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Abstract—Road surface distress is an unavoidable situation 
due to age, vehicles overloading, temperature changes, etc. In the 
beginning, pavement maintenance actions took only place after 
having too much pavement damage, which leads to costly 
corrective actions. Therefore, scheduled road surface inspections 
can extend service life while guaranteeing users security and 
comfort. Traditional manual and visual inspections don’t meet 
the nowadays criteria, in addition to a relatively high time 
volume consumption. Smart City pavement management 
preventive approach requires accurate and scalable data to 
deduce significant indicators and plan efficient maintenance 
programs. However, the quality of data depends on sensors used 
and conditions during scanning. Many studies focused on 
different sensors, Machine Learning algorithms and Deep Neural 
Networks tried to find a sustainable solution. Besides all these 
studies, pavement distress measurement stills a challenge in 
Smarts Cities because distress detection is not enough to decide 
on maintenance actions required. Damages localization, 
dimensions and future development should be highly detected on 
real-time. This paper summarizes the state-of-the-art methods 
and technologies used in recent years in pavement distress 
detection, classification and measurement. The aim is to evaluate 
current methods and highlight their limitations, to lay out the 
blueprint for future researches. PMS (Pavement Management 
System) in Smarts Cities requires an automated pavement 
distress monitoring and maintenance with high accuracy for 
large road networks. 

Keywords—Automated pavement distress detection; smarts 
cities; pavement management system; machine learning; deep 
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I. INTRODUCTION 
Damages detection and measurement in bridges, buildings 

and roads are not a recent focus of researches. Multiple studies 
[22] were conducted during the last decades to determine 
adaptable equipment and solutions. However, [23] keeping 
pavement surfaces in a good condition via a low-cost solution 
is still a big challenge. 

There is no doubt that concepts of the future [24] (Smarts 
Cities, Smarts Roads, Smart Traffic, Intelligent Transportation 
Systems, etc.) are looking for automation, precision, energy-
efficient and security while providing humans with the best 
services. 

Nowadays, and besides the construction of multiple road 
networks, several cities are suffering congestion and 
overloading. For example [25], the number of private cars in 
China was 320 million in 2018; fifty-eight cities hold more 

than one million cars and seven cities support more than three 
millions. 

Due to multiple causes, natural or human reactions, high 
qualities of roads surfaces are degraded and such situation 
cannot be avoided. When the severity of degradation becomes 
higher, it engenders multiple risks for road users and 
maintenance becomes costly and time-consuming. The run to 
failure concept is not the right solution and preventives actions 
can be conducted late or before it is necessary. The more 
accurate and efficient methods are those based on real-time 
monitoring [26], evaluating current status and estimating future 
development to decide on appropriate maintenance in every 
single timeslot. 

Manual and visual inspection methods present an old 
concept. It takes more time, engages high manpower and 
presents multiple risks for inspectors and road users. For huge 
road networks, it is not practical at all to deploy inspectors 
along with the city to get a big amount of data, which is 
dynamic and space distributed. 

PMS (Pavement Management System) is a concept that 
was adopted firstly in the State of California (USA) in 1979. 
The aim is to design a system taking all parameters that 
contribute to the pavement status into consideration and adapt, 
to the context, all methods and technologies to keep road 
surfaces in a good health. 

Multiple types of sensors were used to collect data like 
vision, vibration, sound propagation, pressure, friction, etc. 
However, vision-based methods (images or videos) are more 
adaptable [21] because they overcome weather limitations and 
scan the whole area, which is not always possible for the 
remaining methods. 

This paper is organized as follow. Section II describes PMS 
and its contribution to Smarts Cities development. Section III 
presents related works to pavement distress detection and 
measurement. In Section IV, experiences and results of current 
methods are depicted. In Section V, current limitations and 
futures research are highlighted. Before concluding the paper 
on Section VII, a discussion is presented in Section VI. 

