
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 8, 2021 

471 | P a g e  

www.ijacsa.thesai.org 

Experimental Study of Hybrid Genetic Algorithms for 

the Maximum Scatter Travelling Salesman Problem 

Zakir Hussain Ahmed1*, Asaad Shakir Hameed2 

Modhi Lafta Mutar3, Mohammed F. Alrifaie4, Mundher Mohammed Taresh5 

Department of Mathematics and Statistics, College of Science1 

Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Kingdom of Saudi Arabia1 

Department of Mathematics, General Directorate of Thi-Qar Education, Ministry of education, Thi-Qar, Iraq2,3 
4Department of Information and Communications, Basra University College of science and technology, Basrah, Iraq4 

College of Information Science and Engineering, Hunan University, Chang Sha, China5 

 

 
Abstract—We consider the maximum scatter travelling 

salesman problem (MSTSP), a travelling salesman problem 

(TSP) variant. The problem aims to maximize the shortest edge 

in the tour that travels each city only once in the given network. 

It is a very complicated NP-hard problem, and hence, exact 

solutions are obtainable for small sizes only. For large sizes, 

heuristic algorithms must be applied, and genetic algorithms 

(GAs) are observed to be very successful in dealing with such 

problems. In our study, a simple GA (SGA) and four hybrid GAs 

(HGAs) are proposed for the MSTSP. The SGA starts with initial 

population produced by sequential sampling approach that is 

improved by 2-opt search, and then it is tried to improve 

gradually the population through a proportionate selection 

procedure, sequential constructive crossover, and adaptive 

mutation. A stopping condition of maximum generation is 

adopted. The hybrid genetic algorithms (HGAs) include a 

selected local search and perturbation procedure to the proposed 

SGA. Each HGA uses one of three local search procedures based 

on insertion, inversion and swap operators directly or randomly. 

Experimental study has been carried out among the proposed 

SGA and HGAs by solving some TSPLIB asymmetric and 

symmetric instances of various sizes. Our computational 

experience reveals that the suggested HGAs are very good. 

Finally, our best HGA is compared with a state-of-art algorithm 

by solving some TSPLIB symmetric instances of many sizes. Our 

computational experience reveals that our best HGA is better. 

Keywords—Hybrid genetic algorithm; maximum scatter 

travelling salesman problem; sequential constructive crossover; 

adaptive mutation; local search; perturbation procedure 

I. INTRODUCTION 

The travelling salesman problem (TSP) is a popular 
problem, which finds smallest tour of the salesman that starts 
journey from a headquarters city and visits all outstanding n 
cities (nodes) exactly once before comes back to his 
headquarters. The TSP is NP- Hard [1] and several good 
procedures are suggested to solve the problem. However, some 
circumstances need different constraints to accept a tour as 
solution. One such constraint is to maximize the shortest edge 
in the tour, and the TSP having such constraint is called the 
maximum scatter TSP (MSTSP). So, the MSTSP finds a 
Hamiltonian cycle/circuit so as to maximize the shortest edge. 
That means, each city in the Hamiltonian circuit is far from 
(scattered) its preceding and succeeding cities. The problem is 

also known as the max-min 1-neighbour TSP. In general, the 
max-min m-neighbour TSP aims to maximize the shortest edge 
(distance) between a city and its all m-neighbor cities in the 
Hamiltonian cycle/circuit. The bottleneck TSP (BTSP) is very 
close to the MSTSP. The BTSP aims to minimize the longest 
edge [2]. Further, the maximum TSP (MaxTSP) which finds a 
Hamiltonian cycle/circuit to maximize the length of any tour is 
also closely related to the MSTSP [3]. Fig. 1 shows the 
difference between TSP and MSTSP on an instance of 29 cities 
[4]. It is clear from the figure that the TSP aims to decrease the 
total distance covered by the salesman, whereas the MSTSP 
aims to maximize the shortest edge by producing any two 
successive cities in its tour as much scattered as possible. 

Let us formally define the MSTSP as follows: Let a 
network with n cities (city 1 is the headquarters) and an nXn 
distance (time or cost, etc.) matrix D=[dij] associated with 

ordered pair (i, j) of cities is given. Let (1=0, 1, 2,,....,n-1 , 

n=1)  {112.... n-11} be a tour. The tour value 

is defined as  min {𝑑𝛼𝑖,𝛼𝑖+1
: 𝑖 = 0, 1, 2, … . , 𝑛 − 1} . The 

objective is to maximize the tour value. 

The problem may be converted to the BTSP by supposing 
cij = M-dij, where C = [cij] is the corresponding BTSP’s 
distance (or cost) matrix and M is a big number [5]. The 
MSTSP was first defined in [6], which has several applications 
([1], [7]). The MSTSP is NP-hard [1], and no polynomial-time 
algorithm is available for solving the problem. So, finding 
optimal solution for large-sized problem instances using exact 
method is not possible. Thus, for finding better solution, within 
acceptable computational effort, to such type of problems, 
generally, heuristic/metaheuristic algorithms are applied. Tabu 
search [8], simulated annealing [9], ant colony algorithm [10], 
insertion heuristic [11], variable neighbourhood method [12], 
discrete differential evolution algorithm [13], genetic 
algorithms [14], etc., are some popular metaheuristic 
algorithms. Among them, genetic algorithms (GAs) are widely 
used algorithms, and so, we are using GAs to solve the 
MSTSP. 

GAs are based on simulating the Darwinian survival-of-
the-fittest theory in the environmental biology [14]. They are 
very robust, parallel, and global search metaheuristics that can 
solve large-sized problems quickly. They can automatically 
obtain and collect knowledge throughout the search procedure 

*Corresponding Author  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 8, 2021 

472 | P a g e  

www.ijacsa.thesai.org 

and can adaptively manage the search procedure to obtain the 
optimal/best solution. They were effectively applied to various 
complex optimization problems for solving them. For any 
problem, each feasible solution may be encoded as a string 
called chromosome or individual whose value is its objective 
function [15]. Chromosomes are collections of genes. 

 

Fig. 1. Difference between TSP and MSTSP. 

Simple GAs start from a chromosome set known as initial 
population and then go through mainly three basic operators – 
selection, crossover, and mutation, to generate improved 
populations in following generations. Selection operator 
probabilistically copies some chromosomes to the following 
generation.  Crossover arbitrarily selects two parent 
chromosomes and mates them to produce offspring 
chromosome(s). Mutation picks out a position at a 
chromosome randomly and changes its value. The crossover 
along with selection is the major procedure in GAs. Mutation 
varies the search space and defends genetic material losses. 
Thus, crossover probability is set to be very high, whereas 
mutation probability is set to be very low [14]. As crossover 
operator is very important operator, so, using better crossover 
operators can achieve better GAs. Normally, crossover 
methods that were applied for the usual TSP are applied to its 
variations also. A computational experience carried amongst 
eight crossover methods for the MSTSP proven that sequential 
constructive crossover is the best operator [16]. 

Though simple GAs using three basic operators can solve 
complex optimization problems quickly, but very often they 
converge prematurely, and get trapped in local minima [17]. 
So, one must apply some techniques to overcome premature 
convergence issue and to enhance the solution obtained by 
simple GAs. So, this paper develops a simple GA (SGA) and 
four hybrid GAs (HGA1, HGA2, HGA3 and HGA4) for 
finding solution to the MSTSP. Our proposed SGA uses 
sequential sampling algorithm along with 2-opt search for 
initial population generation, sequential constructive crossover, 
and adaptive mutation. The hybrid genetic algorithms (HGAs) 
include a selected local search and pertu`rbation procedure to 
the proposed SGA. Each HGA uses one of the local search 
procedures based on insertion, inversion, and swap operators. 
Generally, perturbation procedure is used to overcome 
premature convergence issue. The partially mapped crossover 
[15] along with swap mutation for perturbation procedure is to 
find better quality solution to the MSTSP. 

