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Abstract—Machine learning-based autonomous agents are 

valuable for back-testing stock trading strategies, including 

algorithmic trading. Several studies in the financial literature 

have proposed artificial intelligence-based algorithms that 

support decision making for financial investment, but few studies 

have provided systematic processes for designing intelligent 

trading agents. This paper overviews the steps involved in 

designing agents that forecast stock prices in a trading strategy. 

These steps include data preprocessing, time-series segmentation, 

dimensionality reduction, clustering, and others. Our main 

contributions are: (i) a systematic process that guides the design 

and development of trading agents, and (ii) a random forest 

forecasting model. 
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I. INTRODUCTION 

The success of a stock trading strategy depends on the 
quality of the information underlying its decision-making 
process. Most importantly, a successful trading strategy must 
quickly respond to data inputs for making informed decisions. 
Forecasting the level of a financial market index or individual 
stock is a classic problem. The efficient market hypothesis 
claims that forecasting stock prices is infeasible and that 
financial time series follow a random walk [1]. However, 
technical analysts consider that information regarding stocks 
and stock market indexes are reflected in historical prices and 
that prices can be forecasted. Financial market time-series 
forecasting has been widely studied in various disciplines, 
including finance, economics, engineering, computer science, 
and mathematics [2]. 

Financial market time series are commonly analyzed and 
forecasted by fundamental analysis [3, 4] and technical analysis 
[5–7]. The fundamental approach, typically used for long-term 
decision making on financial investments, focuses on the 
macroeconomic and company-specific factors that can influence 
the movements of stock index prices. Fundamental analysis is 
less common in the financial forecasting literature, because 
forecasting models that identify the reason(s) for stock price 
changes are difficult to construct. In contrast, technical analysis 
recognizes the patterns in a historical financial time series and 
implicitly assumes that some patterns are exploitable. 
Analytical and forecasting models based on technical analysis 
indicators are widely used in the financial literature (Murphy 
1986, 1999). 

Several machine learning techniques have been applied to 
financial time series [5, 8-13]. Machine learning techniques 

identify the patterns in financial time series using a data driven 
approach. Common machine learning techniques for forecasting 
financial time series are decision trees [14], random forest (RF) 
[15-17], artificial neural networks (ANNs) [18-22] and 
evolutionary algorithms, such as genetic algorithms [23-27] and 
genetic programming (GP) [28-33]. Machine learning 
applications of financial time-series forecasting are reviewed in 
[34-35]. 

Automated trading in financial markets, including the 
foreign exchange (FX) and stock markets, is among the most 
logical applications of autonomous agents. The systematic 
design and evaluation of active trading strategies requires a 
detailed understanding of market mechanisms and operations 
and an awareness of the issues common to trading strategies. 
The present study provides a systematic process that guides the 
design and development of a stock market trading strategy for 
autonomous trading agents. The study also identifies the 
essential attributes representing the inputs of a machine learning 
algorithm for financial forecasting and discusses the potential 
and impact of these attributes. Designing and evaluating trading 
agents for financial markets is a non-trivial task giving the 
complexity and dynamic nature of financial data. 

To accomplish our goals, we build a classification model 
that forecasts stock market prices using attribute selection and 
an RF algorithm. The characteristics and importance of the 
attributes are described in detail, and the most relevant attributes 
for forecasting and hence generating the trading rules are 
identified. The RF model is trained on the seasonality data's 
attribute space, directional changing price events, fundamental 
and technical indicators, and other financial data. Based on the 
attribute subset obtained from the attribute search space, the 
classifier computes the forecasting results, which are then used 
in designing the trading strategy. The impact of number of trees 
in the RF model and length of the training period are carefully 
evaluated. The agent strategy (and hence the performance of the 
generated trading rules) is evaluated in a stock market 
simulation of three datasets: the daily trade data of Standard and 
Poor (S&P100), Financial Times Stock Exchange (FTSE 100), 
and the Deutscher Aktienindex (DAX) indices of German stock. 
To identify the profitable trading opportunities over various 
time scales within the trading run, we connect the machine 
learning algorithm to the appropriate attribute space. Our RF 
learning algorithm can help traders to generate profitable 
trading strategies and bridge the gap between attribute selection 
and trading-strategy design. 

The remainder of this paper is structured as follows. 
Section 2 briefly reviews the related literature. Section 3 
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systematically describes the agent design process, including 
attribute selection and the RF algorithm. Section 4 demonstrates 
and examines the experimental results. Section 5 offers 
concluding remarks. 

II. RELATED WORK 

Agent-based modeling is an efficient and cost-effective 
method for analyzing complex dynamic phenomena, such as 
trading in financial markets and portfolio management [36-39]. 
By finding the optimal attribute sets and associations between 
the inputs and outputs of agent-based models, we can better 
understand the dynamics of financial markets and the modeled 
trading strategy. The financial literature includes several 
methods that explain and simplify the identification of attribute 
relationships through sampling and modeling [40-44]. 