II. PAVEMENT MANAGEMENT SYSTEM 

A. Concept 
As long as cities become larges, an automated system to 

manage pavement condition becomes a reel need. In 1985, the 
American Association of State Highway and Transportation 
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Officials (AASHTO) was the first agency that defines the PM 
(Pavement Management), as: “The effective and efficient 
directing of the various activities involved in providing and 
sustaining pavements in a condition acceptable to the traveling 
public at the least life cycle cost”. PM or PMS doesn’t make 
decisions [28]; it just helps agencies to choose the best solution 
through the evaluation of alternative decisions. 

B. Terms 
The AASHTO [29] defined some terms relative to the 

Pavement Management as summarized in Table I. 

TABLE I. PAVEMENT MANAGEMENT TERMS & DEFINITIONS BY 
AASHTO GUIDELINES 

Term Definition 

Pavement 
Management (PM) 

A program for improving the quality and performance 
of pavements and minimizing costs through good 
management practices. 

Pavement 
Management 
System (PMS) 

A set of defined procedures for collecting, analyzing, 
maintaining, and reporting pavement data, to assist the 
decision makers in finding optimum strategies for 
maintaining pavements in serviceable condition over a 
given period of time for the least cost. 

Pavement 
Management 
Information  
System (PMIS) 

An established and documented procedure for 
collecting, storing, processing, and retrieving the 
information required in a PMS. It represents a 
foundation for PMS since all pavement decisions must 
be based on a common, integrated source of 
information derived from reliable and good quality 
data. 

Pavement 
Condition The present status or performance of a pavement. 

Pavement 
Maintenance 
Techniques 
Methods 

Used to accomplish strategy or correct deficiency in 
pavement segment. 

Pavement 
Management 
Strategy 

A carefully arranged, systematic program of action 
applied to any area of pavement activity. 

Pavement 
Performance 

The assessment of how well the pavement serves the 
user over time. The engineer often associates pavement 
condition with an arbitrary, but quantifiable, value 
relating to pavement roughness, pavement distress, or 
pavement strength. Performance is the measured 
change of condition and/or serviceability over 
increments of time. 

Pavement 
Optimization 

A procedure for obtaining the greatest life-cycle 
benefits for the lowest cost. Within the practice of 
Pavement Management, optimization might best be 
described as a process of obtaining the highest state of 
pavement performance over the pavement's life cycle 
with the least social and economic impact.   

C. Pavement Management System Implementation 
To implement PMS in a special context, several models 

were proposed in the literature. Illinois Center for 
Transportation [27] proposed a model as follow: 

• Step 1: Define the Roadway Network and Collect 
Inventory Data. 

• Step 2: Collect Condition Data. 

• Step 3: Predict Condition. 

• Step 4: Select Treatments. 

• Step 5: Report Results. 

• Step 6: Select Pavement Management Tool. 

• Step 7: Keep the Process Current. 

D. Pavement Damages Classification 
1) Pavement damages types: It should be determined to 

apply the appropriate maintenance. Distress shapes can be 
caused by factors mentioned in Section I. Pavement distress 
can be categorized as mentioned in Table II. 

TABLE II. PAVEMENT DISTRESS CATEGORIZATION 

Cracking 

Fatigue Cracking (Alligator Cracking) 

Block Cracking 

Edge Cracking 

Longitudinal Cracking 

Transverse Cracking 

Reflection Cracking 

Slippage Cracking 

Distortion 

Rutting 

Shoving 

Depressions 

Upheaval 

Patch Failures 

Disintegration 
Raveling 

Potholes 

Skidding Hazards 
Polished Aggregate 

Bleeding 

Surface Treatment  
Distress 

Surface Treatment Distress 

Streaking 

2) Pavement damages severity: Type of damage is not 
enough to define maintenance actions. Damage severity 
should also be measured. 

Multiple documents defined models to categorize severity 
levels (low, medium, high, etc.). Categorization could be 
different from document to other. 