The usefulness of our proposed HGAs have been examined 
amongst themselves and calculated percentage of improvement 

of the obtained solution over the solution obtained by SGA for 
the asymmetric and symmetric TSPLIB problem instances. The 
experimental results show a very good improvement of the 
solutions by HGAs over the solutions by SGA. Further, it is 
seen that for asymmetric instances, HGA3 is placed in 2nd 
position and HGA4 is the best one. For symmetric instances, 
HGA2 is placed in 2nd position and HGA4 is the best one. 
Overall, for both categories of the instances, HGA4 is the best 
one, HGA2 is the 2nd best and HGA3 is the 3rd best. Finally, 
our HGA4 is compared against multi-start iterated local search 
(MS-ILS(h1+h2)) [4] by solving some TSPLIB symmetric 
instances of different sizes. Our computational experience 
reveals that our HGA4 is better than MS-ILS(h1+h2). 

This paper is arranged as follows: A literature survey for 
the MSTSP is provided in Section II. Section III develops 
simple and hybrid GAs for the problem, while Section IV 
reports computational experience of the developed algorithms. 
Finally, Section V provides conclusion and forthcoming 
research works. 

II. LITERATURE REVIEW 

The MSTSP is a difficult NP-hard problem. Methods to 
solve this kind of optimization problems are grouped into two 
broad groups – exact and heuristic methods ([18]-[19]). There 
are very less literatures on the MSTSP. The first procedure for 
solving the problem is developed by Arkin et al. [1]. They 
proved that the MSTSP is NP-hard, and no constant-factor 
approximation procedure can be devised unless NP = P. A 
factor-2 (claimed to be best) approximation procedure is 
developed for max-min 1-neighbour TSP satisfying the triangle 
inequality for path and cycle adaptations. Further, they 
developed procedures for the max-min 2-neighbour TSP 
satisfying triangle inequality for cycle and path adaptations. 
Finally, the procedures extended to find an approximation 
solution of the max-min m-neighbour TSP for path version. 

Approximation procedures for max-min 2-neighbour TSP 
with triangle inequality was developed by Chiang [20] for the 
cycle and path adaptations by improving the procedures in [1]. 
As reported, both procedures are very simple. Some studies on 
the MSTSP and its related versions are reported by John [7]. 

An approximation procedure for the MSTSP satisfying 
triangle inequality was developed by Kabadi and Punnen [21] 
that claimed to find the best bound for this case. 

An improved procedure of the procedure in [1] was 
proposed for the points on a line to a regular mXn-grid by 
Hoffmann et al. [22] that claimed to obtain optimal solutions. 
They further claimed that the procedure takes linear 
computational effort to obtain optimal tour in some cases. 

The multi-salesmen MSTSP called multiple MSTSP 
(MMSTSP) was proposed by Dong et al. [23]. They proposed 
three improved GAs for the problem. Their improved 
algorithms used greedy initialization, simulated annealing, and 
hill-climbing algorithms. As reported, their algorithms are 
effective algorithms that can expose various characteristics to 
find solution of the problem. 

In [4], a multi-start iterated local search procedure was 
developed for the MSTSP. Based on modified 2-opt moves and 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 8, 2021 

473 | P a g e  

www.ijacsa.thesai.org 

insertion, two local search procedures were proposed in their 
procedure. As reported, their algorithm found very good results 
on some symmetric TSPLIB instances. 

In [16], eight GAs were developed using eight crossover 
methods for the MSTSP.  A comparative study was reported on 
some TSPLIB asymmetric and symmetric instances. It was 
showed that the sequential constructive crossover (SCX) is the 
best, partially mapped crossover (PMX) is the second-best and 
greedy crossover (GX) is the worst. 

It is mentioned that the BTSP is very close to the MSTSP. 
Lexisearch approaches were developed for the BTSP in ([24], 
[25]). Further hybrid algorithms were developed for the BTSP 
in ([26], [27]). The MaxTSP is also close to the MSTSP for 
which a hybrid GA is developed for finding solution to the 
problem [28]. 

Since there are a few literature on the hybrid algorithms on 
the MSTSP, hence we propose to develop hybrid genetic 
algorithms to show the efficiency of the hybrid algorithms in 
solving the problem. 

III. HYBRID GENETIC ALGORITHMS FOR THE MSTSP 

Genetic algorithms (GAs) are established to be effective for 
the traditional TSP and its some variants. Though they do not 
assure the optimality of their obtained solutions, they normally 
obtain very close optimal solutions rapidly. In this section, we 
develop a simple GA (SGA) and four hybrid GAs (HGAs) for 
the MSTSP. 

A. Chromosome Representation 

The first job in GAs is to determine a chromosome 
representation procedure for representing solutions of a 
problem so that GA operators can produce feasible 
chromosome(s). For TSP and its variants, mainly path 
representation is used which lists cities so that no city is 
duplicated in a chromosome. We consider this path 
representation for the MSTSP. As an example, let {1, 2, 3, 4, 5, 
6, 7, 8} be the cities in an 8-city problem, and the chromosome 
(1, 3, 2, 7, 8, 6, 4, 5) denotes the tour 
{1→3→2→7→8→6→4→5 →1} whose objective as well as 
fitness function is the shortest edge in this tour.  As MSTSP is 
a maximization problem, a higher fitness value is better than 
the lower fitness value. 

B. Improved Initial Population 

Starting with an improved initial population can provide 
good solutions quickly. We use sequential sampling approach 
[26] for generating initial population for our GAs, that was 
successfully applied on other TSP variants ([27]-[28]). In 
sequential sampling approach, first alphabet table is 
constructed based on the given distance (cost) matrix, then the 
probability of visiting every un-visited city is allocated in each 
row such that first un-visited city is allocated higher probability 
than probability of 2nd city, then 2nd one is allocated higher 
than the 3rd city, and so forth. For each un-visited city in that 
row, cumulative probability is also calculated. The city is 
accepted that represents a randomly generated number in a 
cumulative probability interval. This process is repeated until a 
valid chromosome is created. This way, a population of given 
size is generated. However, it is observed that this approach 

cannot search all space. So, to improve the initial population, 
we apply 2-opt search to every chromosome for enhancing the 
population. However, if the newly obtained chromosome is 
better than the old one, replace it by the new one, otherwise, no 
action is taken. Due to the strong capability of 2-opt local 
search, it can improve the search space of our proposed 
algorithm. 

C. Selection Strategy 

The selection strategy is the procedure of choosing parents 
from the current population for the next operation. In selection 
operation, no new chromosome is created, only some of the 
fitter chromosomes are passed to the breeding pool for the 
subsequent operation/generation. By selecting a greater section 
of fitter chromosomes, this operation simulates the Darwinian 
hypothesis of survival-of-the-fittest in biology. Normally, the 
proportionate selection is used where a chromosome is chosen 
depending on its probability of selection. We use stochastic 
remainder selection procedure [29] for the proposed GAs. In 
this procedure, first ‘expected count’ of every individual is 
computed by dividing their corresponding fitness value with 
the average fitness value. Then as many individuals are copied 
equal to the mantissa of the expected counts, and then 
mantissas are subtracted from the corresponding expected 
counts. This will result the values of the expected counts less 
than one.  If a randomly generated number is less than the 
expected count of a selected individual, then the individual is 
inserted into the mating pool. Repeat this procedure till the 
number of chromosomes is equal to the size of population. 
Note that population size is the number of chromosomes in the 
population. 

D. Crossover Operator 

Crossover operator performs a very big role in GAs, where 
two parent chromosomes as well as a crossover point within 
the chromosomes' length are chosen and the chromosomes’ 
data after the crossover point are exchanged. Quite a few good 
crossover methods are available in the literature for traditional 
TSP that might be applied for the MSTSP. Ahmed [16] applied 
eight crossover operators, namely, ordered crossover [30], 
partially mapped crossover [31], cycle crossover [32], 
alternating edges crossover [33], generalized N crossover [34], 
greedy crossover [33], edge recombination crossover [35], 
sequential constructive crossover [15] on the MSTSP, and 
reported a comparative study among them. As reported, 
sequential constructive crossover (SCX) is observed as the best 
method. We also apply this SCX in our proposed GAs. The 
steps of SCX algorithm are as follows [16]: 

Step 1: Start from 'city 1’ (i.e., current city p =1). 

Step 2: Search sequentially both parent chromosomes and take 
the first un-visited city emerged after 'city p’ in the 
parents. If no un-visited city after 'city p’ is available 
in a parent chromosome, search from beginning of the 
chromosome and take the first un-visited city and go 
to Step 3. 