Machine learning techniques provide a broad set of tools for 
the systematic design of trading and trading-agent algorithms 
[35, 45]. Among these techniques, supervised learning 
algorithms efficiently capture the nonlinear relationships 
between the inputs and outputs, inferring functional 
relationships from the data. Machine learning algorithms for 
stock forecasting include the support vector machine approach 
[46-48], ANNs [18-22], genetic algorithms [23-27], GP [28-33, 
43, 44], support vector regression models [49], RF [15-17], 
extreme gradient boosting (XGB) [11, 17], and reinforcement 
learning [50]. Two reviews [34, 35] cover the recent significant 
studies on machine learning algorithms for stock market 
forecasting. The most relevant studies are [14, 16, 17]; and [51] 
who initially applied machine learning (particularly RF) to 
financial forecasting. 

The work by [51] proposed a hybrid system that forecasts 
the future levels of a stock market index. They introduced a 
two-stage fusion approach using support vector regression 
(SVR) in the first stage and an ANN, RF, and SVR in the 
second stage, yielding three fusion prediction models: SVR–
ANN, SVR–RF, and SVR–SVR. The second stage reduces the 
overall forecasting error. Patel et al. in [51] input ten technical 
analysis indicators to each forecasting model and emphasized 
the importance of providing adequate information to the model. 
To evaluate the effectiveness of their results, they compared the 
forecasting performance with single-stage models based on 
ANN, RF, and SVR. 

The work by [17] applied deep ANNs, gradient-boosted 
decision trees (GBDTs), RF, and a combination of these 
methods (referred to as an ensemble) to the S&P 500 index. 
They forecasted the daily price returns by binary classification 
after training the four models on the momentum feature space. 
The average profits predicted by the ensemble (0.45% per day) 
were higher than those predicted by deep learning (0.33% per 
day), GBDT (0.37% per day), and RF (0.43% per day). Their 
results suggest that machine learning algorithms can provide 
sustainable profit opportunities in the short term. 

The authors in [16] proposed an algorithmic trading strategy 
for the intraweek FX market trading based on an RF model and 
Probit regression. The RF model forecasted the medium-term 
evolution, whereas the Probit model was applied to the 
technical analysis indicators for predicting the price value of the 
next day. The profitability of the proposed model was evaluated 
on USD/EUR, UDS/JPY, and USD/GBP from January 2014 to 
2019. Their strategy improved the prediction accuracy and 
helped to identify the best times of entering and exiting the 
market. 

The work in [14] built an experimental prediction 
framework based on a tree classifier, which analyzes the prices 
up to n days earlier, and forecasts whether prices will rise or 
fall. They trained two algorithms, RF and GBDT (using 
XGBoost), on technical analysis indicators, and varied the time 
interval of the analysis. The authors highlighted the importance 
of flexibility enabled by different features, each giving a 
specific interpretation. 

The present study makes three contributions to the literature. 
First, it provides a simplified, systematic process for designing 
trading agents. We provide guidelines for determining the 
minimal set of attributes needed for an effective design, offering 
essential insights into agent design. Second, we evaluate the 
performance of the trading strategy using the existing standards 
in the financial forecasting literature. Third, we generate a 
diverse set of trading rules with a focus on attribute selection, 
allowing an extended training phase and trading rules that best 
exploit the RF algorithm. 

III. METHODS 

As mentioned above, trading agents developed by machine 
learning techniques can forecast financial time-series data. This 
section sets a framework to describe the main components in 
designing and developing intelligent trading agents to guide 
developers and practitioners in building such agents. The works 
by [52, 53] present the operational steps of an intelligent trading 
system that focuses on forecasting price movements in financial 
time series. 

Simplicity is an essential characteristic of trading agents, 
because intricate design and complex trading rules will confuse 
the trading decisions and the dynamics of the trading rules. 
Forecasting of a price time-series significantly depends on the 
set of attributes used in the model. Therefore, selecting the right 
set of attributes for the trading agent is essential. Understanding 
the role of the attributes and settings can benefit investment 
profitability. 

Our design of an intelligent trading agent proceeds through 
the following steps: (1) data preprocessing, (2) time-series 
segmentation, (3) dimensionality reduction, (4) algorithm 
definition, (5) training, and (6) evaluation. Fig. 1 depicts the 
framework of designing an intelligent trading agent for 
predicting the stock market. 
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Fig. 1. Framework for Designing an Intelligent Agent for Stock Market 

Trading. 

A. Data Preprocessing 

The first step pre-processes the data utilized in the learning 
process. The main tasks in this step are defining the input and 
output variables, detecting the outliers, and structuring the data 
within a specified time interval. Data preprocessing ensures a 
reliable and accurate forecasting performance. 

1) Defining the input and output variables: When designing 

a trading agent, we must first define the input variables used by 

the machine learning technique and the output signals to be 

forecasted. The sets of input and output variables define the 

trading rules and control risk, respectively. Technical analysis 

indicators are considered as the primary modeling inputs. 

Trading agents for short forecasting horizons are thought to 

require the technical analysis indicators, whereas those for long-

term forecasting mainly use the fundamental input variables. 

Intraday seasonality statistics are the essential inputs of a 

forecasting model. The output variables are binary 

classifications of three class values signifying the buy, sell, and 

hold signals, which predict the direction and size of price 

movements throughout the trading period. 