R. Roberts studied and analyzed six documents of 
pavement distress classification methods [11]: American 
Society for Testing & Materials (ASTM) 2018, Miller & 
Bellinger 2014, British Columbia Ministry of Transportation & 
Infrastructure Construction Maintenance Branch 2016, 
Bertrand et al. 1998, Direzione Generale Infrastructure e-
Mobilità Milano 2005 and VicRoads 2009. Analyzing the 
aforementioned documents reveals that distress evaluated as 
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medium by a manual could be classified as lower or higher by 
other. Furthermore, some manuals defined the severity based 
on the distress dimensions and the ratio of the distressed area to 
the total surface square (ASTM, 2018). However, others use 
only the ratio parameter. 

E. Pavement Surface Evaluation 
The evaluation of pavement surface health is a combination 

of type and severity level of damages. Literature review 
analysis [17] indicates that the most indices used for pavement 
surface evaluation are: 

• Pavement Condition Index (PCI); 

• International Roughness Index (IRI); 

• Ruth Depth (RD); 

• Pavement Serviceability Index (PSI). 

F. Pavement Maintenance 
A.M. Johnson [7] has defined three types of pavement 

maintenance: 

1) Preventive maintenance: Performed to improve or 
extend the functional life of a pavement. It is a strategy of 
surface treatments and operations intended to retard 
progressive failures and reduce the need for routine 
maintenance and service activities. 

2) Corrective maintenance: Performed after a deficiency 
occurs in the pavement, such as loss of friction, moderate to 
severe rutting, or extensive cracking. It may also be referred to 
as “reactive” maintenance. 

3) Emergency maintenance: Performed during an 
emergency situation, such as a blowout or severe pothole that 
needs repair immediately. This also describes temporary 
treatments designed to hold the surface together until more 
permanent repairs can be performed. 

Predictive Maintenance is another concept adopted for 
pavement distress using Machine Learning, ANN (Artificial 
Neural Networks), or other algorithms to predict the future 
health of pavement. Despite the limitation of current 
algorithms, prediction models present a cost-effective concept 
that keeps surface roads healthy almost every time. 

III. RELATED WORK 

A. Materiel and Equipment in use 
1) Legacy methods: Visual and manual inspection 

methods of pavement surfaces were conducted by road 
inspectors using traditional tools. Almost data collected is 
suffering from subjectivity, not containing all parameters 
needed and presents a low quality. In this case, data collected 
is costly and time-consuming. Furthermore, infantile damages 
can’t be detected and still presents for a considerable amount 
of time until maintenance actions become heavy [1]. 
Otherwise, during a survey, the safety of inspectors and road 
users is highly engaged. 

2) New technologies: Several sensors and equipment were 
used to evaluate pavement surface conditions by collecting 

different parameters [21]: image/video, acceleration, vibration, 
sound, pressure, friction, skid resistance, etc. During the last 
years, Condition Based Monitoring (CBM) was applied to 
pavement surface evaluation. Y. Hou summarizes intrusive 
sensors development and installation, as embedded equipment, 
in the pavement structure [26]. In this case, sensors are used to 
monitor the dynamic mechanical response of the pavement to 
vehicle load and weather influence. Data collected are 
transferred by the Internet of Things (IoT) technologies. 
Table III summarizes and categorizes sensors used. 

TABLE III. SENSORS USED ON PAVEMENT DISTRESS DATA COLLECTION 

Parameters  
collected Equipment used Location of installation 

Image/ Video 

Camera:  CCD, CMOS, 
Infrared Fixed around pavement. 

Smartphone Mounted on vehicle; Moved 
by operator.  

Line Scan 

UAV Flying 

Acceleration Smartphone; 
Accelerometer 

Mounted on vehicle : wheel 
axis, in-car 

Vibration  Vibration sensor 
Mounted on vehicle: wheel 
axis, in-car 

3D Data 

Laser Profiler;  
Line Projection; 
Stereovision;  
Kinect Device; Ground 
Penetrating Radar; 
Structured Light; 
Photometric Stereo 

Mounted on vehicle; 
Moved by operator. 

