rarely be expressed explicitly, hence, only an
estimation on discrete surfaces can be performed. In the
discrete setting, the surface M is sampled at np points P =
{v1, ..., vnp

}. The points are then connected by ne edges
E = {e1, ..., ene

} and nf faces F = {F1, ..., Fnf
} forming

a triangular mesh (V,E, F ) noted M. An orthogonal and
normalized tangential reference frame (t,b) is attached to each
triangle f ∈ F as well as a normal vector Nf . As the shape
operator is defined on a local surface, we consider a local
discrete surface Ωi = ∪F (vi) around the point vi ∈ P as
shown in Fig. 1. To estimate locally the shape operator at vi
on the Ωi, we propose to use the following mean local value
expression

Svi =
1

|Ωi|

∫
Ωi

Sv dv (8)

where |Ωi| denoted the area of the local surfaceΩi. As Ωi =
∪F (vi), where F (vi) is a face sharing the vertex vi depicted
in Fig. 1, the local formulation of the shape operator (8) boils
down to

Svi =
1

|Ωi|
∑
F∈Ωi

∫
F

Sv dv (9)

Hence, to estimate the shape operator over Ωi, it is sufficient
to evaluate its expression on each incident face F . To this end,
assume that the face F (vi, vj , vk) is determined by the three
vertex vi, vj and vk. As the two vectors ej = vi − vk and
ek = vj − vi are edges of the face F , hence, the two edges
vectors can be fully expressed in the orthogonal frame (t,b)
of F as

ej = (ej · t)︸ ︷︷ ︸
ejt

t+ (ej · b)︸ ︷︷ ︸
ejb

b and ek = (ek · t)︸ ︷︷ ︸
ekt

t+ (ek · b)︸ ︷︷ ︸
ekb

b (10)

Using the expression of the shape operator in term of the
normal directional derivative (5) along the two edges vector
ej and ek give arise

Sv · ej = −DejN(v) and Sv · ek = −DekN(v) (11)

Following Rusinkiewicz [22], we approximate the derivative
of the normal vector N in the direction of the two vector
ej = vi − vj and ek = vk − vi on the face F as

Sv · ej = −DejN ≈
(
(Ni −Nk) · t
(Ni −Nk) · b

)
and (12)

Sv · ek = −DejN ≈
(
(Nj −Ni) · t
(Nj −Ni) · b

)
(13)

which leads to an approximation of the shape operator matrix
Sv of the normal vector N inside the face F as

S(F ) ≈
(
ejt ejb
ekt ejb

)−1(
(Ni −Nk) · t (Ni −Nk) · b
(Nj −Ni) · t (Nj −Ni) · b

)
(14)

As the above estimation of the shape operator is locally
constant over the face F , the integral formulation (9) can be
expressed as

Svi =
1

|Ωi|
∑
F∈Ωi

|F | · S(F ) (15)

Algorithm 1: Mean Value Hodge Operator Estima-
tion.
1 forall point vi ∈ V do
2 Initialze Svi with a zero matrix
3 foreach face F sharing the vertex vi do
4 Compute the estimation of the shape operator

S(F ) on the face F by (14)
5 Compute the face area |F |.
6 S̃F ← projec to tangent plan(S(F ))

7 Svi ← Svi + |F | · S̃F

8 end
9 Svi ← Svi/

∑
F∈Ωi

|F |)
10 end

(a) Torus mesh (b) Sinusoidal mesh

Fig. 2. Explicit Meshes Arising from Analytic Parametric Torus and
Sinusoidal Surfaces.

The following algorithm summarize the shape operator esti-
mation procedure on a triangular mesh: A per-processing step
of the algorithm 1 is to estimate the normal vector of each
point vi, then, we compute in the step 4 the shape operator
(14) for each face F incident to the vertex vi, the obtained face
based shape operator is projected back onto tangent plan of the
vertex vi in the step 6, and then summed up and normalized
in the step 9.

V. EXPERIMENTAL RESULTS

In the following, we report evaluation and comparison of
the proposed Convolution Based Estimation algorithm (CBE)
with three stat-of-art methods: the finite Difference curvature
Estimation Method (DEM) proposed by Rusinkiewicz [22], the
Multi-Scale Curvature (MSC) Estimation methods (CCM) [14]
and the Normal Cycle Curvature (NCC) estimation method [2].
For each comparative method, the shape operator is estimated
on a set of standard triangular meshes. In the following, a set
of quantitative and qualitative comparison experiments of the
four methods are performed.

A. Quantitative Evaluation

In the first set of quantitative experiments, two explicit
synthetic triangular meshes in Fig. 4 are selected, such that
an analytic expression of the shape operator is available. The
first mesh reported in Fig. 2(a) is the torus object with major
radius 2 and minor radius 1, the analytic expression of the
shape operator of torus is represented by a symmetric matrix
[26].
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(a) CBE result

(b) DEM result

(c) MSC result

(d) NCC result

Fig. 3. Explicite Meshes Arising from Analytic Parametric Torus Surfaces.

The second triangular mesh reported in Fig. 2(b) is

generated form the analytic sinusoidal parametric surface
(x, y, sin(x) cos(y)) [9]. The analytic expression of the shape
operator for the sinusoidal surface is represented by a not
symmetric matrix. For the four comparative method, we first
estimate the shape operator and then we compute the principal
curvature represented by the two eigenvalues of each estimated
operator.

(a) CBE result

(b) DEM result

(c) MSC result

(d) NCC result

Fig. 4. Explicite Meshes Arising from Analytic Parametric Sinusoidal
Surfaces.