2) Outlier detection: After defining the input and output 

variables, the data are processed to remove noise and outliers, 

and the data elements are normalized and structured within a 

specified time interval. This process includes filtering the 

outliers and eliminating dimensionality from the data, data 

reduction, normalization, and detrending [54, 55]. Some studies 

[54, 55, 56-58] suggest removing conditional transactions, late 

transactions, transactions reported out of sequence, and 

transactions with special settlement conditions. If these outlier 

transactions remain, they create noise and possibly erroneous 

data signals. 

3) Time interval: As prices in a financial time series arrive 

at unequal time intervals, designing the trading rules is a 

challenging task. In particular, the time interval affects the 

technical analysis of the time series. Most of the reported 

intelligent forecasting models compute the technical parameters 

using the prices (open, high, low, and close) during a trading 

day, without measuring the magnitude of the price change. 

Therefore, the input data are considered as continuous data 

values (an interval-based dataset). This approach has proven 

effective in several studies [59-62] that assess whether today's 

closing asset price will extend yesterday's price trend. 

Alternatively, trend-deterministic data can be analyzed 
within a directional change (DC) event framework [59, 61], 
which treats the input data as discrete entities to be sampled at 
irregular time intervals. The sampling interval is decided by the 
magnitude of a price change defined by the trader. The DC 
approach, which converts the discrete nature of a pricing series 
into a continuous DC event, has been critical in the FX market 
[43, 59-61, 63] and stock markets [28, 29, 64]. 

B. Time-Series Segmentation 

The time-series data of financial prices are naturally 
dynamic and unevenly spaced in time. These attributes 
complicate the analysis phase and forecasting investment 
opportunities, as discussed in subsection 3.1.3. To reduce the 
number of dimensions for later analysis, the time series is 
commonly segmented in a preprocessing step. The resulting 
time series contains less data, allowing better detection of its 
significant patterns. Well-known financial time-series 
segmentation methods are intraday seasonality statistics [15, 
60], scaling laws [61], and technical analysis indicators [6, 7]. 
By identifying trends and patterns in the segmented data, a 
trading agent can lower the computational costs and improve 
the forecasting accuracy. 

1) Trend and seasonality: Seasonality analysis identifies 

periodic patterns in the historical data and formulates 

predictions based on the behavior patterns of earlier periods. 

Periodic past behaviors are assumed as the most likely future 

scenarios [14, 28, 65]. Therefore, seasonality statistics can 

reveal the most active trading hours of a stock index, the 

volume of transactions throughout a given day, and the probable 

development of trading flows. The intraday seasonality in a 

time series is defined as the hourly activity changes over a 

specified period of the time series. For example, the intraday 

seasonality can be represented by the aggregate number of 

pricing data points observed in each hour of a single day (hour 

0–23), divided by the total number of pricing data points in the 

same period. 

2) Technical analysis indicator: Technical analysis 

forecasts the prices and returns of actively traded financial 

instruments, such as individual stocks, market indices, and FX. 
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This approach assumes that patterns appear in historical prices. 

In statistical terms, technical indicators measure the various 

features in the time series of a given stock or market index, such 

as price trends, volatility, and momentum. Various technical 

indicators have been used for forecasting future price 

movements and developing rules of trading decisions [6, 66]. 

In this study, the trading agent was modeled using eight 
popular technical indicators calculated from historical price 
data. The calculation formulas of these indicators are given in 
Table I. 

TABLE I. TECHNICAL ANALYSIS INDICATORS USED BY THE TRADING 

AGENTS IN THE PRESENT STUDY 

Indicator  Formula  
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The first technical indicator is the moving average (MA). 
The MA indicator continuously updates the average price 
within a specified window of time. In this study, the forecasting 
model inputs a 10-day MA and provides a short-term 
prediction. If the current price is above or below the MA, the 
price trend is upward or downward, respectively. 

To understand the trade break out (TBR) indicator, we must 
define two concepts: support and resistance. At the support and 
resistance points, the price trend is expected to stop declining 
and rising, respectively. The TBR assumes that price trends will 
reverse at the support and resistance points; however, when 
these points represent a break out, possibly because new 
information emerges on the market or (for an individual stock) 
the company, the price trend is expected to continue in the same 
direction. Traders watching these break-outs will buy when a 
price trend exceeds the point of resistance and sell when the 
price trend falls below its support level. 

The filter (FLR) technical indicator signifies a buy or sell 
signal depending on whether the price trend has been reversed 
by a predefined threshold. For example, if the price rises by a 
defined percentage of its earlier low value (reversing a 
downward price trend), the FLR issues a ―buy‖ order. 

Price volatility (VOL) is the standard deviation calculated 
from the historical prices over a specified period. The VOL 
indicator suggests a buying opportunity when the volatility is 
declining, as the price may be trending upward. In contrast, a 

cycle of increasing volatility may signify a downward price 
trend, presenting a ―sell‖ opportunity. 

Momentum (Mom) is a simple trend-following indicator 
defining the rate or strength of the price movement. The Mom 
indicator relates the very recent closing price to the previous 
closing price over a time interval specified by the analyst. The 
Mom indicator also determines the momentum MA (MomMA). 

Return on investment (ROI) in the trading context (distinct 
from the ROI of the data in a company’s financial statements) 
relates the trading profits to the strategy’s capital. Here, the ROI 
is the ratio of the price return to invested capital over a specified 
period. In our decision support system framework, the average 
price return is determined throughout the previous n days. The 
ROI is real-valued and can be positive (indicating a profit) or 
negative (indicating a loss). 