Sound Microphone 
Mounted on vehicle: on tire, 
beneath the car; 
Fixed around pavement. 

Friction  
and  
Skid  
resistance 

Tire (Traction);  Wheel 
(Angled) Mounted on vehicle 

Pressure Pressure sensor 

Embedded in pavement 
structure 

Temperature  Temperature  sensor 

Humidity  Humidity sensor  

Stress Stress sensor 

strain Strain sensor 

Displacement  Displacement sensor 

Light  Light sensor  

B. Datasets 
Data collected by sensors create datasets to train, evaluate 

and test algorithms. Multiple datasets are now available and 
open access. The quality of the dataset is determined by its 
volume, robustness, and exhaustiveness by containing data: 
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• Variable and complex; 

• Collected under different weather conditions ; 

• Collected with different lighting and noise levels; 

• Blurry and degraded with high sample densest. 

Datasets collected by acceleration and vibration sensors 
installed on cars do not handle all pavement surfaces. In this 
case, sensors collect only damages crossed by wheels’ cars. 

Datasets annotation adds information about distress types. 
Annotations can be done manually or by using algorithms (ex. 
Python). Some Datasets are annotated at the pixel level, which 
gives a clear idea about pavement condition and enhances the 
precision of algorithms. 

We can make the dataset more exhaustive by applying the 
“Data Augmentation” method to the images collected. J. Liu 
[15] used image rotation (90◦, 180◦, 270◦) and flipping (180◦ 
horizontally and vertically) to get 7104 images from 1184 
initially captured. 

1) Vision datasets: Nowadays, it was proved that 
images/videos collection is more adaptable for pavement 
surface conditions [21]. Table IV summarizes datasets images 
of pavement. Besides the datasets mentioned, several 
researchers have collected specific datasets to test algorithms 
(ex. Crackdataset [2]). Those datasets were reserved for 
studies. Images extracted from videos give more information 
about damages. GAPs, GaMM and EdmCrack600 are a 
datasets containing video imaging. 

TABLE IV. PAVEMENT CONDITION DATASETS 

Dataset Name N° Of  
Images ↓ 

Resolution Device Privacy 

Street View  
Images 9 712 --- --- Private 

NEU Inlaid  
Crack 

9396 256 X 256 CCD camera  
& light  

Private 

Japan Road 9 053  600 X 600  LG Nexus 5X  Public 

PID 7 237 640 X 640 Google API  
Street-View  Public 

GPR Images 6 832 256 X 256 LTD-2000  Private 
3D Asphalt  
Surface 
Images 

2 000 4096 X 2048 PaveVision3D Private 

GAPs 1 969 1920 X 1080 Professional 
Camera Public 

FHWA/LTPP 1 056 3 072 X 2048 --- Public 
Local 800 2 000 X 4 000 --- Private 
EdmCrack600 600 1920 X 1080 GoPro 7  Public 
Crack500 500 2000 X 1500 LG-H345  Public 
Cracktree200 206 800 X 600 --- Public 
CFD 118 480 X 320 iPhone 5 Public 
CrackIT 84 1536 X 2048 Optical Public 

GaMM 42 1920 X 480 Professional  
camera Public 

Aigle-RN 38 991 X 462 Professional  
camera Public 

2) UAV datasets: Some studies [10, 20, 21] were used 
UAVs (Unmanned Aerial Vehicles) to inspect pavement 
condition. Aerospace imagery was applied in several domains 
(agricultural, mapping, forestry, surveillance, etc.) and proved 
valuable. 

UAVs present the advantages of mobility along the third 
dimension, flexibility to change trajectory in flight, discretion, 
avoiding human risks and remote controlling. GSD (Ground 
Sampling Distance) is a parameter that defines the spatial 
resolution of images. