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Abstract—Automatic Arabic diacritization is one of the most 

important and challenging problems in Arabic natural language 

processing (NLP). Recurrent neural networks (RNNs) have 

proved recently to achieve state-of-the-art results for sequence 

transcription problems in general, and Arabic diacritization in 

specific. In this work, we investigate the effect of varying the size 

of the training corpus on the accuracy of diacritization. We 

produce a cleaned corpus of approximately 550k sequences 

extracted from the full dataset of Tashkeela and use subsets of 

this corpus in our training experiments. Our base model is a deep 

bidirectional long short-term memory (BiLSTM) RNN that 

transcribes undiacritized sequences of Arabic letters with fully 

diacritized sequences. Our experiments show that error rates 

improve as the size of training corpus increases. Our best 

performing model achieves average diacritic and word error 

rates of 1.45% and 3.89%, respectively. When compared with 

state-of-the-art diacritization systems, we reduce the word error 

rate by 12% over the best published results. 
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I. INTRODUCTION 

The Arabic language is vastly spoken and written in many 
countries around the world. Arabic scripts mainly exist in two 
forms: Classical Arabic (CA) represented in holy scripts and 
old books, and Modern Standard Arabic (MSA) which is a 
contemporary form of CA used nowadays to write stories, 
books, newspapers, and formal speeches. Moreover, people use 
dialects that differ from one region to another, to communicate 
in their everyday lives [1]. 

Arabic sentences consist of sequences of words, written 
from right to left, composed of letters and diacritics. Diacritics 
are generally zero-width characters that appear in the form of 
marks added above or below the letters. They provide syntactic 
and semantic distinction that is essential to pronounce and 
understand Arabic texts [2]. However, diacritics are optional in 
most texts, especially MSA texts. This causes problems in 
understanding the text for non-native speakers and children 
since they may not be able to infer diacritics from the context. 
Moreover, it poses challenges on automatic Arabic language 
processing applications which require text to be diacritized 
such as automatic speech recognition (ASR), text to speech 
(TTS), and machine translation (MT) [1]. 

The Arabic language consists of 28 letters and eight basic 
diacritics. A total of 36 variants of the Arabic letters result 
from adding the six Hamza letters (ئ، إ، ؤ، أ، آ، ء), the Teh 
Marbuta (ة), and the Alef Maksura (ى) to the basic 28 letters. 
These variants have the Unicode hexadecimal codes 0621–
063A and 0641–064A. The eight basic Arabic diacritics are: 
three short vowel diacritics (Fatha, Damma, Kasra), three 
nunation (Tanween) diacritics, double consonant diacritic 
(Shadda), and the no-vowel diacritic (Sukun). Arabic diacritics 
have the Unicode hexadecimal codes 064B–0652. The 
nunation diacritics are Fathatan, Dammatan, and Kasratan. 
They can only appear on the last letter of the word. Shadda 
diacritic is usually combined with either a short vowel or 
nunation diacritic. With these combined forms, we get a total 
of thirteen possible different diacritization of a letter in the 
Arabic language. Table I show the Arabic diacritics along with 
their transliterated names and list their shapes and sounds when 
written on the letter Beh (ب). 

Diacritics can be classified into two categories: lexemic 
diacritics and inflectional diacritics. Lexemic diacritics 
distinguish between words in Arabic morphology that have the 
same orthography (spelling) but different pronunciations and 
meanings [3]. Example 1 in Table II shows how adding 
diacritics to the word كتب in two different ways results in two 
different pronunciations and meanings. The diacritized word 
 .”pronounced “kataba”, is a verb which means “he wrote ,كـتَـَبَ 
The diacritized word ُكـتُب, pronounced “kutub”, is a plural noun 
which means books. Specifying which diacritization form to 
use for a word depends on the context. 

TABLE I. ARABIC DIACRITICS, THEIR TRANSLITERATED NAMES, AND 

PRONUNCIATIONS 

Diacritic Transliterated Name Shape Sound 

Short Vowels 

Fatha  َب /ba/ 

Damma  ُب /bu/ 

Kasra   ب /bi/ 

Nunation  
(Tanween) 

Fathatan   ب /ban/ 

Dammatan   ب /bun/ 

Kasratan   ب /bin/ 

Double Consonant 
Diacritic  

Shadda   ب /bb/ 

No-vowel Diacritic Sukun   ب /b/ 
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Example 2 in Table II shows how diacritizing the word كتب 
using one of the two mentioned forms depends on the context it 
appears in. More specifically, it differs based on the third word 
in the sentence. In the first case, it is diacritized as the verb 
“kataba” since the third word is the noun lesson (الدرس) 
indicating that this is a verb-subject-object sentence. In the 
second case, it is diacritized as the noun “kutubu” since the 
third word is the adjective useful (مفيدة) indicating that this is a 
nominal sentence. In more complex sentences, diacritizing a 
word may expand to depend on words even further away in the 
sentence. 