The relative strength index (RSI) is a momentum indicator 
that contrasts the sizes of the recent upward and downward 
price trends over a defined period. This measure evaluates the 
rate and change of an asset’s price movements. To define an 
upward price-trend change, we set Uptrendt = pt − pt−1 if pt > 
pt−1 and 0 otherwise; conversely, we define a downward price 
trend as Downtrendt = pt−1- pt if pt < pt−1 and 0 otherwise. The 
relative strength RSI(n) is then defined as the average of the last 
n upward price-trend changes divided by the average of the last 
n downward price-trend changes. The RSI fluctuates between 
zero (average upward price change = 0) and 100 (downward 
price change = 0). In typical scenarios, an asset or overall 
market is overbought when the RSI exceeds 70 and is oversold 
when the RSI falls below 30. 

3) Fundamental analysis: A fundamental analysis of a time 

series of securities prices investigates the likely factors affecting 

the time-series dynamics. These factors are derived from 

various sources, including financial statements, liquidity 

measures, market capitalization, and earnings announcements. 

Several studies have confirmed the relationships between these 

financial data and future price returns [3, 67]. 

The core mechanism of fundamental analysis is estimating 
an asset's fundamental value using the financial data from all 
available sources. A trader can compare a fundamental value 
with the asset's current price and make a trade decision based on 
that comparison. If an asset's price exceeds its fundamental 
value, it is regarded as overvalued, and a sell order is 
recommended. Conversely, if the price is below its fundamental 
value, the asset is considered undervalued and a buy is 
recommended. 

The trading strategy can consider the fundamental price 
value [67] or more than one value [3]. In the present analysis, an 
agent considers one fundamental price value as in [67]. 
Throughout the model run, the asset's fundamental value is 
described by an exogenic random procedure: 

ft = ft−1 + ηt,     (1) 

where ft denotes the fundamental value of the asset price at 
time t and ηt is a normal noise process with mean µ and 
standard deviation σ. 
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C. Dimensionality Reduction 

Restricting the number of attributes in the trading-agent 
model is essential, as not all attributes are valuable for 
forecasting a trade signal, and some are irrelevant. Reducing the 
attribute number and feature dimensionality improves the 
learning time, shortening the computational time, and 
improving the scalability. This step is particularly important for 
adaptive learning algorithms, which depend on the learning 
speed to route the streaming data over a suitable timeframe. 
Reducing the dimensionality reduces the memory and data-
storage requirements, and simplifies the behavior of the trading 
agents. It also captures the dependencies and correlations 
among the attribute features. 

D. Algorithm Definition 

During learning by a machine learning technique, the agents 
continuously interact with the environment and thus learn the 
optimal trading rules to achieve a specific goal. The setting 
involves current price movements and historical data of stock 
market trading provided by an extensive array of raw data and 
technical analysis indicators. When selecting a machine 
learning technique, these historical data and technical indicators 
are prerequisites for designing agents that observe the price 
time-series environment and learn the stock trading rules. Most 
of the total design time is expended in providing the agents with 
informative data and tools, which is performed in the first three 
phases (data preprocessing, time-series segmentation, and 
dimensionality reduction). Although each phase generates 
inputs for the subsequent phase, the progression is unsteady and 
moves back and forth between the phases to optimize the result. 
After processing and reducing the data, the trading rules are 
generated from the selected input data by a machine learning 
technique, and the output signals are forecasted. 

1) RF methodology: Forecasting by a machine learning 

technique is subjected to many factors: processing speed, 

pattern learning capability, natural interpretation of the trading 

strategy, knowledge simplification after learning, flexibility and 

adaptability to changes, and strategic optimizers for the 

retraining and forecasting horizons. Decision trees and RF are 

popular algorithms for forecasting price changes and developing 

automated trading agents. The RF algorithm has been 

successfully used in feature pruning (attributes in our case) 

owing to its broad capability and strength. In this study, the RF 

algorithm generates the trading rules for the trading agent. 

RF is a supervised machine learning algorithm involving 
multiple decision trees on different subspaces of the attribute 
space. One decision tree connects a decision to a set of 
descriptive variables or attributes. Each decision tree is formed 
as a set of variables and conditions, hierarchically structured, 
and continuously utilized in a dataset. The decision trees are 
diversified by generating them from several training datasets 
that are randomly resampled from the original dataset. In 
financial forecasting, a variety of decision tress offers 
autonomous numerical estimates of the arbitrage opportunity 
(i.e., increase in price change) rather than class labels for 
predictions. The RF algorithm learns the relationships among 
the following inputs: (a) row data (opening, closing, high and 
low prices, and the trading volume per day), (b) fundamental 

analysis information, (c) eight technical indicators, (d) DC price 
events, and (e) intraday seasonality statistics. The algorithm 
then generates one of three trading signals (buy, sell, or hold). 
Fig. 2 depicts the design framework of the forecasting model 
based on the RF algorithm for stock market prediction. 

 

Fig. 2. Design Framework of a Forecasting Model based on the Random 

Forest (RF) Algorithm for Stock Market Prediction. 

