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Abstract—The manufacturing industry has been 
revolutionized by Industry 4.0, vastly improving the 
manufacturing process, increasing production quality and 
capacity. Machine-to-Machine (M2M) communication protocols 
were developed to strengthen and bind this ecosystem by 
allowing machines to communicate with each other. The 
SECS/GEM protocol is at the heart of the manufacturing 
industry, thriving as a communication protocol and control 
system for years. It is a manufacturing equipment protocol used 
for equipment-host data communications. However, it is not 
without drawbacks, despite being a widely adopted 
communication protocol used by leading industries. SECS/GEM 
does not offer any type of security features as it was designed to 
work in a closed network. Such shortcomings in the protocol will 
allow attackers to steal secrets such as manufacturing processes 
by looking at recipes, perform reconnaissance prior to sabotage 
attempts, and can have severe implications on the entire 
industry. This paper proposes a mechanism to secure 
SECS/GEM data messages with AES-GCM encryption and 
evaluate the performance with the standard SECS/GEM 
protocol. The results from our evaluations showed that the 
proposed mechanism achieves data confidentiality and 
authenticity with a negligible overhead of 0.8 milliseconds and 
0.37 milliseconds when sending and receiving a message, 
respectively, compared to the standard protocol. 

Keywords—SECS/GEM; HSMS; cybersecurity; industry-4.0; 
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I. INTRODUCTION 
Industry 4.0 is bringing forth significant changes to the 

manufacturing industry. Industry 4.0 aims to take the 
manufacturing industry to the next level of technological 
advancement for an interconnected manufacturing ecosystem 
where machines communicate through the network to 
exchange messages, instructions, and data. With sophisticated 
machinery and automation, more integrated machine-to-
machine communication, real-time monitoring and data 
collection, machine learning, and enhanced inter-connectivity, 
Industry 4.0 is changing the existing manufacturing process for 
the better and improving overall production [1]. As machines 
are interconnected, they generate activity analysis, predictive 
diagnostic data, performance statistics, and other monitoring 
and control information. Thus, real-time decisions can be made 
quickly with advantages such as time and cost-saving. In many 
circumstances, human interaction will be removed from the 
factory environment. With predefined and maintained settings 
and parameters, the factory equipment can make crucial 

decisions by itself, ensuring maximum cost-effectiveness for 
the industry. 

Industry 4.0 deals with large volumes of data. Therefore, 
data security is a major concern when trying to achieve the true 
potential of Industry 4.0. It is essential to implement end-to-
end encryption to fix vulnerabilities against various attacks [2]. 
With Industry 4.0's increased data density and the convergence 
of information and operational technologies, new issues 
emerge, particularly in the field of cybersecurity [3]. Cybers-
attacks are the most critical problem that all countries are 
concerned about. It is a method of safeguarding digitally stored 
corporate data and valuable information about a system or 
subject from misuse, unauthorized access, and theft. 
Cyberattacks have become more common as network 
connections have grown, owing to a growing tendency to 
exploit data for various reasons, including financial gain and 
strategic reasons [4]. It is especially true in the case of 
cyberattacks against the manufacturing industry. 

Although the manufacturing industry has been gradually 
updating and improving its IT security over the years, it can be 
seen in the Verizon Data Breach Investigation Report 2019, 
detailing 352 cyberattack incidents, out of which 87 were 
against the manufacturing industry. Recent attacks and security 
breaches against the manufacturing industry are alarming, 
making it a highly targeted and vulnerable entity for attackers 
[5]. A survey by the Engineering Employers' Federation (EEF) 
shows that 60% of manufacturers were victims of cyberattacks 
at some point in time, and one-third of the affected 
manufacturers have suffered financial losses and market loss. 
A 2021 study by Cybersecurity Ventures predicts that 
corporations worldwide will suffer losses up to $10.5 trillion 
yearly by 2025 resulting from cyber-attacks, estimated in 2015 
to be $3 trillion [6]. The cyberattack on Taiwan Semiconductor 
Manufacturing Company (TSMC) was in Taiwan's history, the 
worst data security infringement to befall them. It completely 
exposed data security vulnerabilities at TSMC's production 
foundries. These cyber-attack incidents are happening as the 
manufacturing industry embraces the shift to Industry 4.0, with 
more and more machines becoming connected for 
communications and automation [7]. 

The SECS/GEM protocol is at the heart of the 
semiconductor industry in companies such as Intel, Samsung, 
TSMC, IBM, Qualcomm, and many more [8]. It has been 
profoundly used as a Machine-to-Machine (M2M) 
communication protocol and control system for decades. The 
SECS/GEM protocol is a specially designed semiconductor 
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manufacturing equipment protocol used for equipment-host 
data communications. 