Inflectional diacritics distinguish different inflected forms 
of the same word. The diacritic of the last letter in the word 
depends on the position and role of the word in the sentence 
[3]. Example 1 in Table III shows how placing the noun ُكُتب 
“kutub” in three different positions changes the last letter ب 
diacritic between Fatha, Damma, and Kasra. The last letter 
diacritic is often referred to as end case diacritic. Restoring this 
diacritic is considered a challenging task even when performed 
manually since it depends on the way the sentence is formed 
syntactically. Moreover, words (both nouns and verbs) may be 
inflected by appending suffixes that add features such as voice, 
number, person, tense, case, and other categorical information 
[1]. 

Example 2 in Table III shows how the diacritic of the last 
letter changes when the verb َكَـتب is inflected in three different 
ways to represent masculine second narration using Fatha in 
the word   تَ كَـتـَب , feminine second narration using Kasra in the 
word   كَـتـَب ت, and first narration using Damma in the word  ُكَـتـَب ت. 
Inflected words make syntactical position of the word affect 
the diacritization not only of the last letter, but even the letters 
before. Example 3 in Table III shows the plural noun كُتبُه which 
is inflected by adding the possessive masculine pronoun ـه. The 
diacritization of the letter ب which is the letter before the 
pronoun ـه is the one affected by the position of the word in the 
sentence. 

Consequently, recovering diacritics of undiacritized Arabic 
text is a challenging yet an important task. Many models have 
been proposed to automate the process of diacritizing Arabic 
texts. The performance of these models has been measured 
using two main metrics that represent the accuracy of the 
model in providing correct diacritics for the input undiacritized 
text. These metrics are the diacritics error rate (DER) and word 
error rate (WER). DER is computed by finding the percentage 
of wrong diacritics to the total number of characters in the 
input sequences. WER is computed by finding the percentage 
of words with at least one wrong diacritic to the total number 
of words in the input sequences. 

TABLE II. EXAMPLES OF LEXEMIC DIACRITICS 

Example 

Number 
Forms Meaning Pronunciation 

1 
 /he wrote /kataba كَــتـَـبَ 

 /Books /kutub كُـتـُب

2 
  .Ahmad wrote the lesson كَـتـَبَ أحمد الدرس.

  .Ahmad’s books are useful كُـتـُبُ أحمد مفيدة.

TABLE III. EXAMPLES OF INFLECTIONAL DIACRITICS 

Example 

Number 
Forms Meaning Pronunciation 

1 

 /Ahmad’s books are useful. /kutubu كُـتـُبُ أحمدَ مفيدة.

قرأتُ كُـتـُبَ أحمدَ 

 جميعها.
I read all Ahmad’s books. /kutuba/ 

أعجبت بكُـتـُب  أحمدَ 
 جميعها.

I liked Ahmad’s books. /kutubi/ 

2 

 /You wrote (masculine) /katabta ـتـَب ـتَ كَ 

ـتبَ ـت  كَ   You wrote (feminine) /katabti/ 

 /I wrote /katabtu كَـتـَب ـتُ 

3 

 /His books are useful. /kutubuhu كُـتـُبـُهُ مفيدة.

 /Ahmad read his books. /kutubahu قرأ أحمد كُـتـُبهَُ.

ـه .بكُـتـُب  اعتنى أحمد   
Ahmad took care of his 

books. 
/kutubihi/ 

Although the best previous solutions have shown steady 
improvement in accuracy over time, we think that the latest 
accuracies can be improved further using better models and 
training datasets. In most cases, the accuracy is restricted due 
to the lack of large, cleaned training dataset with acceptable 
diacritization to character rate. In this work, we extend the 
cleaning process performed in [4] to include the entire 
Tashkeela dataset. We concentrate on finding the effect of the 
training dataset size on the diacritization accuracy and on 
reducing the error rates through using larger datasets. Finding 
the effect of the dataset size on model accuracy and the best 
training size would hopefully help interested researchers to 
reach even better accuracies. The cleaning process was 
performed in steps such that eight corpora are extracted and 
cleaned with incremental sizes in terms of number of 
sequences. We perform experiments that use these corpora to 
explore and analyze the effect of increasing the training dataset 
size on the accuracy of our baseline model. 