To create a single decision tree, we start from the root node 
and recursively split the data into two child nodes using a set of 
rules based on the market domain. The tree-building terminates 
when a definite stop condition is reached. The RF algorithm 
selects the attributes by a random process rather than employing 
all attributes. The resampling is performed by a random module 
and the combinations of attributes for the data-splitting are 
optimized to acquire more representative nodes. IF–THEN rules 
are derived from the trained decision trees by tracing the path 
from the root node toward each leaf node in each decision tree. 
The obtained rules are merged into a single decision-rule set. 
Along each path, the attributes and variables of the nodes are 
determined under the rule conditions, and the class of the leaf 
node represents the result of the rules (the trading signals). 
Fig. 3 shows a possible decision tree generated by the RF 
algorithm, and the following code derives a decision rule from 
the decision tree. 

2) RF algorithm: The RF algorithm constructs an ensemble 

model of multiple unpruned decisions from random subsets of 

attributes that do not overfit the data. In this study, we build a 

RF of decision trees from bootstrapped training data. Therefore, 

instead of defining the best split among the entire set of input 

variables, we extract a subset of randomly selected attributes. In 

Algorithm 1 below, forests of decision trees are constructed 

using the training dataset D = {(x1, y1), (x2, y2), · · ·, (xT, yT )}. 

The number of attributes is A and the number of trading days is 

T. Algorithm 1 is the core mechanism of the RF algorithm. 
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Algorithm 1: Random forest (RF) algorithm 

1: procedure RF(D)  D is the training dataset 

2:  f = new Array()  --> create a new forest 

3:  for do i = 0 to N 

4:  Di = bootstrapSamples(D) --> randomly select n data 

from D 

5: attributei = RandomAttributeSelection(Di) 

6:  DTi = new DecisionTree() 

7:   DTi.train(Di,attributei) 

8:  f.add(DTi) 

9:  end for loop 

10:  return forest f  --> return the new forest 

11: end procedure RF(D) 

 

Fig. 3. A Possible Decision Tree Model in an RF (top), and Code Showing 

how a Decision Rule is Derived from the Decision Tree (Bottom). 

The aim is to find a function f : X→ Y, where X is the 
attribute space and Y is the output trading signal space. The 
procedure is outlined below. 

1. To form a bootstrap sample, randomly select n data from 
D drawn with or without replacement from the training 
dataset. 

2. Among the A attributes, select a 𝜖 A attributes to create a 
decision tree. Using a subset of data ensures variety and 
avoids the overfitting problem. 

3. At each node, randomly select the attributes and 
optimize the data split (based on the Gini impurity). 
Note that the smaller the value of GiniD, the higher is the 
purity of D. The Gini impurity measures a node's 
splitting quality. At each node N, it is defined as 

    ( )  ∑  (  ) (  )        (2) 

4. Grow n decision trees to the most considerable extent by 
reiterating steps 1 to 3 until the maximum number of 

nodes is reached. The depth of each decision tree is 
controlled by the allowed maximum depth and the 
minimum number of required variables and constants at 
a leaf node. This so-called pruning criterion reduces the 
underlying complexity of the decision tree. 

5. Define the mean prediction of all individual decision 
trees in the forest. The aggregate prediction represents 
the output at time t. 

The examinations and visualizations were implemented in 
the R programming language [21, 22]. The following libraries 
and supplementary materials were also used: forecast [68], RF 
[69], gdata [70], ggplot2 [71], and reshape2 [72]. 

3) Variable adjustment: After choosing a machine learning 

technique, the input variables and output signals are adjusted to 

fit the desired algorithm. In this phase, the input dataset is 

decomposed for dividing the forecasting model into smaller 

sub-models. The machine learning technique (RF in this case) 

models the relationships among the input variables based on 

their initial definitions, and produces output signals. In the 

financial literature, machine learning techniques build the 

forecasting model using different numbers and types of input 

variables. Fundamental analysis offers numerous candidate 

attribute variables, such as firm size, cash flow, liquidity, and 

profitability. In contrast, technical indicators describe technical 

attributes such as moving averages, volatility, and momentum. 

In financial forecasting, the set of input variables for building a 

forecasting model (and thus designing a trading agent) is 

unlimited. 

4) Architecture configuration: The architecture is 

configured by adjusting the set of input and output variables of 

the chosen machine learning technique. A practical design for a 

trading agent requires three main components. The first 

specifies the trading rules governing the entry and exit times of 

trades. Exploiting the forecasted output signals, these trading 

rules discover the optimal time to buy or sell an asset's quantity 

to maximize the investment profit. The second component 

evaluates the forecast and operates the risk control system. This 

component requires a set of rules that evaluate and protect the 

invested assets. Evaluation and risk control strategies include 

defining the profit objectives and risk appetites intended for 

each trade (e.g., maximum loss). The third component is the 

trading management mechanism, which manages the trading 

position size, resources, time window, and risk. This component 

emphasizes the impact of real-world constraints, such as 

transaction costs, news, transaction volume limits, and volatility 

[52]. 

E. Training 

Once an agent has been developed from a training dataset 
and its variables have been adjusted on the validation set, the 
agent-trading strategy must be trained and evaluated on a new 
subset of the time-series data (namely, the test dataset). Here, a 
new subgroup is employed because the agent-trading strategy 
may be influenced by the training dataset. Therefore, it may 
overfit the data, producing an unrealistically high profitability. 
The training phase proceeds in three steps: testing the 
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performance of the methods, determining the forecasting 
horizon, and estimating the retraining period. 