A study by A. Laghari et al. [8] reveals that although 
SECS/GEM has been widely adopted and is critical to the 
semiconductor manufacturing industry, it is not without 
drawbacks. It does not offer any type of security features. It 
uses binary encoded messages to communicate between 
machines, making it open for anyone on the network to read 
the data; thus, data confidentiality is lost. Attackers on the 
network can modify data inside the messages as there are no 
authenticity checks. SECS/GEM protocol standards were 
designed in an era where machines were not required to be 
connected to the network [9]. The machines were initially 
expected to be working behind an air-gapped network and 
therefore did not require security features like network and data 
security. Thus, the focus was only needed on physical security. 
With Industry 4.0, the machines are required to be connected to 
the network for accessing data, analysis, and much more. 
These requirements open up air-gapped networks, and hence, 
the attack surface is enlarged in the process. Thus, 
cybersecurity in the manufacturing ecosystem is of the most 
importance. Data confidentiality, authenticity, and availability 
in machinery connected to the industrial network are all 
considered in the context of cybersecurity [10]. SECS/GEM is 
susceptible to these issues since it does not provide any kind of 
security features. 

As SECS/GEM is a widespread M2M communication 
protocol used all around the world, we cannot simply introduce 
a new protocol. This paper proposes a security mechanism for 
the SECS/GEM protocol to attain data confidentiality and 
authenticity in SECS/GEM communications. We propose to 
encrypt the data payload of SECS/GEM messages to protect 
the data from attackers. In addition, we propose to use a hash-
based tag to verify message data authenticity to ensure data has 
not been modified or corrupted by attackers. 

To our knowledge, no prior research has been done on the 
security aspects of the SECS/GEM protocol. Hence, this is a 
novel field of study and has no known related works for 
comparison. 

The rest of the paper is structured as follows. In Section II, 
the SECS/GEM protocol standards are described briefly. 
Section III discusses the security issues found in SECS/GEM 
protocol standards. In Section IV, we present the proposed 
mechanism in detail. Section V presents the implementation 
and testbed details. In Section VI, we present our evaluation 
and results for the proposed mechanism. Section VII concludes 
this work and discusses future work. 

II. SECS / GEM PROTOCOL STANDARDS 
SEMI (formerly Semiconductor Equipment and Materials 

International) has released five major protocols over the years. 
With the first release in the year 1978 and the latest revision 
being released in 2020. Though the SECS/GEM 
communication protocols were published two decades ago, 
they are regularly maintained and published. This section is an 
overview of the major SECS/GEM protocol releases. Table I 
gives a brief description of SECS/GEM standards. 

TABLE I. SECS / GEM PROTOCOL STANDARDS 

Year SEMI 
Standard Description 

1978 E4  
SECS-I 

SEMI Equipment Communications Standard-I 
protocol allows various equipment and a host to 
communicate over an RS-232 connection. 

1982 E5  
SECS-II 

SEMI Equipment Communications Standard-II 
facilitates data exchange between equipment and host as 
a specific stream and function message in a predefined 
format. 

1992 E30  
GEM 

Generic Equipment Model aids in specifying usage of 
any particular SECS-II message as well as the 
monitoring of equipment behavior when communicating 
with the host 

1994 
E37.1  
HSMS-
SS  

High-Speed SECS Message Service – Single Session 
is a TCP/IP-based communication protocol that manages 
a single machine-to-machine communication link 
between equipment and a host. 

1994 
E37.2  
HSMS-
GS 

High-Speed SECS Message Service – Global Session 
is an extension to E37.1 with handling multiple sessions 
and maintaining the state of the equipment as an 
additional feature. 

A. SEMI Equipment Communications Standard-I 
The SEMI Equipment Communications Standard-I (SECS-

I), also referred to as SEMI E4 standard, is the oldest 
SECS/GEM standard. The exchange of communication 
messages between manufacturing equipment and a host 
computer is described in this standard. The equipment and host 
are not required to be familiar with one another to exchange 
messages [11] [12]. The SECS-I standard uses the RS-232-c 
standard for communication. Over RS-232, the SECS-I has a 
sluggish data transfer rate and does not offer support local area 
networks based on TCP/IP. The messages and data are 
exchanged asynchronously. The connection is bidirectional but 
limited to work in half-duplex mode. The rate of 
communication is generally between 9,600 baud and 19,200 
baud. The protocol uses 256-byte blocks for multiblock data 
transfers. However, longer distances are not suitable for RS-
232 transmission, and it has a low noise immunity. SECS-I is 
only used in old legacy production machinery and is not used 
in any newer machinery. 

B. SEMI Equipment Communications Standard-II 
The SEMI Equipment Communications Standard-II 

(SECS-II), also referred to as SEMI E5 standard, is a 
communication protocol that defines a generic messaging layer 
to send or receive any given data structure supported by the 
standard. Additionally, it specifies a collection of standard 
messages, each with its purpose, structure, and identity. It 
decodes the message type, message structure, data types, and 
message contents sent between the manufacturing equipment 
and the host. The message types are specified for various 
categories that cover a wide range of functions, generic as well 
as for specific purposes. The messages are divided into streams 
based on the particular category the message falls into (e.g., 
equipment status is dealt by Stream-1, whereas recipe 
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management specifications are handled by Stream-7, etc.), with 
functions being individual messages within each stream [13]. 

The streams and functions are represented by numbers of 
size 1 byte. Since only one byte is used, the numbers start from 
0 and can go up to 255. The combination of stream and 
function numbers can be represented as SnFm, wherein n 
represents stream number and m represents function number 
designated for data exchange. The request messages are 
represented by odd-numbered function codes, whereas 
response messages are represented with even-numbered 
function numbers. For example, a request message of Stream 1 
and Function 13 (S1F13) is an "Establish Communication 
Request" message for a host/equipment. Upon receiving an 
S1F13 message, the equipment/host would send a stream-1 and 
function-14 (S1F14) message as a reply. A request message 
and its corresponding response message are called a transaction 
(i.e., S1F13/S1F14). A unique ID is assigned to each 
transaction. The sender specifies the SystemBytes, a field in 
the message header of size 4 bytes. The SystemBytes is used to 
link a request message with the respective response message. 

The SECS-II standard provides data types for encoding 
data in a compact, bandwidth-efficient format. Integers, both 
unsigned and signed, can be stored in 1-byte, 2-byte, 4-byte, 
and 8-byte sized fields. Floating-point values can be stored in 
fields of size 4 and 8 bytes. On/off, values are represented 
using the 01-byte Boolean data type. Strings are described 
using the ASCII data type, while file data such as images and 
statistical plots are stored using the binary datatype. The List 
data item type can contain nested lists as well as a sequence of 
other primitive data items. The total number of items in a list is 
obtained from the length bits of the List data item. The 
maximum size for a data element within a SECS-II message is 
16,777,215 bytes (approximately 16.5MB) long, according to 
the E5 standard. A message could contain only one single data 
element (for example, binary data or encoded text), or a large, 
sophisticated data structure (for example, lists stored within 
another list), or even no data at all. 

C. Generic Equipment Model 
The Generic Equipment Model (GEM), also referred to as 

SEMI E30 standard, defines a set of minimum requirements for 
describing factory equipment using a generic model, as well as 
optional features, use cases, and scenarios. A subset of SECS-
II messages is used in the GEM model [14]. The GEM 
interface includes basic requirements as well as additional 
equipment capabilities. The GEM standard defines the generic 
model for equipment so that whatever the scale or 
sophistication of the production equipment, a generic interface 
(GEM) can be implemented for it. Some basic equipment, for 
example, does not require recipe management because it does 
not have any recipes for processing. For complex equipment, 
having many recipes to pick from, the requirement is that it 
must push/pull recipes to and from the host machine. GEM is 
also scalable in terms of data size. Simple devices with limited 
capabilities, for example, may publish a dozen different 
collection events. On the other hand, complex factory 
equipment may generate large amounts of events and data and 

publish many collection events in a short period. Yet, both can 
use the same GEM interface. 

D. High-Speed SECS Message Service 
High-Speed SECS Message Service (HSMS), also referred 

to as SEMI E37 standard, is a SEMI standard that defines the 
transport protocol for  SECS/GEM message communications 
[15] [16]. HSMS is based on TCP/IP. It is, in fact, a derivation 
of TCP/IP with minor modifications and employs nearly the 
same techniques for creating connections as specified in RFC 
793 [17]. One such change is that RFC 793 specifies to allow 
the communicating parties to connect to each other 
simultaneously. The HSMS protocol, on the other hand, 
restricts the connection-establishment procedure and defines 
two separate modes to establish connections, the passive and 
active modes. Devices running active mode can only initiate a 
request to establish a connection. The devices in passive mode 
can only accept connection establishment requests from other 
devices in active mode. HSMS carries SECS-II messages in 
binary encoding format to monitor status, control processes, 
report on events, and perform numerous other machinery 
operations after a communication link between equipment and 
host has been established. Between the communicating entities, 
the established connection is maintained for as long as required. 
Messages are exchanged between equipment and host until 
either device disconnects for some reason, such as 
hardware/software upgrades, machine additions or removals, or 
maintenance. The messages are sent as a data stream with a 
fixed header structure. The header fields are described in Table 
II. The first 4 bytes determine the encoded SECS-II message's 
total length, including the size of the header (10 bytes). The 
smallest HSMS message is 10 bytes (i.e., just the header size), 
while the largest conceivable size of the message is 4 GB. The 
structure of a HSMS message is depicted in Fig. 1. 

TABLE II. HSMS HEADER FIELDS 

Header 
Field Size Description 

Session 
ID 

2 
bytes 

It is used to associate reference between control 
messages and subsequent data messages 

Stream 1 
byte Represents the Stream number of the message 

Function 1 
byte Represents the Function number of the message 

PType 1 
byte 

It is an enumerated type to define encoding used. 
HSMS defines PType with value zero to mean SECS-II 
message encoding. Non-zero PType values are reserved 
for subsidiary standards' future use. 

SType 1 
byte 

It is an enumerated type to identify if the message is a 
control message (non-zero) or a data message (zero) 

System 
Bytes 

4 
bytes 

It is used to associate primary messages with the 
respective secondary message (reply) 
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Fig. 1. Standard HSMS Message Structure. 

The SECS/GEM interface allows factory hosts to monitor 
equipment actions and provides total equipment control. 
Everything happening on the machinery can be monitored, and 
enhanced logic can be put on the equipment to make better 
decisions. Various applications can be implemented using 
SECS/GEM to monitor and analyze statistical data, 
troubleshoot, predict possible maintenance requirements, 
control processes for feedback/feedforward, check usage, track 
materials, validate recipes, etc. These systems also eliminate 
the requirement for an operator-to-equipment interaction, 
resulting in fewer operators needed in the production 
environment. Factories can reduce material scrap and waste by 
using effective recipe management. For example, storing 
golden recipes in a centralized location via the SECS/GEM 
interface makes sure that the right recipes and materials are 
used. 

III. SECURITY ISSUES 
The SECS/GEM protocols in its original standard do not 

specify any encryption for its message data and all messages 
between equipment and host are unencrypted binary encoded 
data. This shortcoming introduces opportunities for attackers to 
exploit and disrupt the health of the production environment. 
Attackers can launch attacks, disrupt communications, steal 
intellectual property belonging to the company, and more. 

 
Fig. 2. Attacker on the network Eavesdropping Communications. 

In this paper, we focus on data confidentiality and 
authenticity issues in SECS/GEM protocols. Due to data being 
transferred in binary encoded format, attackers can eavesdrop 
on equipment-host communication and lead to loss of data 
confidentiality. Fig. 2 shows how an attacker may position 
themselves on the network to eavesdrop on communication 
messages passively. Attackers can learn machine parameters 
and settings, product design information from communication 
messages. Intellectual property such as product designs, 
parameters, and settings for the manufacturing process can be 
stolen by attackers for monetary gain. Such an attack can be a 
life-or-death situation for companies as the industry is always 
competitive, and loss of IP can cost a company their leadership 
in the industry. 

A study by A. Corallo et al. [10] shows that if a product's 
design information is no longer confidential, it could 
negatively affect the company's competitive advantage. The 
loss of unique knowledge about the items and their 
manufacturing methods may work in competitors' favor. Data 
confidentiality of machine settings and parameters or 
machinery status, if lost, could lead to a decline of the 
company's reputation. This information provides insight into 
the production ecosystem's health. Therefore, if sensitive 
information such as machine malfunctions are revealed, the 
company's reliability would be questioned and could lead to 
investors leaving and losing customers. The loss of 
confidentiality of product properties, like quality indicators, 
would negatively affect the company's leadership and change 
in favor of its competitors. In fact, in the event of a product 
fault, competitors may exploit the situation by using ad hoc 
styled marketing strategies to win a larger market share. 

Attackers can also launch tailored attacks such as Man-In-
The-Middle (MITM) attacks to disrupt production and cause 
financial losses as part of sabotage operations. Such attacks can 
range from disrupting communications, injecting false data, 
causing machine failures, etc. It is easy for attackers to launch 
such attacks as current SECS/GEM protocol implementations 
do not provide data confidentiality or perform authenticity 
checks on the data. 

To further discuss the seriousness of this issue, consider the 
scenario where an attacker launches a passive eavesdropping 
attack on the network and listens to communications. Over 
time the attacker can gather enough data about the machine 
settings and parameters to launch MITM attacks. For example, 
attackers may learn parameters that can make machines run 
differently, cause malfunctions or create defective products that 
fail quality checks. Such knowledge will let attackers launch 
attacks that will look normal to the system and intentional 
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disruptions of the manufacturing systems. Attacks of this kind 
can cause failure rates to be high and make it look like the 
machines malfunction or fail even when they are not. This type 
of attack is proven to be possible. 

The infamous STUXNET virus is a real-life example of the 
previously described scenario which targeted the Iranian 
nuclear program and caused equipment to malfunction [18], 
[19]. The STUXNET virus had the pattern described in the 
example scenario. It recorded data from the Supervisory 
control and data acquisition (SCADA) systems controlling the 
equipment during its incubation period. It then starts actively 
attacking the facility by sending malicious parameters to make 
the equipment fail. It replayed the previously recorded data 
during the attacks to trick the operators from knowing the 
actual status of the equipment [20]. It appeared to the operators 
as just equipment malfunction. In this case, a slight change in 
the rotation speed of certain parts of the equipment caused 
them to malfunction and explode. STUXNET is considered to 
be an attack on a nation. If a nation is at risk from such attacks, 
it only makes it more apparent that a manufacturing company 
is even more susceptible to such attacks. 

An attack such as STUXNET on the manufacturing 
industry may be a targeted attack against a company's 
sustainability. An attacker will launch attacks to disrupt 
operations until the company is forced to stop operations due to 
substantial financial losses. If the attacker cannot see the data 
being transmitted through the communication messages, it can 
help protect against the attacker’s reconnaissance attempts and 
stall following attacks. Unsolicited messages from attackers 
with possibly malicious instructions can be blocked if the data 
is checked for authenticity. 

Hence, data confidentiality and authenticity have a 
significant impact on the industry's ecosystem. The 
SECS/GEM protocol is at the heart of the semiconductor 
industry, and therefore these issues are of serious nature. With 
the leap of the manufacturing industry into Industry 4.0, 
machines will need to communicate with other machines 
through the production network. With the ongoing Corona 
Virus Disease 2019 (COVID-19) global pandemic, during the 
time of this research, the need for remote access and 
communication with production machines has become more 
necessary due to work-from-home scenarios [21]. Managers 
and operators overlooking factory equipment require remote 
access to check equipment status all the time. However, 
allowing machines to connect to the network and operations 
personnel further increases the attack surface for 
cybercriminals to gain access to the production environment. 
Therefore SECS/GEM protocol's method of communication 
with binary encoded data becomes a major security issue and 
must be addressed to thwart attack attempts from 
cybercriminals. 

All major industries are attempting to bring their factories 
up to the Industry 4.0 standards to reap the benefits. Machine-
to-Machine communication is essential to automate the 
processes in every industry. For example, machines can 
communicate with other machines when they need more 
components, a change of recipe, or when an error occurs, the 
previous machine on the production line needs to stop sending 

more batches to process. Such coordination between factory 
equipment can help a lot with automation and with the overall 
efficiency of the manufacturing process as Industry 4.0 
compatible factories would need lesser human interaction. 

IV. PROPOSED MECHANISM 
This section describes, in detail, the proposed mechanism 

for preserving data confidentiality and authenticity in 
SECS/GEM during transmission in production networks. Data 
confidentiality is a critical part of the production network since 
data may go through several hops. This can be ensured using a 
secure encryption mechanism. This is necessary due to the 
wide range of devices, services, and networks that 
communicate/operate with a lot of data and thus present 
sufficient opportunity for data confidentiality violations as well 
as modifications due to the ease with which data may be 
accessed in SECS/GEM communication [22]. A data transfer 
mechanism for secure and efficient SECS/GEM 
communication is proposed in response to this requirement. 
The proposed mechanism is designed for the HSMS protocol 
in the SECS/GEM protocol stack. HSMS was chosen as it is 
the latest SECS/GEM protocol and is supplied with the latest 
machines. 

We propose to use the Advanced Encryption Standard 
Galois/Counter Mode (AES-GCM) encryption scheme to 
achieve data confidentiality in SECS/GEM communication. 
Galois/Counter Mode (GCM) is one of several modes available 
for symmetric-key cryptographic block ciphers. It is adopted 
widely for its performance and throughput rates. With 
inexpensive hardware resources, throughput rates as high as 10 
Gbps can be achieved [23]. It is an authenticated encryption 
algorithm that provides both data confidentiality and 
authenticity. GCM is defined for block ciphers that operate on 
a block size of 128 bits, and hence AES-GCM is used. 

A. Proposed Mechanism Design 
The proposed mechanism is designed to encrypt the data 

payload of the HSMS packet and verify its authenticity at the 
receiver end. The proposed mechanism's packet structure is 
depicted in Fig. 3. The message has 4 bytes of message length 
denoting the size of the HSMS message, including the header 
and payload length. The header of the message consists of 10 
bytes. The header fields are described in Table II. 

The header and the length bytes follow the same structure 
as in the standard HSMS message. The message payload, 
however, has a different structure from a standard HSMS 
message data payload. The data message payload of the 
proposed mechanism has a structure, as depicted in Fig. 3. It 
has fixed sizes for certain data at the beginning and end of the 
payload structure. The first 16 bytes of the message payload is 
the nonce. Next comes the ciphertext data message of variable 
length up to maximum payload size in bytes minus sum of 
nonce size and tag size. The last 16 bytes of the message 
payload is the message tag. 

The nonce is a pseudorandom value of length 16 bytes. It is 
generated by the encryption mechanism as an input for internal 
use. The nonce is similar to an initialization vector (IV) used in 
various encryption schemes. The same nonce is required to 
decipher the ciphertext back into plaintext. 
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The tag is a hash of length 16 bytes generated by the 
encryption mechanism. It is used to verify the message's 
authenticity. The tag is computed during the deciphering 
process and checked with the sender's tag to verify message 
authenticity. 

B. Proposed Mechanism Flow 
Fig. 4 illustrates the flow of the proposed mechanism. 

Three inputs are required for the encryption mechanism to 
work, the pre-shared key, a nonce, and the plaintext data. The 
pre-shared key is a 256-bit symmetric encryption key (32 
bytes). The nonce is a pseudorandom value of size 128 bits (16 
bytes). It is used as an IV for the encryption scheme and the 
hashing function used to generate the message verification tag. 
The plaintext data is the HSMS message's original payload. 
The encryption scheme is AES-GCM 256, as the key is 256 
bits in length, and a longer key implies increased security 
against exhaustive brute force attacks [24]. 

The algorithm used to encrypt the payload and generate the 
tag is shown in Fig. 5. The plaintext data is passed into the 
encryption mechanism along with the pre-shared key. A 
pseudorandom nonce is generated on the fly and is used as an 
initialization vector for the encryption mechanism's internal 
counter. The same nonce is required at the receiver end to 
decipher the ciphertext and is written to the data payload as it is 
safe to share nonce along with the message. The nonce is 
written to the first 16 bytes of the message payload. The 
encryption scheme then encrypts the data as 128-bit blocks 
using the provided key and part of the nonce as an IV for its 
internal counter. The ciphertext data is then appended to the 
message payload after the nonce. Upon completing the 
encryption process, a tag is generated by the encryption 
mechanism and written to the last 16 bytes of the message 
payload. This tag is essentially a hash generated by the 
encryption mechanism. The tag is used to verify the message 
authenticity on the receiver's end. 

 
Fig. 3. Proposed HSMS Message Structure with Encrypted Data. 