We build on our previous experience in designing a model 
that exploits the efficiency of bidirectional long short-term 
memory (BiLSTM) recurrent neural networks in automatic 
diacritization of Arabic texts. These networks are characterized 
with their ability to utilize long-term past and future contexts to 
predict diacritics. Our work produces a cleaned dataset of 
543,364 sequences with diacritization to character rate of at 
least 80%. This dataset can be used to experiment training 
more sophisticated diacritization models. Moreover, our best-
performing BiLSTM model achieves DER of 1.45% and WER 
of 3.89%. 

The rest of this paper is organized as follows. The next 
section reviews systems proposed to automate the diacritization 
of Arabic text. Section III provides background information of 
sequence transcription and recurrent neural networks. 
Section IV illustrates our experimental setup. Section V 
presents and discusses the results of our experiments and 
compares our best results with the results of previous best 
performing models. Finally, we conclude our work in 
Section VI. 
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II. LITERATURE REVIEW 

Diacritization is the process of adding diacritics to the 
letters of undiacritized texts. This operation is essential to 
many applications that involve translation and text-to-speech 
(TTS) conversion. Many models have been proposed over the 
years to automate the process of diacritizing Arabic text. These 
models involve rule-based models, statistical models, and 
hybrid models. Rule-based natural language processing (NLP) 
systems depend on using a set of well-defined language-
dependent rules which are formed by exploiting solid linguistic 
knowledge. These systems are based on dictionaries and/or 
morphological and syntactic analyzers/generators [5][6]. 
Although rule-based approaches achieve acceptable results, 
their main drawback is the difficulty of maintaining and 
including all aspects of the language in a comprehensive set of 
rules. This is even more significant with a complex language 
morphologically and syntactically like the Arabic language [7]. 

Statistical approaches use large corpora of diacritized texts 
to predict the probability distribution of diacritics for a 
sequence of characters. The main advantage of these 
approaches is that they do not depend on a set of rules to solve 
the problem and hence do not require solid linguistic 
knowledge. Statistical methods that have been applied to 
Arabic text diacritization include hidden Markov models 
(HMM) [8][9], n-grams [10], finite state transducers (FST) 
[11], conditional random fields (CRF) [12], and neural 
networks. Recently, most proposed systems combined 
statistical approaches with linguistic knowledge such that the 
stochastic process is guided by language specific rules, 
introducing hybrid approaches [3, 13-19]. 

More recently, RNNs have been successfully used to solve 
restoring diacritics of Arabic texts as a sequence transcription 
problem. Our previous work in [20] proposed, trained, and 
tested a bidirectional LSTM network that transcribes raw 
undiacritized Arabic sequences with fully diacritized ones. 
Error correction techniques were used as a post processing step 
to the output of the network to overcome some transcription 
errors. We also experimented preprocessing the RNN input 
using a morphological and syntactical analyzer in [21]. 
Mubarak et al. [22] implemented a sequence-to-sequence 
model using an encoder-decoder LSTM RNN with content-
based attention. They used a fixed length sliding window of 
character-based n-words in the training process and a voting 
algorithm of n-gram probabilistic estimation to select the most 
likely diacritic form of a word. They trained their model using 
4.5 million tokens and tested it using the freely available 
WikiNews corpus of 18,300 words. 

In [4], Fadel et al. tested and compared a few existing web-
based automatic diacritization tools. They produced a cleaned 
subset of 55K sequences from the Tashkeela dataset which is 
split into training, testing, and validation sets. In [23], they 
implemented and tested several neural network models that 
belong to two main approaches, feed forward neural networks 
and recurrent neural networks. They explored several models 
using different types of input layers, using a CRF classifier 
instead of the softmax layer, and optimizing gradients 
normalization using block-normalized gradient (BNG). 

Darwish et al. [24] proposed an approach to automatic 
diacritization that consists of two bidirectional LSTM RNNs. 
The first network is responsible for core-word (i.e., all letters 
other than the last letter of the word) diacritics and the second 
is responsible for case-ending (i.e., last letter) diacritics. They 
trained and tested their approach on two sets: one that 
represents MSA texts and the other represents CA texts. Their 
model included post correction using a unigram language 
model. 