Step 3: Suppose 'city α' and 'city β' are in 1st and 2nd parents 
correspondingly, then for choosing the following city 
go to Step 4. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 8, 2021 

474 | P a g e  

www.ijacsa.thesai.org 

Step 4: If dpα > dpβ, then choose 'city α', otherwise, 'city β' as 
subsequent city and merge it to the current offspring. 
If the offspring is a full chromosome, stop, else, the 
current city is renamed as 'city p', go to Step 2. 

Let us illustrate the SCX using a 7-city instance with 
distance matrix provided in Table I. Let  P1: (1, 5, 3, 2, 7, 4, 6) 
and P2: (1, 5, 7, 3, 6, 2, 4) be parent chromosomes with costs 3 
and 2 respectively. Our computation is started from the city 1 
(headquarters). 

TABLE I. THE DISTANCE MATRIX 

City 1 2 3 4 5 6 7 

1 0 7 15 9 10 6 8 

2 11 0 8 7 11 3 6 

3 15 5 0 16 12 5 8 

4 2 5 11 0 9 13 14 

5 8 6 3 5 0 6 7 

6 6 13 8 11 5 0 5 

7 5 15 3 7 12 6 0 

After city 1, city 5 in both P1 and P2 is the un-visited city, 
city 5 is added that produces the offspring as (1, 5). After city 
5, cities 3 in P1 and 7 in P2 are un-visited cities with costs c53=3 
and c57=7. Since c57>c53, city 7 is added that produces the 
offspring as (1, 5, 7). After city 7, cities 4 in P1 and 3 in P2 are 
un-visited cities with costs c74=7 and c73=3. Since c74>c73, city 
4 is added that produces the offspring as (1, 5, 7, 4). After city 
4, city 6 in P1 with costs c46=13, but no city in P2. So, for P2, 
search from the beginning and finds un-visited city 3 with 
c43=11. Since c46>c43, city 6 is added that produces the 
offspring as (1, 5, 7, 4, 6). After city 6, no city is present in P1 
and un-visited city 2 is present in P2 with cost   c62=13. So, for 
P1 search from the beginning and finds un-visited city 3 with 
c63=8. Since c62>c63, city 2 is added that produces the offspring 
as (1, 5, 7, 4, 6, 2). Finally, after city 2, the only remaining city 
is 3, which is added that produces the offspring as (1, 5, 7, 4, 6, 
2, 3) with cost 7 is obtained. Fig. 2 shows parents (P1 and P2) 
and offspring (O) chromosomes. In general, the crossover 
operator which preserves better characteristics of parents in 
their children is expected to be better, and SCX is expected to 
be better in this regard. In Fig. 2(c), bold five edges are from 
either parent. 

 

Fig. 2. Result of SCX Operation for the MSTSP. 

Though SCX is observed as the best method, however, 
sometimes it creates bad offspring. So, to maintain a mixture of 
offspring and parent in a population, we replace the 1st parent 
by the offspring if it is better. In addition, the 2-opt local search 
is used on the better offspring to improve it further. Since the 

SCX operator produces only an offspring. So, to keep 
population size same in all generations, when selecting next 
pair for crossover, the present 2nd chromosome will be selected 
as the 1st parent and the 3rd chromosome will be as the 2nd 
parent, and so forth. 

E. Mutation Operator 

As some weaker chromosomes are omitted in selection and 
crossover processes in any generation, so, there might be some 
stronger chromosomes’ structures which were lost forever. So, 
normally, mutation is applied to regain them. In traditional 
mutation operations, a gene (position) is chosen arbitrarily in a 
chromosome, then alters its subsequent allele (city). Some of 
the mutation operators are inversion mutation, insertion 
mutation, swap mutation, adaptive mutation [36]. The adaptive 
mutation is implemented for our GAs. To perform this 
mutation, the information from the chromosomes in a 
population are gathered to identify a structure amongst them. If 
mutation is to be performed, then the chromosomes which do 
not match the structure would be muted. The steps of adaptive 
mutation are as follows: 

Step 1: In the current population, take all chromosomes. 

Step 2: Construct a one-dimensional array of order n, let A, by 
adding a city which appears least time in the present 
position of all chromosomes. 

Step 3: If the mutation is allowed, two genes are selected 
arbitrarily so that they are not same in the subsequent 
positions of the array, A, then they are exchanged. 

 

Fig. 3. Result of Adaptive Mutation Operation for the MSTSP. 

Since the city 1 is always fixed in the 1st position, we 
exclude the 1st position as well as the city 1 in this procedure. 
For example, suppose the chromosome P: (1, 5, 7, 4, 6, 2, 3) is 
chosen for mutation operation, and the array be A: [2, 6, 3, 5, 
6, 4, 7]. Let 3rd and 5th positions are chosen arbitrarily. The 3rd 
position’s gene ‘7’ is same as the subsequent element in A, but 
5th position’s gene ‘6’ is same as the subsequent element in A. 
So, we choose another position arbitrarily and let, 7th position 
is chosen that allows the swap. Hence, the mutated 
chromosome would be P’: (1, 5, 3, 4, 6, 2, 7) that is showed in 
Fig. 3. New edges in the muted chromosome are shown in 
boldfaces in Fig. 3(b). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 8, 2021 

475 | P a g e  

www.ijacsa.thesai.org 

F. Local Search 

There are various local search procedures presented in the 
literature, amongst them combined mutation is seen as a nice 
local search procedure ([2], [27], [28]). It merges insertion, 
inversion, and swap mutations with 1.00 probabilities. 
Insertion mutation selects a city in a chromosome, then inserts 
into an arbitrary position. Inversion mutation selects two 
positions in a chromosome, then inverts the sub-chromosome 
between them. Swap mutation selects two cities (genes) 
arbitrarily and exchanges them. We define these three 
mutations as local search procedures in our HGA as follows. 

1) Insertion search: Suppose (1, 2, 3, ...., n) be a 

chromosome. The insertion search may be defined as: 

Step 0: For i: = 2 to n-1 perform the next step. 

Step 1: For j: = i+1 to n perform the next step. 

Step 2: If inserting city i after city j improves the 

assignment cost, then insert the city i after the city j. 

2) Inversion search: Suppose (1, 2, 3, ...., n) be a 

chromosome. The inversion search may be defined as: 

Step 0: For i: = 2 to n-1 perform the next step. 

Step 1: For j: = i+1 to n perform the next step. 

Step 2: If inverting sub-chromosome between the cities i and 

j improves the assignment cost, then invert the sub-
chromosome.  

3) Swap search: Suppose (1, 2, 3, ...., n) be a 

chromosome. The swap search may be defined as: 

Step 0: For i: = 2 to n-1 perform the next step. 

Step 1: For j: = i+1 to n perform the next step. 

Step 2: If exchanging cities i and j improves the assignment 
cost, then swap them. 

In our local search procedure, one of these three local 
search is selected for our HGA for the problem. 

G. Perturbation Procedure 

Though GAs are very good methods, but sometimes, they 
get stuck in local optima. This may be due to identical 
population, and so, the population must be varied. Perturbation 
procedure is useful in escaping from local optima. If (Best 
Solution – Average Solution) < 0.10*Best Solution, then we 
apply partially mapped crossover (PMX), swap mutation and 
combined mutation operators. The PMX selects two crossover 
points, describes swap mappings in the segment between these 
points, and delivers two offspring. Further, mutation can assist 
other operators to beat local optima issue and thus, can find 
better solutions. 

H. Hybrid GAs 

In our study, a simple genetic algorithm (SGA) and four 
hybrid genetic algorithms (HGAs) are proposed for the 
MSTSP. The SGA starts with initial population generated by 

sequential sampling approach which is further improved by 2-
opt search, and it is tried to improve gradually the population 
through stochastic remainder selection, sequential constructive 
crossover, and adaptive mutation. A stopping condition of 
maximum generation is adopted. The hybrid genetic algorithms 
(HGAs) include a selected local search and perturbation 
procedure to the proposed SGA. When the stopping condition 
is satisfied, near-optimal solution is produced. The selected 
local search defines each proposed HGA as follows: 

HGA1: Insertion search, 

HGA2: Inversion search, 

HGA3: Swap search, and  

HGA4: Randomly selected one of three local searches – 

insertion, inversion, and swap search. 

The common structure of our proposed HGAs is presented 
in Fig. 4. 

 

Fig. 4. Flow-Chart of our Proposed HGAs. 

Start 

Improved Initial population 

Evaluate the population and assign best 

individual value as best solution value. 

Is termination 
condition 

satisfied? 

Print the best 

solution value and 

the best tour 

Yes 

Selection 

No 

Crossover  

Stop 

Mutation 

Evaluate the population 

Is best population 

value better than 

best solution 

value? 

No 

Update best 

solution value 

Yes 

Combined mutation 

to the best 

individual 

Local search 

Is (Best-Avg) < 

0.1*Best? 
No 

Yes 
Perturbation Procedure 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 8, 2021 

476 | P a g e  

www.ijacsa.thesai.org 

IV. COMPUTATIONAL EXPERIENCE 

We encoded our proposed SGA and HGAs in Visual C++. 
To determine the value of HGAs, computational experience is 
performed on some typical TSPLIB instances [37] of many 
sizes and then implemented on a Laptop with i7-1065G7 
CPU@1.30 GHz and 8 GB RAM under MS Windows 10. We 
run GAs for separate parameter settings, and chosen 
parameters are recorded in Table II. 

TABLE II. COMPARATIVE STUDY OF SGA AND HGAS FOR ASYMMETRIC 

TSPLIB INSTANCES 

Instance n Result SGA HGA1 HGA2 HGA3 HGA4 

ftv33 34 

Best Sol 142 143 143 143 143 

Avg. Sol 134.45 143.00 143.00 143.00 143.00 

S.D. 4.25 0.00 0.00 0.00 0.00 

Avg. Time 0.08 0.16 0.16 0.08 0.14 

  Avg. Imp(%)  6.36 6.36 6.36 6.36 

ftv35 36 

Best Sol 151 154 154 154 154 

Avg. Sol 141.50 154.00 154.00 154.00 154.00 

S.D. 5.35 0.00 0.00 0.00 0.00 

Avg. Time 0.39 0.78 0.86 0.71 0.78 

  Avg. Imp(%)  8.83 8.83 8.83 8.83 

ftv38 39 

Best Sol 151 154 154 154 154 

Avg. Sol 140.00 152.20 151.00 151.20 152.00 

S.D. 6.42 2.65 3.32 3.43 2.80 

Avg. Time 0.90 1.40 1.18 1.13 1.02 

  Avg. Imp(%)  8.71 7.86 8.00 8.57 

  Best Sol 16 17 17 17 17 

  Avg. Sol 13.20 17.00 17.00 17.00 17.00 

p43 43 S.D. 0.30 0.00 0.00 0.00 0.00 

  Avg. Time 0.98 1.32 1.30 1.17 1.04 

  Avg. Imp(%)  28.79 28.79 28.79 28.79 

ftv44 45 

Best Sol 156 162 162 162 162 

Avg. Sol 145.25 161.20 161.50 161.60 161.60 

S.D. 7.10 1.60 1.50 1.20 1.20 

Avg. Time 0.94 1.55 1.43 1.57 1.60 

  Avg. Imp(%)  10.98 11.19 11.26 11.26 

ft47 48 

Best Sol 162 168 168 168 168 

Avg. Sol 150.15 167.70 167.80 167.90 167.80 

S.D. 6.40 0.46 0.40 0.30 0.40 

Avg. Time 1.02 1.77 1.86 1.93 1.87 

  Avg. Imp(%)  11.69 11.75 11.82 11.75 

ry48p 48 

Best Sol 1176 1232 1232 1232 1227 

Avg. Sol 1140.00 1211.40 1215.60 1217.40 1217.20 

S.D. 22.49 17.77 14.61 15.49 16.83 

Avg. Time 1.07 1.42 1.90 1.99 1.97 

  Avg. Imp(%)  6.26 6.63 6.79 6.77 

ft53 53 

Best Sol 360 379 379 379 379 

Avg. Sol 345.70 376.00 378.00 376.50 376.50 

S.D. 12.52 2.45 2.00 2.50 2.50 

Avg. Time 1.52 1.74 2.02 1.97 1.99 

  Avg. Imp(%)  8.76 9.34 8.91 8.91 

ftv55 
56 

Best Sol 143 154 154 154 154 

Avg. Sol 132.60 151.60 152.80 153.60 153.90 

S.D. 8.01 3.75 2.14 0.92 0.30 

Avg. Time 1.73 2.02 2.18 2.09 2.19 

 Avg. Imp(%)  14.33 15.23 15.84 16.06 

ftv64 65 

Best Sol 143 160 158 160 160 

Avg. Sol 132.30 154.20 153.60 153.60 158.00 

S.D. 6.08 3.19 3.07 5.39 2.00 

Avg. Time 1.78 2.70 2.54 2.52 2.54 

Avg. Imp(%)  16.55 16.10 16.10 19.43 

ft70 70 

Best Sol 926 973 972 974 974 

Avg. Sol 893.70 964.50 964.90 967.40 965.60 

S.D. 19.02 6.38 7.05 8.46 10.58 

Avg. Time 1.93 2.89 2.91 3.04 3.08 

Avg. Imp(%)  7.92 7.97 8.25 8.05 

ftv70 71 

Best Sol 147 160 161 160 161 

Avg. Sol 133.50 156.00 157.00 157.60 157.60 

S.D. 10.25 2.90 2.83 1.96 2.42 

Avg. Time 1.81 2.82 2.93 2.97 3.15 

Avg. Imp(%)  16.85 17.60 18.05 18.05 

kro124p 100 

Best Sol 2224 2347 2347 2347 2347 

Avg. Sol 2153.40 2345.10 2347.00 2347.00 2347.00 

S.D. 65.66 5.70 0.00 0.00 0.00 

Avg. Time 2.16 3.42 3.40 3.58 3.65 

Avg. Imp(%)  8.90 8.99 8.99 8.99 

ftv170 171 

Best Sol 146 172 170 172 174 

Avg. Sol 128.20 169.20 167.60 170.67 171.67 

S.D. 7.67 2.77 3.65 2.31 2.23 

Avg. Time 5.10 7.52 7.91 7.57 7.95 

Avg. Imp(%)  31.98 30.73 33.13 32.35 

rbg323 323 

Best Sol 14 20 19 20 20 

Avg. Sol 12.20 18.36 17.92 18.73 18.56 

S.D. 0.60 1.12 0.60 1.01 1.26 

Avg. Time 8.30 15.23 13.22 14.75 15.73 

Avg. Imp(%)  50.49 46.89 53.52 47.54 

rbg358 358 

Best Sol 16 18 18 18 18 

Avg. Sol 13.50 17.20 17.60 17.60 17.71 

S.D. 1.32 1.10 0.89 0.89 0.76 

Avg. Time 9.57 19.21 17.56 18.78 18.43 

Avg. Imp(%)  27.41 30.37 30.37 31.19 

rbg403 403 

Best Sol 15 15 16 16 16 

Avg. Sol 13.40 15.00 15.20 15.29 15.29 

S.D. 1.20 0.00 0.45 0.49 0.49 

Avg. Time 12.49 22.33 23.26 25.03 25.23 

Avg. Imp(%)  11.94 13.43 14.10 14.10 

Fig. 5 shows solutions for ftv170 (only 100 generations are 
considered) by SGA and HGAs. Each curvature is for only one 
GA that shows progress of the solution in consecutive 
generations. The figure indicates some good variations of 
HGA4 and proves that HGA4 is the top. HGA3 also has certain 
variations that are placed in 2nd place. But SGA has no 
variations at all after few generations, get stuck in local 
maximum so rapidly and is proven to be the worst. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 8, 2021 

477 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 5. Solutions by SGA and HGAs for ftv170. 

Comparative studies among SGA and HGAs on some 
TSPLIB asymmetric and symmetric instances are reported in 
Tables III and V, respectively. We record best solution (Best 
Sol), average solution (Avg. Sol), standard deviation (S.D) of 
the solutions, and average computational time (Avg. Time) (in 
seconds) for each problem instance in the tables. The best 
results are indicated by boldfaces. The tables further report 
average improvement (%) of the average solution by HGAs 
over the average solution by SGA using the following formula: 

Avg. Imp(%) = 100(S1 – S2)/S2 , 

where S1 and S2 are average solutions by a HGA and the 
SGA, respectively. 

The Table III summarizes the results of asymmetric 
instances of sizes from 34 to 403. From the table, it is observed 
that the SGA could not find either best solution or best average 
solution for any instance. All four HGAs together obtained best 
average solutions with least S.D. for three instances ftv33, 
ftv35 and p43. In addition, HGA2, HGA3 and HGA4 together 
obtained best average solutions with lowermost S.D. for the 
instance kro124p; HGA3 and HGA4 together obtained best 
average solutions for ftv44, ftv70 and rbg403; HGA1 obtained 
best average solution with least S.D. for the instance ftv38; 
HGA2 obtained best average solution with lowest S.D. for the 
instance ft53; HGA3 obtained best average solutions for ftv47, 
ry48p, ft70 and rbg323; HGA4 obtained best average solutions 
with least S.D. for the instances ftv55, ftv64, ftv170 and 
rbg358. From this experiment we can say that HGA3 and 
HGA4 are competing, however, HGA4 is observed as the best 
algorithm. 

By looking at the average improvement (%) of the average 
solutions by HGAs, we have the same conclusion. The average 
improvements (%) are shown in Fig. 6 that also indicates the 
suitability of the HGAs, specially HGA3 and HGA4. Looking 
at the overall results on the asymmetric instances, one can 
decide that the HGA4 is the best one and HGA3 is the 2nd best 
one. 

TABLE III. PARAMETERS FOR ALL GAS 

Parameters Values 

Population size 50 

Crossover probability 100% 

Mutation probability 9% 

Termination criterion 
For SGA, 2000 generations 
For HGAs, 200 generations 

No. of runs for each instance 20 times 

 

Fig. 6. Average Improvement (%) of Solutions by different HGAs over SGA 

for Asymmetric Instances. 

It is very apparent from the above experiments that HGAs 
have very good improvements in the solutions over SGA for 
the TSPLIB asymmetric instances. HGA4 is observed as the 
best algorithm and SGA is the worst. Now, to verify whether 
average solutions obtained by HGA4 is significantly and 
statistically different from the average solutions obtained by 
remaining HGAs, Student’s t-test is conducted using following 
formula [38]. It may be noted that 20 runs have been conducted 
for each instance. 

𝑡 =
�̅�1 − �̅�2

√
𝑆𝐷1

2

𝑛1 − 1
+

𝑆𝐷2
2

𝑛2 − 1

 

𝑤ℎ𝑒𝑟𝑒, 

�̅�1 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒, 

𝑆𝐷1 − 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒, 

�̅�2 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒, 

𝑆𝐷2 − 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒, 

𝑛1 − 𝑓𝑖𝑟𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒, 

𝑛2 − 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒, 

50

70

90

110

130

150

170

1 5 9 131721252933374145495357616569737781858993

So
lu
ti
o
n
s

Generations

SGA HGA1 HGA2

HGA3 HGA4

0

10

20

30

40

50

60

ft
v3

3

ft
v3

5

ft
v3

8

p
4

3

ft
v4

4

ft
v4

7

ry
4

8
p

ft
53

ft
v5

5

ft
v6

4

ft
70

ft
v7

0

kr
o

1
24

p

ft
v1

70

rb
g3

2
3

rb
g3

5
8

rg
b

40
3

A
ve

ra
ge

 Im
p

ro
ve

n
t 

(%
)

Instances

HGA1 HGA2 HGA3 HGA4



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 8, 2021 

478 | P a g e  

www.ijacsa.thesai.org 

Here, �̅�2  and 𝑆𝐷2  values are obtained by HGA4, and �̅�1 
and 𝑆𝐷1 values are obtained by other HGAs. 

The t-statistic results are provided in Table IV. The t-values 
may be negative or positive. As the MSTSP is a maximization 
problem, negative value indicates that HGA4 obtained better 
solution than its competitive HGA, and positive value indicates 
that the competitive HGA obtained better solution than HGA4. 
Here 95% confidence level (t0.05 = 1.73) is applied, so, if t-
value is bigger than 1.73, their difference is significant. In this 
condition if t-value is negative then HGA4 is better, else 
competitive HGA is better. If t-value is smaller than 1.73, then 
they have no statistical and significant difference. The table 
further reports the name of the better HGA. 

TABLE IV. THE T-VALUES AGAINST HGA4 AND THE RESULT ABOUT 

HGAS THAT OBTAINED SIGNIFICANTLY BETTER SOLUTIONS FOR THE TSPLIB 

ASYMMETRIC INSTANCES 

Instance HGA1 HGA2 HGA3 Instance HGA1 HGA2 HGA3 

ftv33 --- --- --- ftv64 -7.06 -8.41 -5.36 

Better --- --- --- Better HGA4 HGA4 HGA4 

ftv35 --- --- --- ft70 -0.62 -0.39 0.93 

Better --- --- --- Better --- --- --- 

ftv38 0.36 -1.61 -1.26 ftv70 -2.97 -1.13 0.00 

Better --- --- --- Better HGA4 --- --- 

p43 --- --- --- kro124p -2.33 --- --- 

Better --- --- --- Better HGA4 --- --- 

Ftv44 -1.40 -0.36 0.00 ftv170 -4.86 -6.66 -2.18 

Better --- --- --- Better HGA4 HGA4 HGA4 

ftv47 -1.15 0.00 1.40 rbg323 -0.83 -3.21 0.74 

Better --- --- --- Better --- HGA4 --- 

ry48p -1.66 -0.50 0.06 rbg358 -2.67 -0.66 -0.66 

Better --- --- --- Better HGA4 --- --- 

ft53 -1.00 3.28 0.00 rbg403 -4.14 -0.95 0.00 

Better --- HGA2 --- Better HGA4 --- --- 

ftv55 -4.28 -3.56 -2.17     

Better HGA4 HGA4 HGA4     

On ten instances, HGA4 and HGA1 have no significant and 
statistical difference. On the other seven instances HGA4 is 
better than HGA1. On twelve instances, HGA4 and HGA2 
have no significant and statistical difference. On the instance 
ft53, HGA2 is better than HGA4, and on the remaining four 
instances HGA4 is better than HGA2. On fourteen instances, 
HGA4 and HGA3 have no significant and statistical difference, 
and on the remaining three instances, HGA4 is better than 
HGA3. On all seventeen instances, HGA4 is found better than 
other HGAs. From this experiment we can say that HGA4 is 
the best for asymmetric instances. 

The Table V summarizes the results of symmetric instances 
of sizes from 21 to 318. From the table, it is observed that the 
SGA could obtain best solution for only the instance gr21. All 
HGAs obtained best average solutions with lowest S.D. for 
four instances gr21, fri26, bayg29 and berlin52. In addition, 
HGA2 and HGA4 together obtained best average solutions 
with lowest S.D. for the instances kroA150 and a280; HGA3 

and HGA4 together obtained best average solutions with 
lowest S.D. for the instance si175; HGA2 obtained best 
average solutions for three instances - gr48, st70 and pr76; 
HGA3 obtained best average solutions for the instance 
dantzig42; HGA4 obtained best average solutions for five 
instances  - eil51, lin105, ch130, d198, pr226 and lin318. From 
this study we can say that HGA4 is the best one. 