 
Fig. 4. Proposed Mechanism. 
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The algorithm used to decrypt the payload and verify its 
authenticity is shown in Fig. 6. On the receiver end, the data 
payload of the HSMS message is read as in the packet structure 
for the proposed mechanism. The first 16 bytes of the message 
payload are read as the nonce. Since the last 16 bytes of the 
encrypted payload is the tag generated by AES GCM, 16 bytes 
are subtracted from the length of the remaining payload, and 
the data is read for that length. Equation (1) can be used to 
calculate the size of the ciphertext data within the payload: 

Clen = Plen – Nlen + Tlen               (1) 

Clen is the ciphertext length computed by calculating the 
difference between Plen, the payload length, and the sum of Nlen 
and Tlen, where Nlen is the size of nonce and Tlen is the size of 
the tag. The nonce, ciphertext, and the pre-shared key are 
passed in as inputs to the decryption mechanism. The 
decryption mechanism takes 128-bit blocks of cyphertext and 
decrypts them. After decryption, a tag is generated by the 
decryption mechanism. This tag would be the same as the tag 
obtained from the encryption mechanism. If the tags match, the 
message is accepted; otherwise, the payload's authenticity fails, 
and the message is rejected. 

 
Algorithm: Send HSMS message with encrypted data 

1 Start 

2 If the message length is 10, then 
Go to step 7 

3 nonce = generate random value. 

4 ciphertext = encrypt the payload with preshared-key, nonce and 
get ciphertext output 

5 tag = Get message authentication tag from AES-GCM output 

6 Replace message payload with nonce + ciphertext + tag 

7 Send message 

9 End 

Fig. 5. Algorithm to Encrypt Payload and Generate Tag. 

 
Algorithm: Receive HSMS message with encrypted data 

1 Start 

2 If the message length is 10, then 
Go to step 9 

3 nonce = read first 16 bytes of payload 

4 ciphertext = read payload size – 32 bytes of data  

5 plaintext = decrypt ciphertext with preshared-key, nonce and get 
plaintext output 

6 tag = Get message authentication tag from AES-GCM output 

7 sender-tag = read last 16 bytes of payload 

8 If sender-tag is the same as tag, then 
Replace message payload with plaintext 

Else 
Drop the message and go to step 10 

9 Accept and process the message 

10 End 

Fig. 6. Algorithm to Decrypt the Payload and Verify the Authenticity. 

The proposed secure version of the HSMS protocol runs on 
a different port from the standard HSMS protocol. For example, 
if the standard version runs on port 5000, the proposed version 

can run on port 5001. The secure version is thus 
distinguishable from standard communication protocol. A 
different port is required because the standard protocol would 
not be expecting an encrypted payload and may run into errors 
when trying to parse the payload. The proposed mechanism 
acts as an overlay protocol. It handles data confidentiality and 
authenticity on both ends and then forwards the message to the 
next layer, where the message is processed. 

V. IMPLEMENTATION AND TESTBED SETUP 

A. Implementation 
We used secsgem from [25], a python implementation of 

SECS/GEM protocols, as the base for our implementation. The 
implementation is free and available online on GitHub. For 
implementing AES-GCM encryption over secsgem, we used 
the Python Pycryptodome library from [26]. Pycryptodome is a 
library of implementation for cryptographic algorithms. 

B. Experimental Testbed Setup 
Our testbed consists of two machines running SECS/GEM 

simulator with Machine-I acting as the host and Machine-II as 
the equipment. Both machines have the configuration as stated 
in Table III. 

TABLE III. EXPERIMENTAL TESTBED MACHINE CONFIGURATION 

 Specification 
Processor Intel Core i3-9100F @ 4.2Ghz  
Memory (RAM) 2 GB 
Operating System Ubuntu 18.04 LTS  

Network 100Mbps ethernet  

Machine-I (host) was set up to be the active device 
initiating connections to machine-II. Machine-II (equipment) 
was set up to be a passive device listening for connections from 
Machine-I. 

VI. PERFORMANCE EVALUATION AND RESULTS 
For the evaluation of the proposed mechanism, the host 

machine was configured to connect to the equipment machine 
and send over 1000 SECS/GEM messages at regular intervals. 
The SECS/GEM implementation was configured to compute 
the time taken for processing while sending and receiving 
messages and store it in a log file. The experiments were 
conducted for both the standard HSMS protocol and the 
proposed mechanism. The processing times were then obtained 
from the log files for each experiment. The processing time 
obtained from the log files was labeled as described in Table 
IV. 

TABLE IV. PROCESSING TIME: LABEL DESCRIPTION 

Label Description 

Host-S the processing time taken by the host to process the initial 
message to be sent (to equipment). 

Equip-R the processing time taken by the equipment to process the 
message received (from the host). 

Equip-S the processing time taken for the equipment to process the reply 
to be sent (to the host). 

Host-R the processing time taken by the host to process the reply 
received (from equipment). 
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C. Processing Time 
The evaluation of the performance of the standard HSMS 

protocol and the proposed mechanism experiments and 
obtained the following results. 