The eigenvalue corresponding to the maximum curvature
is then compared to the maximum curvature arising from
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the analytic expression of the shape matrix. For the torus
mesh with symmetric shape operator, the absolute difference
between the estimated and analytic maximum curvatures is
reported in Fig. 3. As can clearly seen in Fig. 3(a), the
lowest values of error difference between the exact and esti-
mated maximum curvature is achieved by the proposed shape
operator estimation method. For the sinusoidal mesh with
unsymmetrical shape operator matrix, it can be clearly noticed
that the proposed shape operator estimation method outperform
the stat-of-art methods in term of accuracy. In Fig. 4(a), we
notice the domination of blue color characterizing lowest error
between estimated and exact curvature values. Also, due to
the averaging shape operator estimation expression (8), the
blue color is also uniformly distributed along the mesh. The

TABLE I. ABSOLUTE MEAN ERROR BETWEEN ESTIMATED AND
EXACT MAXIMUM CURVATURE ON TORUS AND SINUSOIDAL MESHES.

Torus mesh Sinusoidal mesh
Symetric operator Unsymetric operator

CBE 1.02 10−4 2.02 10−4

DEM 4.50 10−4 6.75 10−3

MSC 2.32 10−2 3.43 10−2

CCM 1.50 10−3 5.50 10−3

absolute mean errors between estimated and exact maximum
curvature on torus and sinusoidal meshes are reported in Table
I. On the torus mesh with symmetric shape operator, a little
difference between the proposed method and the DEM is
noticed; however, for unsymmetrical shape operator arising
from the sinusoidal surface, the proposed approach largely
outperform all comparative methods. To evaluate convergence
rate of the four shape operator estimation methods, we report
in Fig. 5 the evolution of the mean error difference values in
term of mesh resolution for the torus and sinusoidal meshes.
In the case of torus mesh with symmetrical shape operator,
we observe that the four methods have almost the same rat of
convergence, with a small advantage of the proposed method.
In contrast to the sinusoidal mesh with unsymmetrical shape
operator, we can clearly distinguish the net performance the
proposed CBM in comparison with the stat-of-art methods.

B. Qualitative Evaluation

The second set of evaluation tests concern two triangular
meshes: the catenoid mesh generated by the javaiew software
and the standard Fandisk meshes with sharp features reported
in Fig. 6(b). The catenoid mesh reported in Fig. 6(a) is a
revolution surface generated by rotating catenary curve about
an axis [9], it is a minimal surface, which means that it
occupies the least area when bounded by a closed space. A
minimal surface is essentially characterized by a vanishing
mean curvatures elsewhere, that is, H(v) = 0 for each vertex
v of the mesh. Recall that the mean curvature is the average
of the principles curvatures (7). In the Fig. 7, we report the
absolute average mean curvature values achieved by the four
estimation methods for the minimal catenoid surface mesh. We
notice that the proposed Shape operator estimation methods
presents the smallest absolute error value flowed together with
the Multi-Scale Curvature (MSC) Estimation methods (CCM)
and the Normal Cycle Curvature (NCC), the worst values ares
achieved by the finite Difference curvature Estimation Method
(DEM).

Fig. 5. Maximum Error Metric Evolution of Maximum Principal Curvatures
Computed by the Comparative Estimation Methods on Torus and Sinusoidal
Meshes.

In computer aided 3D design and mesh reprocessing appli-
cations, the maximum curvature is largely used to determine
sharp features like edges and corners. Such geometric char-
acteristics are characterized by a higher maximum curvature
values. In Fig. 8 we consider a gain the catenoid and the
fandisk meshes and we compute the maximum curvature
values by the proposed shape operator estimation method.
From the color map of maximum curvature values for the
the catenoid and fandisk meshes depicted in Fig. 8(b), we
observe that the sharp features like edges and corners are well
identified by the proposed curvature estimation methods. The
maximum curvature can also be used to detect defects that my
arise during the fabrication process. The Fig. 8(a) shows the
color map of the maximum curvature values for the catenoid
mesh, we can clearly observe the crack along mesh that cannot
be visually detected in the original object in Fig. 6(a). The
experimental results show the effectiveness of the proposed
mean value shape operator estimation method.
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(a) Catenoid mesh

(b) Fandisk mesh

Fig. 6. Explicite Meshes Arising from Analytic Parametric Torus and
Sinusoidal Surfaces.

Fig. 7. Mean Curvature Errors Values for the Catenoid Minimal Surface
Mesh.

(a) Catenoid color map

(b) Fandisk color map

Fig. 8. Maximum Curvature Color Map.

C. Discussion

The results show that the proposed operator performs
better compared with outperformed some the stat-of-art shape
operator estimation methods. It is clear from the above exper-
iments that the shape operator estimation approaches based
on the faces finite difference largely outperform the local
surface fitting approaches. In future work we plan to adapt
the proposed approach to estimate the shape operator method
on noisy surface. Due to the complexity and irregularity of
mesh data, the challenge is to build a mesh neural network to
learn shape operator values directly from mesh data.

VI. CONCLUSION

In this paper we proposed a mean value based approach
to estimate the shape operator on the triangular meshes. In
contrast to the state-of-art estimation methods that produce
a symmetric shape operator matrix, the proposed algorithm
proposed in this work is derived directly from the theoreti-
cal definition of the shape operator, and hence produced an
estimation that mimetic the continues unsymmetrical nature
of the shape operator. To demonstrate the performance of our
approach, different tests on a variety of standard meshes are
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conducted by a quantitative and qualitative comparative study
are presented.
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