1) Training dataset size: Most of the financial forecasting 

models divide a financial time series into training and testing 

datasets. This approach is static because the same data are used 

throughout the complete testing period, with no updates. 

Splitting the data into training and testing datasets reduces the 

quantity of data available for learning and the resulting design 

may exclude various significant price events. Moreover, the 

forecasting performance sometimes depends on the time-series 

distribution used in the training and test datasets. This 

dependence is problematic, as the performance can be driven 

artificially high. Alternatively, the forecasting model can be 

trained by dynamic sliding-window cross-validation. In this 

approach, several evaluations are performed on small amounts 

of sequentially ordered data. Because the training-time window 

size may strongly affect the forecasting accuracy, we trialed 

sliding windows of different sizes. 

2) Retraining period: Periodic retraining assesses the 

trading rules generated by the agent, thereby improving the 

average forecasting accuracy and accumulated profits. 

However, increasing the size of the training dataset over time 

may affect the forecasting performance. The price trends must 

be forecasted using an up-to-date training dataset representing 

the current market conditions. When designing the agent, the 

trading rules should be updated whenever the agent's wealth 

drops below a defined threshold value. This approach has been 

practiced in several automated agent-trading strategies [73]. 

F. Forecasting Evaluation 

Among the many performance measures of forecasting 
models for trading agents, the ROI is probably the most popular 
choice. 

1) Evaluation measure: The ROI represents the realized 

profits or losses of the trading strategy relative to the amount of 

money invested in the design. In our analysis, each trading 

decision was evaluated using the mean absolute percentage 

error (MAPE), mean absolute error (MAE), relative root mean 

squared error (rRMSE), and mean squared error, which are 

respectively calculated as follows: 
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Here, Rt and Ft are the actual and forecasted values, 
respectively. 

The investment performance was evaluated with three 
performance indicators: Rate of correctness (RC), rate of 
missing chances (RMC), and rate of failure (RoF). These 
performance measures are calculated by Eqs. 7, 8, and 9, 

respectively. The four criteria in these equations are defined in 
the contingency table (Table II). 
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TABLE II. CONTINGENCY TABLE OF VARIABLES IN THE INVESTMENT 

PERFORMANCE INDICATORS 

 
Forecasted Negative Forecasted Positive 

Real negative # of True Negative (TN) # of False Positive (FP) 

Real positive # of False Negative (FN) # of True Positive (TP) 

2) Risk control: A successful trading agent requires a risk 

control mechanism that protects the invested assets by a set of 

trading rules such as a stop-loss limit order. Risk control 

strategies must define the profit objectives and risk appetites of 

each trade. Here we employed the Sharpe ratio (SR), which 

assesses the investment performance relative to risk. The SR is 

calculated by Eq. 10. Note that the higher the SR, the better is 

the risk-adjusted return, and (by inference) the better are the 

trading rules. According to Eq. 10, 

   
    

 
√     (10) 

where µ is the mean of the portfolio returns, RF is the risk-
free rate, σ is the portfolio's standard deviation, and n is the 
number of observations in the time series. 

IV. RESULT 

The previous section described the essential features and 
parameters of an autonomous trading agent. To handle the 
various possible mixtures of such features and parameters, a 
systematic design approach is required for an autonomous 
trading agent. This section details the verification experiments 
of the proposed approach. The results are expected to assist the 
design of autonomous trading agents and decision support 
systems for investment arbitrage in stock markets. 

A. Data 

The effectiveness of the proposed autonomous trading-agent 
design was tested on three stock market indices: Yahoo Finance 
S&P500 (US) [74], Yahoo Finance FTSE100 (UK) [75], and 
the Yahoo Finance DAX (GER) [76]. For the analysis, we 
extracted four years of historical data from September 1, 2015 
to August 30, 2019. These three market indices were chosen for 
their popularity and strong liquidity in the global financial 
market. The study period covers various market conditions and 
time-series scenarios. The technical indicators were computed 
from the close, high, low, and opening levels of the three stock 
indices. All data were obtained from the Yahoo Finance 
websites. 

B. Trading Strategies for Comparison 

To verify the efficiency and effectiveness of the autonomous 
trading agent, we compared its trading performance with those 
of five well-known trading strategies: Buy and Hold (B&H), 
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technical analysis (TA), fundamental analysis (FA), zero-
intelligence with constraint agents (ZI), and GP. The B&H 
strategy is a reactive investment strategy that emphasizes 
buying several stock assets and holding them for an extended 
period, regardless of fluctuations in the market-price time series. 
The TA strategy forecasts an asset's price movement using TA 
indicators (see subsection 3.2.2), and the FA strategy analyzes 
the potential influencing factors of the asset-price time series 
(subsection 3.2.3). The ZI randomly places orders under given 
budget constraints. However, such benchmarking is based only 
on the architecture of the proposed RF agent. Whether our RF 
proposal outperforms the existing machine learning and 
artificial intelligence techniques is an open question. Does the 
proposed RF-based agent architecture effectively outperform 
the other architectures based on other forecasting techniques? 
To answer this question, we added a fifth trading strategy based 
on GP, an evolutionary approach that extends genetic 
algorithms. GP evolves the programs of artificial intelligence to 
generate applicable solutions in a decision tree structure. 
Decision trees are generated by combining various defined 
functions and terminals. Both the function and terminal sets are 
derived from the problem search domain. Here we employed 
the GP trading agent designed by [29], which searches over the 
space of TA indicators. 

C. Trading Performance Results 

In the experiments, we varied the time horizon and 
combination of input attributes (parameters). The reported 
values were averaged over 30 runs in each trading model. After 
determining the agent design's most significant attributes based 
on the forecasting performance, the dataset was divided into 
two subsets using sliding-window cross-validation. The subsets 
were used for training and validating the RF algorithm. 

After adjusting the model settings, we compared the 
performances of our RF-based agent design and the five 
competing trading agents: B&H, TA, FA, ZI, and GP. In the 
first evaluation, we measured the investment effectiveness of 
the RF-based agent using the ROI and SR as the investment 
performance metrics (a higher value indicates better 
performance). Table III compares the performance data of the 
six agents for each market index. 

TABLE III. COMPARISON OF ANNUALIZED RETURN ON INVESTMENT 

(ROI) AND SHARPE RATIO (SR) OBTAINED BY VARIOUS TRADING AGENTS 

FROM SEPTEMBER 1, 2015 TO AUGUST 30, 2019 

Stock 

Index 
RF B&H TA FA ZI GP 

S&P500 

ROI 
18.

5% 
2.4% 

11.5

% 

2.62

% 
1.6% 

11.9

% 

SR 1.7 0.97 1.2 0.9 0.1 1.1 

FTSE100 

ROI 9% −2.7% 6.6% 
−3.6

% 

−27.6

% 
7.5% 

SR 1.3 −0.2 1.1 −0.5 −0.01 1.03 

DAX 

ROI 
12.

2% 

−0.32

% 

10.2

% 

0.21

% 

−11.7

% 

10.8

% 

SR 1.4 −0.1 1.3 0.01 −0.6 1.4 
a RF: random forest; B&H: Buy and Hold; TA: technical analysis; FA: fundamental analysis; ZI: zero-

intelligence with constraint agents; GP: genetic programming 

The trading agent based on the RF model significantly 
outperformed the other trading agents over the four-year study 
period. The RF model achieved an average annualized profit of 
13.22%. On the S&P500 data, the SR of the RF-based model 
was 1.72, followed by 0.97 for the B&H strategy, 1.21 for the 
TA agent, and 1.12 for the GP agent. The RF strategy also 
delivered the highest ROI and SR on the FTSE100 and DAX 
datasets. The results of the B&H and FA agents were 
comparable, as demonstrated in Table III. 

The RF, TA, and GP agents employing the TA indicators 
significantly outperformed the remaining three trading agents. 
Therefore, generating the trading rules using TA indicators 
promises high investment results. However, determining the 
possibility of future trading achievement based on the ideal 
combination of TA indicators and its time horizon is a 
challenging task. 

The RF algorithm limits the number of attributes used 
without compromising the profitability of the trading strategy. 
In particular, the RF-based trading agent can outperform the 
B&H approach when the selected attributes (inputs to the 
machine learning algorithm) are appropriately combined. 

In summary, after studying the literature on automated 
trading agents and testing our RF-based approach, we conclude 
that a developed level of intelligence and diversity of the chosen 
attributes is essential for boosting the investment returns of the 
trading agent. Learning and adaptation intelligence can improve 
the ability of automated agents to process the market 
information and dynamics of price time series and thereby adapt 
to financial market events and different circumstances. 

D. Forecasting Accuracy 

In the second part of the study, we analyzed the forecasting 
accuracy of the RF and GP agents. As shown in Table IV, the 
RF- and GP-based forecasting models achieved strong RC, 
RMC, and RoF. For the RF agents, the RC ranged from 72.08% 
to 81.92% (average 77.22%), the RMC varied from 17.11% to 
24.46% (average 20.90%), and the RoF ranged from 5.84% to 
18.45% (average 13.18%). Clearly, the RF agents outperformed 
the GP agents in forecasting accuracy. We must clarify that the 
results in Table III influenced the accuracy of the forecasting 
performance. Moreover, selecting the right set of attributes 
improved the accuracy of classifying the training dataset, but 
does not guarantee better trading-strategy performance. Our 
findings suggest a substantial relationship between the profits 
generated and the fundamental/technical indicators, which may 
be important for creating practical trading rules. 

The results of the RF algorithm emphasize the importance 
of attribute selection (data preprocessing, time-series 
segmentation, dimensionality reduction, and variable 
adjustments) as a preprocessing stage. The proposed agent 
design can assist (to some extent) the forecasting of stock 
prices. Accordingly, we conclude that when designing a trading 
agent to predict stock prices, we must examine the attribute 
types used to build the trading strategy and their values. 
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TABLE IV. SUMMARY OF FORECASTING PERFORMANCES IN 30 RUNS 

OVER THE TESTING PERIOD, MEASURED BY THE RATE OF CORRECTNESS 

(RC), RATE OF MISSING CHANCES (RMC), AND RATE OF FAILURE (ROF) 

Stock 

Index 

R

C 

RM

C 
RoF 

MA

E 

MAP

E 

RMS

E 

S&P500 

RF 
81.9

2 
21.15 5.84 0.006 0.002 0.006 

GP 
74.3

1 
28.21 9.52 0.009 0.003 0.009 

FTSE100 

RF 
77.