In our most recent work [25], we trained and tested RNN 
models using two datasets: Linguistic Data Consortium’s 
Arabic Treebank part 3 (LDC-ATB3) [26], and the cleaned 
subset of Tashkeela [4]. We performed extensive experiments 
to explore and analyze the effect of tuning several network 
parameters, such as the number of network layers and using 
dropout, on the accuracy and execution time of the tested 
models. We also experimented models built using different 
network architectures, alternative approaches to handle 
problems in sequence lengths, and multiple encoding methods 
for the diacritized output sequences. 

Madhfar and Qamar [27] implemented and experimented 
automatic diacritization using three character-level deep 
learning models. The first model is a network that consists of 
six layers: an embedding layer, followed by three bidirectional 
LSTM layers, a projection layer, and finally, a softmax layer. 
The second model consists of an encoder and decoder with 
location-based attention. The third model consists only of the 
encoder part of the second model. Its core architecture is 
implemented using a 1-D convolution bank, a multi-layer 
highway network, and a bidirectional GRU network. The 
model is named CBHG (1-D Convolution Bank + Highway 
network + Bidirectional GRU). 

In this paper, we experiment training a deep BiLSTM 
model using several datasets with incremental sizes extracted 
from the Tashkeela dataset. Our goal is to test the accuracy of 
the trained model in each case, thus investigating the effect of 
the training set size on the accuracy of diacritization. 
Moreover, our work includes extracting a cleaned corpus of the 
full dataset of Taskeela which includes only sequences with 
diacritization to letter rates greater than 80%. 

III. SEQUENCE TRANSCRIPTION 

Many machine learning tasks can be implemented as a 
sequence transcription problem, in which input sequences are 
translated into corresponding output sequences. These include 
speech recognition, machine translation, and text to speech 
[28]. Arabic text diacritization has been expressed successfully 
as a sequence transcription problem as well [20-27]. In our 
work, an input sequence X consists of characters 
x1, x2, x3, … . , xT   that represent the undiacritized sequence. 
The output sequence Y is a sequence of diacritics 
y1, y2, y3, … . , yT such that yi is the diacritic of the letter xi. 

Recurrent neural networks (RNNs) have proved to perform 
best on sequence transcription problems. This is because cells’ 
hidden states are functions of all previous states with respect to 
time. This provides RNNs with their ability to maintain 
correlations between data points in the input sequence and the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 8, 2021 

279 | P a g e  

www.ijacsa.thesai.org 

capability of pointing backward in time [28]. Basic recurrent 
neural networks are generalization of feedforward neural 
networks to sequences [29]. Given a sequence of inputs 
(𝑥1, 𝑥2, … , 𝑥𝑇) , a standard RNN computes a sequence of 
outputs (𝑦1, 𝑦2, … , 𝑦𝑇). At each time step, a recurrent neuron 
receives the output vector from the previous time step 𝑦𝑖(𝑡−1), 

in addition to the input vector 𝑥𝑖(𝑡). Hence, 𝑦𝑖(𝑡) is a function of  

𝑥𝑖(𝑡)  and 𝑦𝑖(𝑡−1) ,  which is a function of 𝑥𝑖(𝑡−1) and 𝑦𝑖(𝑡−2) , 

which is a function of 𝑥𝑖(𝑡−2) and 𝑦𝑖(𝑡−3) , and so on. 

Consequently, 𝑦𝑖(𝑡) is a function of all input vectors since 𝑡 =
1 [30]. 

Sequence transcription problems solved using RNNs can be 
classified into four categories based on the lengths of input and 
output sequences [30]. One-to-one networks take an input 
sequences and produces an output sequence of the same length. 
Sequence-to-vector networks transcribe input sequences into 
one final output by ignoring all previous outputs. Vector-to-
sequence networks take one input vector and produce an output 
sequence. The general sequence-to-sequence network has 
output sequence that is generally not of the same length as the 
input sequence. This type is often implemented using the 
encoder-decoder architecture [31]. In this work, we implement 
automatic Arabic diacritization as a one-to-one sequence 
transcription problem since for each input sequence of 
characters; the output sequence of diacritics is of the same 
length. 

Long short-term memory (LSTM) RNNs were first 
proposed in [32] to deal with the basic RNNs’ problem of 
decaying or slowly changing weights. This results in their 
disability to learn long dependencies in the input sequences. 
LSTM networks, on the other hand, which use purpose-built 
memory cells, can converge faster, and detect long-term 
dependencies in the sequences [28]. Each memory cell has two 
states, the short-term state (also used as the cell output) h(t) 

and a long-term state c(t). These states are updated using an 

input gate, a forget gate, an output gate, and a cell activation 
unit. The operation of these gates collectively enables the 
LSTM cell to capture long term patterns by recognizing 
important inputs, preserving them as long as they are needed, 
and extracting them whenever they are needed. Fig. 1 shows a 
basic RNN cell and an LSTM cell. 

Conventional unidirectional RNNs can make use only of 
previous context. However, many sequence transcription 
problems, including diacritization, require exploiting future 
context as well. Bidirectional RNN layers achieve this by 
comprising two unidirectional layers that process the sequence 
in both time directions producing two hidden vectors. The 
output is a function of both vectors and, consequently, exploits 
past and future contexts [33]. Fig. 2 shows the general structure 
of the bidirectional neural network unfolded for three time-
steps. RNNs are made even more powerful by stacking 
multiple layers on top of each other forming a deep RNN. 
Deep networks are necessary to solve complex transcription 
functions. In such architectures, the output sequence of one-
layer acts as the input sequence for the next layer. 

 

Fig. 1. (a) Basic RNN Cell, (b) LSTM Cell. 

 

Fig. 2. General Structure of the Bidirectional Neural Network Shown 

unfolded for Three Time Step. 

IV. EXPERIMENTAL SETUP 

In this section we provide the details of the experiments 
conducted in this work. We illustrate the methodology used, 
how datasets were extracted and preprocessed, the scheme used 
to encode sequences, and the structure of our baseline model. 
We performed all experiments on the Cyclone supercomputer 
of the High-Performance Computing Facility of The Cyprus 
Institute [34]. The processing and memory specifications of the 
used resources on the platform are listed in Table IV. 

TABLE IV. PROCESSING AND MEMORY SPECIFICATIONS OF THE 

EXPERIMENTAL PLATFORM 

CPU 
Intel Xeon Gold 6284 @ 2.5 GHz, 20 cores (40 threads), 27.5 

MB cache 

GPU 
Nvidia Tesla V100-SXM2 @ 1.53 GHz, 5120 CUDA cores, 32 
GB memory 

Memory 192 GB DDR4-SDRAM 
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A. Methodology 

We performed several experiments which involved training 
of our baseline model using corpora with different sizes. All 
experiments went through two phases: the first phase is 
training the model and the second phase is testing its 
diacritization accuracy. In the training phase, diacritics are 
removed from diacritized training sequences to generate 
undiacritized sequences. Generated undiacritized sequences 
represent the model input sequences whereas diacritic 
sequences are the model target sequences. Both undiacritized 
input sequences and diacritic target sequences are fed to the 
model after being encoded. Fig. 3 shows the steps performed in 
the training phase of the performed experiments. 

 

Fig. 3. Training Phase of Experiments. 

In the testing phase, diacritics are removed from diacritized 
testing sequences. The trained model takes the generated 
undiacritized sequences as input to predict their diacritics. We 
perform minor corrections to the output sequences according to 
rules developed in our previous work in [20]. Corrected output 
sequences are stored in a text file named diacritized_output.txt. 
We test the accuracy of the model by comparing the model 
diacritized sequences, in the file diacritized_output.txt, with the 
correctly-diacritized target sequences, stored in a file named 
target_output.txt, in measures of DER and WER rates. Fig. 4 
shows the steps performed in the testing phase of the 
performed experiments. 

B. Training Datasets 

The Tashkeela dataset [35] consists of 75 million 
diacritized words. In its main part, it is collected from 97 books 
filtered from 7079 books of Shamela library which is an 
Islamic electronic library.  These books are example of CA 
text. Only 1.15% of the Tashkeela dataset consists of MSA 
texts which is drawn from modern books and crawled from the 
Internet. This makes Tashkeela mainly an example of CA. In 
[4], Fadel et al. extracted a subset of 55,000 sequences from 
the Tashkeela dataset with diacritization to character rate of at 
least 80%. The subset was cleaned by removing English letters 
and extra whitespaces, fixing some diacritization issues, and 
separating numbers from words, among other techniques. The 

subset was divided into 50,000 sequences for training, 2,500 
sequences for validation, and 2,500 sequences for testing. This 
subset was used in our previous work in [25] to train and test 
the developed model. 