The standard HSMS protocol experiment's results are 
plotted in Fig. 7. It can be observed that the host takes the 
longest time to send a message (Host-S), followed by the reply 
being sent from the Equipment (Equip-S). This variation is due 
to the differences in the size of the data payload. Host-S is the 
initial message, and Equip-S is the reply, essentially two 
different messages. The time taken for the host to process the 
response from the equipment (Host-R) takes the least amount 
of time, whereas processing time for the equipment to receive 
data (Equip-R) is slightly higher. This shows that the pattern in 
Host-S and Equip-S is the same in Equip-R and Host-R due to 
varying payload sizes of the initial message and reply message. 

The processing times taken for the proposed mechanism are 
plotted in Fig. 8. The graph shows that the processing time for 
the host to send data (Host-S) was the longest. Following Host-
S, the second-longest was the time processing time taken for 
the equipment to send a reply (Equip-S). The time taken for the 
equipment to process the message from the host (Equip-R) and 
the time taken for the host to process the reply from the 
equipment (Host-R) were similar. However, the processing 
time Equip-S was below the processing time Host-R for the 
most part. The pattern in the standard HSMS experiments is 
also seen in this experiment, meaning very well that the 
different sizes in the initial messages and the replies influence 
the processing time. 

 
Fig. 7. HSMS with Data Encryption. 

 
Fig. 8. Standard HSMS Experiment. 

We computed the minimum, maximum, mean, and 
standard deviation in processing time for both the standard 
protocol and the proposed mechanism from the data we 
obtained in our experiments. Table V shows the mentioned 
metrics for the processing times of the standard protocol. It is 
seen that the mean processing time for Host-S and Equip-S is 
between half millisecond and one millisecond and Equip-R, 
and Host-R is below 1 microsecond. 

TABLE V. PROCESSING TIME (MILLISECONDS): STANDARD HSMS 

 Host-S  Equip-R  Equip-S Host-R  

Min 0.8607 0.0243 0.5054 0.0217 

Max 0.9217 0.0248 0.5400 0.0234 

Mean 0.8941 0.0245 0.5260 0.0224 

SD 0.0218 0.0002 0.0112 0.0006 

Table VI shows the metrics calculated for the processing 
time taken by the proposed mechanism. The results show that 
the mean processing time for Host-S and Equip-S is between 
1.6 milliseconds and 1.4 milliseconds, and approximately 0.4 
milliseconds for Equip-R and Host-R. 

TABLE VI. PROCESSING TIME (MILLISECONDS): PROPOSED MECHANISM 

 Host-S Equip-R Equip-S Host-R  

Min 1.464 0.390 1.404 0.394 

Max 1.625 0.402 1.525 0.418 

Mean 1.555 0.397 1.468 0.404 

SD 0.051 0.004 0.043 0.008 

Table VII shows the difference in processing times between 
the standard HSMS protocol and the proposed mechanism. The 
differences show that Host-S and Equip-S are between a half 
millisecond to one millisecond. Equip-R and Host-R are below 
a half millisecond. Analysis shows that encrypted SECS/GEM 
messages have a slight overhead. The time required for 
processing each message (sending and receiving) is increased 
by an average of 0.8 milliseconds due to encryption and 
decryption of data bytes in the HSMS message. The Encrypted 
HSMS message also has 32-Bytes of overhead. The nonce and 
tag are attached to the data bytes for the receiver to decrypt the 
ciphertext data. Thus, the maximum payload size is slightly 
reduced by 32 bytes as the proposed mechanism uses 32 bytes 
for the nonce and tag. 

TABLE VII. PROCESSING TIME (MILLISECONDS): DIFFERENCE 

 Host-S  Equip-R  Equip-S Host-R  

Min 0.603 0.365 0.899 0.372 

Max 0.703 0.378 0.985 0.395 

Mean 0.661 0.372 0.942 0.382 

However, no encryption is performed for control messages 
such as "Link-Test Messages" as these messages do not contain 
any data bytes. The proposed mechanism checks for the length 
of data bytes and only performs encryption and decryption if 
the size of data bytes is greater than zero. 
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D. Control Overhead 
Table VIII shows the control overhead for the proposed 

mechanism for messages with various payload sizes. For 
control messages without data, there is no added overhead. For 
a message of size 1 KB, we see an overhead of a 3% increase 
in payload size over the standard protocol. This is as a result of 
the nonce and tag being added to the payload. However, with 
bigger messages such as 1 MB and 10MB, we see the overhead 
is reduced drastically to a point where it is negligible as the 
size of the nonce and tag have fixed size for all messages. 

TABLE VIII. CONTROL OVERHEAD 

 
Message 
Size 
(bytes) 

Control 
data 
 (bytes) 

Total Control 
Overhead 

Control msg 
(header-only) 10 - 10 0.00% 
Data msg (1KB) 1024 32 1056 3.03% 
Data msg 
(1MB) 1048576 32 1048608 0.0031% 
Data msg 
(10MB) 10485760 32 10485792 0.0003% 

The processing time overhead observed is also negligible, 
considering that data confidentiality and authenticity are 
achieved in SECS/GEM communication. Furthermore, AES-
GCM is a block cipher algorithm widely adopted for its 
performance. The experiments were conducted were on a 
general-purpose computer where the encryption was software-
based. In a real industry scenario, this would be done on a 
dedicated yet inexpensive hardware-based encryption module, 
leading to even better performance of up to 10Gbps speeds of 
encryption. 