TABLE V. COMPARATIVE STUDY OF SGA AND HGAS FOR SYMMETRIC 

TSPLIB INSTANCES 

Instance n Result SGA HGA1 HGA2 HGA3 HGA4 

gr21 21 

Best Sol 370 370 370 370 370 

Avg. Sol 368.75 370.00 370.00 370.00 370.00 

S.D. 4.44 0.00 0.00 0.00 0.00 

Avg. Time 0.00 0.01 0.00 0.01 0.00 

  Avg. Imp(%)  0.34 0.34 0.34 0.34 

fri26 26 

Best Sol 100 102 102 102 102 

Avg. Sol 93.80 102.00 102.00 102.00 102.00 

S.D. 2.60 0.00 0.00 0.00 0.00 

Avg. Time 0.05 0.06 0.05 0.06 0.05 

  Avg. Imp(%)  8.74 8.74 8.74 8.74 

bayg29 39 

Best Sol 182 189 189 189 189 

Avg. Sol 167.40 189.00 189.00 189.00 189.00 

S.D. 9.14 0.00 0.00 0.00 0.00 

Avg. Time 0.06 0.08 0.07 0.08 0.07 

  Avg. Imp(%)  12.90 12.90 12.90 12.90 

  Best Sol 69 73 73 73 73 

  Avg. Sol 63.15 71.30 71.30 73.00 72.80 

dantzig42 42 S.D. 2.57 0.71 0.71 0.00 0.71 

  Avg. Time 0.90 1.28 1.25 1.15 1.07 

  Avg. Imp(%)  12.91 12.91 15.60 15.28 

gr48 48 

Best Sol 515 558 559 558 558 

Avg. Sol 486.00 553.00 558.00 554.70 557.90 

S.D. 13.54 7.27 0.45 6.36 0.30 

Avg. Time 1.06 1.56 1.58 1.61 1.47 

  Avg. Imp(%)   13.79 14.81 14.14 14.79 

eil51 51 

Best Sol 33 38 38 38 39 

Avg. Sol 30.15 37.20 37.70 37.70 39.00 

S.D. 1.77 0.84 0.64 0.64 0.00 

Avg. Time 1.13 1.56 1.49 1.90 1.55 

  Avg. Imp(%)  23.38 25.04 25.04 29.35 

berlin52 52 

Best Sol 504 541 541 541 541 

Avg. Sol 466.55 541.00 541.00 541.00 541.00 

S.D. 16.90 0.00 0.00 0.00 0.00 

Avg. Time 1.54 1.77 1.84 1.67 1.80 

  Avg. Imp(%)  15.96 15.96 15.96 15.96 

st70 70 

Best Sol 57 63 63 63 63 

Avg. Sol 52.00 59.55 62.48 60.10 62.25 

S.D. 2.88 1.56 1.43 1.30 1.22 

Avg. Time 1.88 2.02 2.10 2.04 2.09 

  Avg. Imp(%)  14.52 16.31 15.58 15.87 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 8, 2021 

479 | P a g e  

www.ijacsa.thesai.org 

pr76 
76 

Best Sol 8698 9214 9214 9214 9214 

Avg. Sol 7852.20 9085.60 9169.90 9043.65 9126.15 

S.D. 633.96 156.30 80.83 185.41 93.28 

Avg. Time 1.99 2.76 2.85 2.59 2.62 

 Avg. Imp(%)  15.71 16.78 15.17 16.22 

lin105 105 

Best Sol 1270 1460 1474 1474 1474 

Avg. Sol 1173.85 1455.15 1466.35 1452.40 1469.65 

S.D. 83.07 8.76 5.72 12.46 8.16 

Avg. Time 2.14 3.65 3.78 3.89 3.98 

Avg. Imp(%)  23.54 24.92 23.73 25.20 

ch130 130 

Best Sol 395 454 455 457 458 

Avg. Sol 355.30 450.80 448.30 452.55 458.00 

S.D. 20.58 6.96 7.09 5.02 0.00 

Avg. Time 2.61 4.18 3.94 4.07 4.20 

Avg. Imp(%)  26.88 26.18 27.37 28.91 

kroA150 150 

Best Sol 1818 2147 2153 2153 2153 

Avg. Sol 1733.65 2132.50 2153.00 2137.29 2153.00 

S.D. 65.91 10.02 0.00 21.02 0.00 

Avg. Time 2.91 4.43 4.51 4.83 4.89 

Avg. Imp(%)  23.01 24.19 23.28 24.19 

si175 175 

Best Sol 276 296 304 304 304 

Avg. Sol 243.52 287.35 285.56 304.00 304.00 

S.D. 29.51 10.25 12.63 0.00 0.00 

Avg. Time 5.18 8.21 8.12 8.78 8.06 

Avg. Imp(%)  9.79 17.26 24.84 24.84 

d198 198 

Best Sol 643 731 735 731 738 

Avg. Sol 571.80 721.50 729.10 717.20 738.00 

S.D. 28.81 10.07 9.84 14.41 0.00 

Avg. Time 5.58 8.79 8.63 8.07 8.77 

Avg. Imp(%)  26.18 27.51 25.43 29.07 

pr226 226 

Best Sol 8070 9301 9357 9353 9360 

Avg. Sol 7811.40 9201.30 9272.90 9256.10 9360.00 

S.D. 72.12 104.91 15.94 58.74 0.00 

Avg. Time 6.23 10.73 10.83 9.91 10.75 

Avg. Imp(%)  17.79 18.71 18.49 19.82 

a280 280 

Best Sol 101 145 148 145 148 

Avg. Sol 93.62 144.40 148.00 135.30 148.00 

S.D. 7.85 4.03 0.00 2.00 0.00 

Avg. Time 7.85 13.02 13.09 13.03 13.10 

Avg. Imp(%)  54.24 58.09 44.52 58.09 

lin318 318 

Best Sol 1870 2351 2395 2375 2395 

Avg. Sol 1654.55 2351.50 2387.20 2361.30 2388.10 

S.D. 137.45 17.66 10.48 32.33 10.25 

Avg. Time 9.10 16.95 15.23 15.42 15.24 

Avg. Imp(%)  42.12 44.28 42.72 44.34 

By looking at the average improvement (%) of the average 
solutions by HGAs, we can have the same conclusion. These 
results are shown in Fig. 7 that also shows the usefulness of the 
HGAs, specially HGA2 and HGA4. Looking at the overall 

results on the symmetric instances, one can conclude that the 
HGA4 is the best one and HGA2 is the second best one. 

From the experiment we can say that HGAs have very good 
improvements in the solution over SGA for the TSPLIB 
symmetric instances. HGA4 is found to be the best and SGA is 
the worst. Now, to verify whether average solutions obtained 
by HGA4 is significantly and statistically different from the 
average solutions obtained by other HGAs, Student’s t-test is 
conducted, and the results are provided in Table VI. 

 

Fig. 7. Average Improvement (%) of Solutions by different HGAs over SGA 

for Symmetric Instances. 

TABLE VI. THE T-VALUES AGAINST HGA4 AND THE RESULT ABOUT 

HGAS THAT OBTAINED SIGNIFICANTLY BETTER SOLUTIONS FOR THE TSPLIB 

SYMMETRIC INSTANCES 

Instance HGA1 HGA2 HGA3 Instance HGA1 HGA2 HGA3 

gr21 --- --- --- lin105 -11.40 -2.32 -8.11 

Better --- --- --- Better HGA4 HGA4 HGA4 

fri21 --- --- --- ch130 -7.24 -9.58 -7.60 

Better --- --- --- Better HGA4 HGA4 HGA4 

bayg29 --- --- --- kroA150 -14.32 --- -5.23 

Better --- --- --- Better HGA4 --- HGA4 

dantzig42 -10.46 -10.46 1.31 si175 -11.37 -10.22 --- 

Better HGA4 HGA4 --- Better HGA4 HGA4 --- 

gr48 -4.71 1.29 -3.52 d198 -11.47 -6.33 -10.10 

Better HGA4 --- HGA4 Better HGA4 HGA4 HGA4 

eil51 -15.00 -14.22 -14.22 pr226 -21.73 -14.62 -16.83 

Better HGA4 HGA4 HGA4 Better HGA4 HGA4 HGA4 

berlin52 --- --- --- a280 -6.25 --- -44.45 

Better --- --- --- Better HGA4 --- HGA4 

st70 -2.47 0.86 -0.59 lin318 -11.60 -0.37 -5.37 

Better HGA4 --- --- Better HGA4 --- HGA4 

pr76 -1.56 2.48 -2.78     

Better --- HGA2 HGA4     

0

10

20

30

40

50

60

70

gr
21

fr
i2

6

b
ay

g2
9

d
an

tz
ig

4
2

gr
48

ei
l5

1

b
er

lin
5

2

st
7

0

p
r7

6

lin
10

5

ch
1

3
0

kr
o

A
1

5
0

si
1

7
5

d
1

9
8

p
r2

2
6

a2
8

0

lin
31

8

A
ve

ra
ge

 Im
p

ro
ve

n
t 

(%
)

Instances

HGA1 HGA2

HGA3 HGA4



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 8, 2021 

480 | P a g e  

www.ijacsa.thesai.org 

Looking at the Table VI, on five instances, HGA4 and 
HGA1 have no statistical and significant differences, and on 
the other twelve instances HGA4 is better than HGA1. On nine 
instances there is no statistically significant difference between 
HGA4 and HGA2; on the instance  pr76, HGA2 is better than 
HGA4; and on the remaining seven instances, HGA4 is better 
than HGA2. On seven instances there is no statistically 
significant difference between HGA4 and HGA3, and on 
remaining ten instances, HGA4 is better than HGA3. On all 
seventeen instances, HGA4 is found better than other HGAs. 

From this experiment, we can say that HGA4 is the best 
algorithm for symmetric TSPLIB instances also. Hence, for all 
asymmetric and symmetric instances, HGA4 is the best 
algorithm. To decide the second best algorithm for both 
categories of instances, we performed Student’s t-test between 
HGA2 and HGA3 and reported in Table VII. From the table, it 
is found that out of thirty four instances, on nineteen instances, 
HGA2 and HGA3 have no statistical and significant 
differences. On the other nine instances HGA2 is better than 
HGA3, and on six instances, HGA3 is better than HGA2. 
Hence, HGA2 is the second best and HGA3 is the third best. 

We now compare our proposed HGA4 with a state-of-art 
algorithm, namely, multi-start iterated local search (MS-
ILS(h1+h2)) [4] on some TSPLIB symmetric instances of sizes 
from 21 to 318. We record best solution (BS), worst solution 
(WS), average solution (AS), and computational time (Time) 
(in seconds) for each problem instance in Table VIII. Better 
solutions are shown in boldfaces. 

Looking at the average solutions, for the four instances, 
namely, dantzig42, gr48, lin105 and lin318 our HGA4 could 
find better solutions than solutions found by MS-ILS(h1+h2). 

For another two instances, namely, st70 and pr226, solutions 
by MS-ILS(h1+h2) are better. For the remaining instances, 
solutions are same. Of course, MS-ILS(h1+h2) takes less 
computational time. Overall, looking at the solution quality, 
our suggested HGA4 is found to be better. 

TABLE VII. THE T-VALUES OF HGA2 AGAINST HGA3 AND THE RESULT 

ABOUT HGAS THAT OBTAINED SIGNIFICANTLY BETTER SOLUTIONS FOR THE 

TSPLIB ASYMMETRIC AND SYMMETRIC INSTANCES 

Instance HGA2 Instance HGA2 Instance HGA2 Instance HGA2 

ftv33 --- ftv35 --- ftv38 -0.29 p43 --- 

Better --- Better --- Better ---- Better --- 

ftv44 -0.36 ftv47 -1.40 ry48p -0.59 ft53 3.28 

Better --- Better --- Better --- Better HGA2 

ftv55 -2.40 ftv64 0.00 ft70 -1.59 ftv70 -1.22 

Better HGA3 Better --- Better --- Better --- 

kro124p --- ftv170 -4.98 rbg323 -4.83 rbg358 0.00 

Better --- Better HGA3 Better HGA3 Better --- 

rbg403 -0.95 gr21 --- fri21 --- bayg29 --- 

Better --- Better --- Better --- Better --- 

dantzig42 -11.13 gr48 3.62 eil51 0.00 berlin52 --- 

Better HGA3 Better HGA2 Better --- Better --- 

st70 1.38 pr76 4.37 lin105 7.12 ch130 -3.42 

Better --- Better HGA2 Better HGA2 Better HGA3 

kroA150 5.23 si175 -10.22 d198 4.77 pr226 4.37 

Better HGA2 Better HGA3 Better HGA2 Better HGA2 

a280 44.45 lin318 5.33     

Better HGA2 Better HGA2     

 

TABLE VIII. THE T-VALUES AGAINST HGA4 AND THE RESULT ABOUT HGAS THAT OBTAINED SIGNIFICANTLY BETTER SOLUTIONS FOR THE TSPLIB 

SYMMETRIC INSTANCES 

Instance n 
MS-ILS(h1+h2)  HGA4 

BS WS AS Time  BS WS AS Time 

gr21 21 370 370 370.00 0.06  370 370 370.00 0.00 

fri26 26 102 102 102.00 0.09  102 102 102.00 0.05 

bayg29 29 189 189 189.00 0.11  189 189 189.00 0.07 

dantzig42 42 73 71 72.60 0.21  73 72 72.80 1.07 

gr48 48 558 545 555.40 0.29  558 557 557.90 1.47 

eil51 51 39 39 39.00 0.31  39 39 39.00 1.55 

berlin52 52 541 541 541.00 0.32  541 541 541.00 1.80 

st70 70 63 63 63.00 0.54  63 62 62.25 2.09 

pr76 76 9214 9214 9214.00 0.70  9214 9069 9126.15 2. 62 

lin105 105 1474   1460 1467.50 1.28  1474 1462 1469.65 3.98 

ch130 130 458  458 458.00 1.99  458 458 458.00 4.20 

kroA150 150 2153 2153 2153.00 2.37  2153 2153 2153.00 4.89 

si175 175 304 304 304.00 3.05  304 304 304.00 8.54 

d198 198 738 738 738.00 3.92  738 738 738.00 8.77 

pr226 226 9360 9360 9360.0 5.05  9360 9350 9360.00 10.75 

a280 280 148 148 148.00 7.36  148 148 148.00 13.10 

lin318 318 2387 2381 2385.70 12.45  2395 2385 2388.10 15.24 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 8, 2021 

481 | P a g e  

www.ijacsa.thesai.org 

V. CONCLUSION AND DISCUSSION 

In this paper, a simple GA (SGA) and four hybrid GAs 
(HGA1, HGA2, HGA3 and HGA4) have been proposed for 
solving the MSTSP.  The SGA used initial population by a 
sequential sampling, a proportionate selection, sequential 
constructive crossover, and adaptive mutation. Three local 
search procedures based on inversion, insertion and swap 
mutations, and a perturbation procedure have been used in 
different HGAs. The usefulness of the HGAs have been 
examined amongst themselves and calculated percentage of 
improvement of the obtained solution over the solution by 
SGA for the asymmetric and symmetric TSPLIB problem 
instances. The results show a very good improvement of the 
solutions by HGAs over the solutions by SGA. Further, it is 
seen that for asymmetric instances, HGA3 is placed in 2nd 
position and HGA4 is the best one. For symmetric instances, 
HGA2 is placed in 2nd position and HGA4 is the best one. 
Overall, for both categories of the instances, HGA4 is the best 
one, HGA2 is the second best and HGA3 is the 3rd best. 
Further, a comparative study is carried out between HGA4 and 
by multi-start iterated local search (MS-ILS(h1+h2)).  Looking 
at the solution quality, our suggested HGA4 is found to be 
better. 

Though our proposed HGAs obtained very efficient 
solutions with slight differences between best solutions and 
average solutions, however, we admit that still there is an 
opportunity to improve the solutions by combining better local 
search procedures, another heuristic method and perturbation 
procedure to the instances that is under our study. 

ACKNOWLEDGMENT 

This research was supported by Deanery of Academic 
Research, Imam Mohammad Ibn Saud Islamic University, 
Saudi Arabia vide Grant No. 18-11-09-010. The first author 
thanks the Deanery for its financial support. The authors 
further thank the honorable anonymous reviewers for their 
constructive comments and suggestions which helped the 
authors to improve this paper. 

REFERENCES 

[1] E.M. Arkin, Y.-J. Chiang, J.S.B. Mitchell, S.S. Skiena, and T.-C. Yang, 
On the maximum scatter traveling salesperson problem, SIAM Journal 
of Computing 29 (1999) 515–544. 

[2] Z.H. Ahmed, A hybrid genetic algorithm for the bottleneck traveling 
salesman problem. ACM Transactions on Embedded Computing 
Systems 12 (2013) Art. No. 9. 

[3] A. Barvinok, S.P. Fekete, D.S. Johnson, A. Tamir, G.J. Woeginger and 
R. Woodroofe, The geometric maximum traveling salesman problem, 
Journal of the ACM 50(5) (2003) 641–664. 

[4] P. Venkatesh, A. Singh and R. Mallipeddi, A multi-start iterated local 
search algorithm for the maximum scatter traveling salesman problem, 
2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, 
New Zealand, 2019, pp. 1390-1397. 

[5] J. LaRusic and A.P. Punnen, the asymmetric bottleneck traveling 
salesman problem: Algorithms, complexity and empirical analysis, 
Computers & Operations Research 43 (2014) 20–35. 

[6] F. Scholz, Coordination hole tolerance stacking, Technical Report 
BCSTECH-93-048, Boeing Computer Services, November 1993. 

[7] L.R. John, the bottleneck traveling salesman problem and some variants, 
Master of Science of Simon Fraser University, Canada, 2010. 

[8] W.B. Carlton and J.W. Barnes, Solving the travelling salesman problem 
with time windows using tabu search, IEE Transaction 28 (1996) 617–
629. 

[9] J.W. Ohlmann and B.W. Thomas, A compressed-annealing heuristic for 
the traveling salesman problem with time windows, INFORMS Journal 
of Computing 19 (1) (2007) 80–90. 

[10] C.-B. Cheng and C.-P. Mao, A modified ant colony system for solving 
the travelling salesman problem with time windows, Mathematical 
Computer Modelling 46 (2007) 1225–1235. 

[11] M. Gendreau, A. Hertz, G. Laporte and M. Stan, A generalized insertion 
heuristic for the traveling salesman problem with time windows, 
Operations Research 46 (3) (1998) 330–335. 

[12] R.F. da Silva and S. Urrutia, A general VNS heuristic for the traveling 
salesman problem with time windows, Discrete Optimization 7 (4) 
(2010) 203–211. 

[13] A. S. Hameed,  M. L. Mutar, H. M. B. Alrikabi, Z. H. Ahmed, Abdul– 
A. A. Razaq, & H. K. Nasser. A Hybrid Method Integrating a Discrete 
Differential Evolution Algorithm with Tabu Search Algorithm for the 
Quadratic Assignment Problem: A New Approach for Locating Hospital 
Departments. Mathematical Problems in Engineering, 2021. 

[14] DE. Goldberg. Genetic algorithms in search, optimization, and machine 
learning, Addison-Wesley, New York, 1989. 

[15] Z.H. Ahmed, Genetic algorithm for the traveling salesman problem 
using sequential constructive crossover operator, International Journal of 
Biometrics & Bioinformatics 3 (2010) 96-105. 

[16] Z.H. Ahmed, A comparative study of eight crossover operators for the 
maximum scatter travelling salesman problem, International Journal of 
Advanced Computer Science and Applications (IJACSA) 11 (2020) 
317-329. 

[17] Z.H. Ahmed, Algorithms for the quadratic assignment problem, LAP 
LAMBERT Academic Publishing, Latvia, Mauritius, 2019. 

[18] A.S. Hameed, B.M. Aboobaider, N.H. Choon, M.L Mutar, W.H. Bilal. 
‘Review on the Methods to Solve Combinatorial Optimization Problems 
Particularly: Quadratic Assignment Model’, International Journal of 
Engineering & Technology, 7, pp. 15–20. 2018. 

[19] M.L. Mutar, M.A. Burhanuddin, A.S. Hameed, N. Yusof, H.J. Mutashar. 
‘An efficient improvement of ant colony system algorithm for handling 
capacity vehicle routing problem’, International Journal of Industrial 
Engineering Computations, 11(4), pp. 549–564. 2020. DOI: 
10.5267/j.ijiec.2020.4.006. 

[20] Yi-J. Chiang. New approximation results for the maximum scatter TSP. 
Algorithmica, 41 (2005) 309–341. 

[21] S.N. Kabadi and A.P. Punnen. The bottleneck TSP, In the Traveling 
Salesman Problem and Its Variations, G. Gutin and A.P. Punnen (eds.), 
Chapter 15, Kluwer Academic, Dordrecht, 2002. 

[22] I. Hoffmann, S. Kurz, and J. Rambau, The maximum scatter TSP on a 
regular grid, in Operations Research Proceedings 2015, Springer, 2017, 
pp. 63–70. 

[23] W. Dong, X. Dong and Y. Wang, The improved genetic algorithms for 
multiple maximum scatter traveling salesperson problems, In J. Li et al. 
(Eds.): CWSN 2017, CCIS 812, pp. 155–164, 2018. 

[24] Z.H. Ahmed, A lexisearch algorithm for the bottleneck travelling 
salesman problem, International Journal of Computer Science and 
Security 3(5) (2010) 569-577. 

[25] Z.H. Ahmed, A data-guided lexisearch algorithm for the bottleneck 
travelling salesman problem, International Journal of Operational 
Research 12(1) (2011) 20-33. 

[26] Z.H. Ahmed, A hybrid sequential constructive sampling algorithm for 
the bottleneck traveling salesman problem, International Journal of 
Computational Intelligence Research 6(3) (2010) 475-484. 

[27] Z.H. Ahmed, A hybrid genetic algorithm for the bottleneck traveling 
salesman problem, ACM Transactions on Embedded Computing 
Systems (TECS)12(1) (2013) 1-10. 

[28] Z.H. Ahmed, An experimental study of a hybrid genetic algorithm for 
the maximum traveling salesman problem, Mathematical Sciences 7(1) 
(2013) 1-7. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 8, 2021 

482 | P a g e  

www.ijacsa.thesai.org 

[29] K. Deb, Optimization for engineering design: algorithms and examples, 
Prentice Hall of India Pvt. Ltd., New Delhi, India, 1995. 

[30] L. Davis, Job-shop scheduling with genetic algorithms, Proceedings of 
an International Conference on Genetic Algorithms and Their 
Applications, 136-140, 1985. 

[31] D.E. Goldberg and R. Lingle, Alleles, loci and the travelling salesman 
problem, In J.J. Grefenstette (ed.) Proceedings of the 1st International 
Conference on Genetic Algorithms and Their Applications. Lawrence 
Erlbaum Associates, Hilladale, NJ, 1985. 

[32] I.M. Oliver, D. J. Smith and J.R.C. Holland, A Study of permutation 
crossover operators on the travelling salesman problem, In J.J. 
Grefenstette (ed.). Genetic Algorithms and Their Applications: 
Proceedings of the 2nd International Conference on Genetic Algorithms. 
Lawrence Erlbaum Associates, Hilladale, NJ, 1987. 

[33] J. Grefenstette, R. Gopal, B. Rosmaita and D. Gucht, Genetic algorithms 
for the traveling salesman problem, In Proceedings of the First 
International Conference on Genetic Algorithms and Their Applications, 
(J. J. Grefenstette, Ed.), Lawrence Erlbaum Associates, Mahwah NJ, 
160–168, 1985. 

[34] N.J. Radcliffe and P.D. Surry, Formae and variance of fitness, In D. 
Whitley and M. Vose (Eds.) Foundations of Genetic Algorithms 3, 
Morgan Kaufmann, San Mateo, CA, 51-72, 1995. 

[35] D. Whitley, T. Starkweather and D. Shaner, the traveling salesman and 
sequence scheduling: quality solutions using genetic edge 
recombination, In L. Davis (Ed.) Handbook of Genetic Algorithms. Van 
Nostrand Reinhold, New York, 350-372, 1991. 

[36] Z.H. Ahmed, an improved genetic algorithm using adaptive mutation 
operator for the quadratic assignment problem, 38th International 
Conference on Telecommunications and Signal Processing 2015 (TSP 
2015) (2015) 1-5. 

[37] G. Reinelt, TSPLIB, http://comopt.ifi.uni-heidelberg.de/software/ 
TSPLIB95/ 

[38] M. Nikolić and D. Teodorović, “Empirical study of the bee colony 
optimization (BCO) algorithm,” Expert Systems with Applications, vol. 
40, pp. 4609–4620, 2013. 