65 

17.1

1 

15.2

5 

0.00

9 
0.007 0.009 

GP 
71.

46 

23.1

2 

19.2

6 

0.01

0 
0.006 0.009 

DAX 

RF 
72.

08 

24.4

6 

18.4

5 

0.00

7 
0.004 0.008 

GP 
68.

13 

28.0

4 

19.6

4 

0.00

9 
0.004 0.009 

a MAE: mean absolute error; MAPE: mean absolute percentage error; RMSE: root mean squared error 

E. Statistical Significance Test 

The reliability and precision of the findings were tested in a 
paired t-test, which contrasts the means of two agents’ datasets 
with variable ROIs. For this purpose, we divided the dataset 
into two equal subsets. An adequate paired t-test requires a 
roughly normally distributed variation of the data. Therefore, 
the normality was checked through a normal probability plot 
and a Jarque–Bera test. 

The paired t-test was applied by specifying two values: the 
t-statistic value tsv and the t-critical value (two-tail variable) tc 
under the 95% confidence level. The first and second datasets 
were represented by A and B, respectively, where a ∈ A and b ∈ 
B. The means of A and B were denoted as mA and mB, 
respectively. Both datasets were of equal size n. The numeral i 
indexed the record in both datasets, where 1≤ i ≤ n. The null 
hypothesis stated that B is pairwise statistically equivalent to A, 
where mA − mB = 0. We define a new dataset D with n records, 
in which each form is specified by di = ai – bi, di ∈ D. The mean 
and standard deviation of this set were denoted by mD and σ, 
respectively. The tsv was calculated as 

    
  

  (  )
   (11) 

where SE(µD) is the standard error of the mean difference, 
defined as 

  (  )  
√ 

 
    (12) 

The t-critical value was determined from the t-distribution 
table. If |tsv|< |tc|, the difference between datasets A and B is 
trivial, and we can accept the null hypothesis. Table V shows 
the t-statistic (tsv) and Pearson correlation (corr) values of the 
paired t-test at the 95% confidence level. The results of the six 
trading agents on the first part of the dataset approximated those 
on the second part of the dataset with 95% confidence. 
Furthermore, the correlation coefficients demonstrate a high 
level of dependency between the results of the two datasets. 

TABLE V. VALUES OF THE T-STATISTIC VALUE (TSV) AND PEARSON 

CORRELATION (CORR) OF THE PAIRED T-TEST AT THE 95% CONFIDENCE 

LEVEL (THE T-CRITICAL TWO-TAILED VALUE = 2.07) 

Agent Type tsv corr 

RF 3.54E−09 +0.98 

B&H 3.01E−10 +0.94 

TA 3.61E−09 +0.98 

FA 2.82E−09 +0.95 

ZI 2.32E−09 +0.97 

GP 3.36E−09 +0.97 

V. DISCUSSION 

This study designed a simple automated intelligence agent 
for trading in the financial markets. An algorithmic (automated) 
trading agent is vital for developing trading strategies and 
forecasting models. This study provides a systematic approach 
for designing a trading agent using the RF approach. The 
approach was experimentally tested on four years of historical 
data of three stock indices: S&P500, FTSE100, and DAX. 

The contribution of our work was twofold. First, we 
presented the main steps of building an intelligent automated 
trading agent for stock market trading. We categorized the main 
stages into five essential components: (i) the primary goal of the 
trading strategy (e.g., short term, long term, and high 
frequency); (ii) the context of the financial market domain; 
(iii) the input variables used; (iv) the proposed machine learning 
technique, and (v) diversity of the data sources. 

Our second contribution was the design and implementation 
of adaptive RF trading agents for financial markets using 
various parameters (TA indicators and fundamental factors). It 
was hypothesized that trading agents learn, adapt, and identify 
periodic patterns in price time series. The RF trading agent 
evolved the trading rules of financial market trading investment. 
After the learning process, the RF algorithm achieved higher 
returns and better forecasting accuracy than the Buy & Hold 
trading strategy and agents based on technical and FA. We 
believe that this outperformance was achieved by selecting the 
right set of attributes (i.e., the inputs to the machine learning 
algorithm). 

In future research, we could adapt machine learning 
techniques to dynamically select the appropriate set of attributes 
based on the market conditions. For this purpose, data reduction 
and segmentation could be combined with the sequential steps 
of developing an intelligent selection approach, as proposed in 
this study. 

As another research direction, we could systematically test 
diverse intelligence trading strategies in the automated 
intelligence-based approach, and hence assess the required level 
of intelligence for designing autonomous trading agents. 
Examining and understanding the impact of complexity on a 
trading strategy might improve the effectiveness of that 
strategy. Nonetheless, a straightforward trading-strategy design, 
such as that developed in this study, might be more suitable 
than a complex one. To conclude, we should explore different 
artificial intelligence techniques and their effects on the 
effectiveness and trading rules of the strategy. 
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