E. Security Analysis of Brute-Force Attack 
The proposed mechanism encrypts the plaintext data into 

ciphertext, making it meaningless to anyone monitoring the 
ciphertext data. Thus, passive attacks such as eavesdropping 
and reconnaissance are rendered useless as attackers will not be 
able to get the plaintext data. For an attacker to obtain plaintext 
data, the secret key is required for decryption. Without the key, 
the attackers can only try to make an exhaustive brute force 
attack to guess the key. The proposed mechanism uses a 256-
bit pseudorandom key, and thus it would require the attacker to 
try at least half of the keys on average to find the correct one. 
Therefore, on average, the attacker will need to try 2255 
different keys. 

The latest processor with special instructions for AES 
operations uses about 0.16 cycles to process 1 byte of plaintext 
[27]. Table IX shows the time taken in years to crack the 
encryption with an exhaustive brute force attack. Equation (2) 
was used to compute the time required (in years) to break AES-
GCM for various computers [28]. The results are shown in 
Table IX. T is the time complexity to break AES-GCM. 
Kpossibilities is the average number of keys the attacker has to try 
before finding the correct key. For the proposed mechanism, it 
is 2255 possibilities, as discussed previously. Csec is the number 
of cycles or operations the CPU can perform in a second. Cbyte 
is the number of cycles required to process one byte of 
plaintext, while Bsize is the size of one block of plaintext in 
bytes. Bsize, in this case, is 128 bits (16 bytes) as AES-GCM 

operates on 128-bit blocks. Ysec is the total number of seconds 
in a year (60 × 60 × 24 × 365.25 = 31,557,600 seconds). 

T = 𝐾𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑖𝑡𝑖𝑒𝑠

�𝐶𝑠𝑒𝑐 𝐶𝑏𝑦𝑡𝑒×𝐵𝑠𝑖𝑧𝑒� �×𝑌𝑠𝑒𝑐
             (2) 

TABLE IX. YEARS REQUIRED TO BREAK AES-GCM WITH 256-BIT KEY 

Computer Speed Time required in years 

Intel Core i7-
10870H 

280 
Gflop/s 1.677362236307178100432348431475e+58 

Fugaku 
(Japanese 
supercomputer) 

442 
Pflop/s 1.0625824121402938192784107710701e+52 

All computers in 
the world 

200 
Gflop/s × 
2 billion 

2.2932686824512200591848513711572e+55 

For our security analysis of the proposed mechanism, we 
calculated the time complexity of cracking AES-256-GCM on 
the latest Intel Core i7 processor and Fugaku, the world’s most 
powerful supercomputer at the time of this research [29] and 
all the computers in the world combined. The total number of 
computers in the world is around 2 billion [30]. The results 
presented in Table IX show the number of years required to 
successfully brute force the key is in multiples of trillions of 
trillions of years. Thus, an attacker cannot decipher the 
ciphertext with the technology available as of now. It remains 
safe to assume that the proposed mechanism would not be 
broken anytime soon. 

Using AES-GCM, the proposed mechanism attains data 
confidentiality. It can prevent passive attacks such as 
eavesdropping and reconnaissance by attackers. The data is 
encrypted, and thus, attackers are unable to read the data. As 
the data authenticity is checked, the proposed mechanism 
protects against MITM attacks where attackers try injecting 
false data or modify the data. An attacker cannot modify the 
data as it is encrypted. Even if the attacker has altered parts of 
the encrypted data in the message payload, the authenticity of 
the data will fail as every message has a tag to verify message 
authenticity. Thus, the message's authenticity is verified. 

VII. CONCLUSION AND FUTURE WORK 
In this paper, we proposed a mechanism for SECS/GEM's 

HSMS Protocol to attain data confidentiality and check data 
authenticity in its data communication messages by encrypting 
the data payload using the AES-GCM encryption scheme. We 
also evaluated the performance of the proposed mechanism 
with the standard protocol. The results indicate that AES-GCM 
encryption of HSMS data messages has a slight overhead of 
0.8 milliseconds and 0.37 milliseconds when sending and 
receiving a message, respectively, compared to the insecure 
standard HSMS protocol. However, this overhead is negligible 
considering that encrypting HSMS data messages makes the 
protocol secure from eavesdropping attackers seeing the data 
transferred in the messages while also checking the 
authenticity of messages. Thus, the proposed mechanism 
achieves data authenticity and confidentiality. This will be a 
step further towards Industry 4.0 for the HSMS protocol-
enabled machines. 
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The proposed mechanism aimed to protect data 
confidentiality and check data authenticity. However, 
SECS/GEM protocol has other shortcomings that need to be 
addressed to secure it completely. The proposed mechanism 
only encrypts the data payload part of a message. The header is 
still visible to the network. Although it does not expose 
sensitive data such as parameters, settings, or confidential data, 
an entity on the network can still see the frequency of each type 
of message sent on the network. Furthermore, SECS/GEM is 
still vulnerable to attacks such as replay and Denial of Service 
(DoS) attacks. Future research to enhance SECS/GEM security 
may include investigations into the implications of these 
problems and potential remedies. Future studies may 
potentially look at problems such as authentication and privacy 
for SECS/GEM communications in Industry 4.0 ecosystem. 
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