In this work, we use the cleaning and filtering scripts 
developed by Fadel et al. [4] to extract the larger datasets used 
in our experiments. In addition, we wrap sequences such that 
they have maximum lengths of 400 characters. This step is 
performed to reduce the training time and memory usage and is 
based on experiments we conducted in our previous work [25]. 
One of the main goals of this work is to study the effect of 
incrementing the training data size on the diacritization 
accuracy. We use the 50k training sequences of Fadel et al. as a 
base dataset from which smaller training sets are derived and 
larger training sets are formed by adding more sequences to it. 
Three smaller subsets are derived by randomly selecting 6,250, 
12,500, and 25,000 sequences from the basic dataset. Since the 
basic dataset is cleaned and filtered to meet the diacritization to 
character rate of 80%, except for wrapping to 400-character 
length, no further work was needed for these subsets. 

In order to construct larger datasets, we randomly select 
sequences from the Tashkeela corpora to be added to enlarge 
our sets, starting with the 50K set. The sequences are selected 
to have at least 80% diacritics to characters rate. Then, they are 
processed using the cleaning scripts. To avoid duplication of 
sequences in our sets, the selected sequences are checked not to 
be already included in the set to be enlarged. Finally, we wrap 
sequences lengths to 400 characters. By repeating this process, 
we extracted datasets that consist of 100,000, 200,000, and 
400,000 sequences. We also obtain the largest set used in our 
experiments which results from including all available 
sequences from Tashkeela that satisfy the above criterion, 
which is 543,364 sequences. 

 

Fig. 4. Testing Phase of Experiments. 
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Except for the largest dataset, the sizes of the datasets are 
incremented by doubling the number of sequences from one set 
to the next. Moreover, the incremental process by which a new 
set is formed by adding sequences to the current set maintains 
the inclusion property, such that each dataset is a subset of the 
next. Table V shows size statistics of the used datasets in terms 
of word count, letters per word, words per sequence, and the 
number of sequences after the dataset is wrapped. All used 
subsets have close letters per word and words per sequence 
rates. For all experiments, we use the same validation set of 
2,500 sequences, and testing set of 2,500 sequences to test the 
DER and WER of the trained model in each experiment. 

TABLE V. SIZE STATISTICS OF THE EXTRACTED DATASETS 

Dataset Size  

(# of sequences) 
Word Count 

Letters 
per 

Word 

Words per 

Sequence 

# of 

Sequences 

after 
Wrapping 

6,250 259,847 3.98 41.5 7,675 

12,500 522,502 3.97 41.7 15,334 

25,000 1,059,573 3.97 42.4 30,847 

50,000 2,103,071  3.97 42.1 61,453 

100,000 4,180,191 3.97 41.8 122,817 

200,000 8,410,559 3.97 42.1 245,994 

400,000 16,854,689 3.97 42.1 492,288 

543,364 22,729,365 3.97 41.8 667,990 

C. Data Encoding 

Sequences used in our experiments are either undiacritized 
consisting of letters only, or diacritized consisting of both 
letters and their diacritics. Undiacritized sequences are encoded 
using the Unicode representations of their letters. For 
diacritized sequences, we experimented using different 
encoding schemes in our previous work [25]. A one-to-one 
encoding scheme which represents each diacritic produced the 
best results in all performed experiments. Hence, we use this 
encoding scheme in this work. This scheme benefits from the 
fact that letters must not change between the input and the 
output sequences. Only diacritics must be added. Hence, it 
limits the classes at the output to the number of possible 
diacritics codes which is 16. Table VI shows the binary codes 
used for the eight Arabic diacritics. In Arabic, a letter may 
have two diacritics if one of them is Shadda. In this case, the 
diacritic code is formed by ORing the Shadda code (1000) with 
the other diacritic code. Fig. 5 shows an example of encoding 
the diacritized word   صَيَّاد (hunter) which includes letters with 
no, one, and two diacritics. 

D. Base Model 

For building our models, we use Keras (Python deep 
learning library) with TensorFlow at the backend [36]. Our 
baseline model is an BiLSTM that consists of an embedding 
layer of 32 dimensions, four bidirectional LSTM layers each 
consisting of 256 cells, followed by a 16-cell fully-connected 
output layer. The Softmax function is used for activating the 
diacritic class with the highest probability at the output layer. 
Adam optimizer is used in training, and the sparse categorical 
cross entropy is used as the loss function. The batch size is set 

to 128 sequences for all experiments. In addition, the 
maximum number of epochs used in training is 100 with early 
stopping such that training stops if the validation accuracy does 
not improve for five consecutive epochs. Fig. 6 shows the 
structure of our baseline model. 

TABLE VI. BINARY BIT CODES USED TO ENCODE DIACRITICS IN OUR 

EXPERIMENTS 

Diacritic  Bit Code 

No diacritic 0000 

Fathatan (  ً ) 0001 

Dammatan (  ً ) 0010 

Kasratan (  ً ) 0011  

Fatha ( ًَ ) 0100 

Damma ( ًُ ) 0101 

Kasra (  ً ) 0110 

Sukun (  ً ) 0111 

Shadda (  ً ) 1000 

 

Fig. 5. Example Encoding the Diacritized Word   صَيَّاد (Hunter). 

 

Fig. 6. The Structure of the base Model used in our Experiments. 
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V. EXPERIMENTS AND RESULTS 

The following subsections present the experiments 
performed and discuss their results. We also compare our best 
results with previous work. 

A. Experiments 

We experimented training our baseline model using the 
eight corpora we extracted from the Tashkeela dataset. We 
evaluated the trained model in each experiment in terms of 
time required to train the model and the model accuracy. We 
report the training time both in terms of the training total 
execution time and the average training time per epoch for 
each of the eight experiments. Table VII shows the total 
training time, average execution time per epoch, and number of 
executed epochs for each of the eight experiments. As 
expected, larger corpus size results in longer training time. 
However, the increase in the execution time is not directly 
proportional to the increase in number of sequences.  This is 
dependent on the number of epochs which vary from one 
experiment to another based on when the early stop occurs. On 
the other hand, it can be observed that the increase in average 
time per epoch is proportional to the corpus size. 

We report the performance of the models during training 
using the validation set in terms of validation loss and 
validation accuracy. Fig. 7 shows the validation accuracy and 
Fig. 8 shows the validation loss as functions of the training 
epochs for each experiment. In all reported results, we refer to 
each experiment by the number of sequences of its training 
dataset (i.e., 6,250, 12,500, 25,000, …). Training using larger 
number of sequences generally results in slower learning, 
higher values of accuracy and lower loss values. The best 
validation accuracy and validation loss achieved are 0.988 and 

0.016, respectively, using the largest dataset of 543,364 
sequences. 

We tested the diacritization accuracy of the trained models 
using the eight extracted corpora. For all testing experiments, 
we use the test set of 2,500 sequences defined by Fadel et al. 
[4]. Fig. 9 shows diacritization error rates and word error rates 
for the eight models. The results show that both DER and 
WER improves as the number of sequences used in training 
increases. The best improvement, which is 22%, is observed 
when the training set increases from 6,250 sequences to 
12,500. The improvement decreases gradually as we move 
towards larger datasets. No improvement is observed in the 
error rates when increasing the training set from 400,000 to 
543,364 sequences. The best DER and WER achieved are 
1.45% and 3.89%, respectively. 

TABLE VII. TOTAL TRAINING TIME, AVERAGE EXECUTION TIME PER 

EPOCH, AND NUMBER OF EXECUTED EPOCHS FOR THE EIGHT EXPERIMENTS 

Dataset Size  

(# of sequences) 

Total Training 

Time (hours) 

Epoch Average 

Training Time (hours) 

 # of 

Epochs 

6,250 5.1 0.05 100 

12,500 9.2 0.09 88 

25,000 10.6 0.18 58 

50,000 21.4 0.36 60 

100,000 32.1 0.63 51 

200,000 56.3 1.22 46 

400,000 191.0 2.27 85 

543,364 336.0 3.43 98 

 

 

Fig. 7. Validation Accuracy Recorded during Training the Model using Datasets with different Number of Sequences. 
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Fig. 8. Validation Loss Recorded during Training the Model using Datasets with different Number of Sequences. 

 

Fig. 9. DER and WER Values for Models Trained with different Number of Sequences. 
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according to the number of errors per word and presence of 
end-case diacritization errors. The results of this analysis are 
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errors contribution in the DER and WER ratios. As explained 
earlier, end-case diacritization depends on the context and is 
subject to complex inflection rules. In our results, end-case 
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Fig. 10. Number of Errors per Word for each Experiment as a Percentage of the Total Number of Errors. 

 

Fig. 11. Contribution of the End-case Diacritization Errors in the DER and WER Ratios. 
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TABLE VIII. COMPARISON OF OUR BEST DER AND WER RESULTS WITH PREVIOUS WORK 

System Dataset 
   All Diacritics  Ignore Last DER Last 

DER WER DER WER  

Zitouni et al. (2006) [15] ATB3 5.5 18 2.5 7.9 3.0 

Habash&Rambow (2007) [3] ATB3 4.8 14.9 2.2 5.5 2.6 

Rashwan et al. (2011) [17] ATB3 3.8 12.5 1.2 3.1 2.6 

Said et al. (2013) [18] ATB3 3.6 11.4 1.6 4.4 2.0 

Fadel et al. (2019) [23] Tashkeela 2.18 4.44 1.76 2.66 0.42 

Abandah et al. (2020) [25] 
ATB3 2.46 8.12 1.24 3.81 1.22 

Tashkeela 1.97 5.13 1.22 3.13 0.75 

Madhfar and Qamar (2021) [26] Tashkeela 1.13 4.43 0.84 2.47 0.29 

This work Tashkeela 1.45 3.89 0.91 1.95 0.54 

Most previous work used either LDC’s Arabic Treebank 
Part 3 (ATB3) [26], which represent an example of MSA, or 
Tashkeela, which represents an example of CA, or both. To the 
best of our knowledge, our previous work in [25] achieves the 
best published results for ATB3. The size of the ATB3 dataset 
is limited to 22,170 training sequences, which makes it 
unsuitable for the experiments we perform in this work. We do 
not include the results of Darwish et al. [14] since they use 
different training and testing datasets in both their MSA and 
CA experiments and hence comparison would not be fair. They 
used the training dataset of the RDI diacritizer in [18] and a test 
set of WikiNews for their MSA experiments. For their CA 
experiments, they used data from an undefined publisher. 

The best DER and WER achieved in this work are 1.45% 
and 3.89%, respectively. This improves over our previous work 
which used a subset of the Tashkeela dataset and reported a 
DER of 1.97% and a WER of 5.13%. We compare our results 
with the best results of Fadel et al. [23] and Madhfar and 
Qamar [26] since both works use the Tashkeela dataset for 
training and testing. We outperform the model developed by 
Fadel et al. in DER and WER both with and without case 
ending. However, they achieve better last letter diacritization 
error rate. 

Among the models they experimented, Madhfar and Qamar 
report the best DER and WER values for their CBHG model. 
In our comparison, the CBHG model of Madhfar and Qamar 
achieves the best DER in all cases. However, our best-
performing model word error rates outperform those of the 
CBHG model indicating that our model results in less 
percentage of wrongly diacritized words. Noting that they 
perform their own cleaning and filtering process, but with 
different rules, to extract datasets used in training their models. 
It’s worth mentioning that our best-performing model 
outperforms the baseline model of Madhfar and Qamar, which 
is a deep BiLSTM RNN. DER and WER values reported for 
their baseline model are 2.24% and 8.74%, respectively. 

It can be observed that our base model achieves results that 
are comparative to more complex models such as the CBHG 
model proposed by Madhfar and Qamar. This shows that 
training using a large clean dataset with high diacritization to 

letter rate provides competitive diacritization accuracy. 
Training more-sophisticated models using such a dataset would 
certainly provide even better results. Although this work 
involves experimentations using a basic BiLSTM RNN, it 
generates cleaned corpora with incremental sizes that can be 
used to experiment with several other models. Moreover, it 
shows that state-of-the-art error rates could be achieved when 
training using large clean corpora. 

VI. CONCLUSION 

Automating diacritization of Arabic texts is a crucial 
operation for many Arabic NLP applications. In this paper, we 
have conducted several experiments to study the effect of 
changing the training data size on performance. Our work 
included generating several cleaned subsets of the Tashkeela 
corpora with incremental size in terms of number of sequences. 
Our largest subset, which consists of 543,364 sequences, can 
be used for training other models and comparing them, such as 
the model used by Madhfar and Qamar [26]. Our baseline 
model is a deep LSTM bidirectional RNN. We evaluated the 
performance of our baseline model during training using each 
of the generated corpora by monitoring the validation loss and 
accuracy using the validation set. We tested the diacritization 
accuracy of the model after being trained using each corpus by 
finding its DER and WER values when diacritizing the 2,500-
sequence testing set. 

Our experiments indicate that performance of the trained 
model improves as training set size increases. However, 
improvement in DER and WER values decreases as the 
number of sequences increases. Best achieved DER and WER 
values are 1.45% and 3.89%, respectively, using a training 
dataset size of 400,000 sequences (about 17 million words). 
Our WER value is the best when compared with other state-of-
the-art results. In order to further improve the performance, we 
aim to experiment with other proposed models and to develop 
a loss function that considers unharmful differences between 
the output and target sequences when training is performed. 
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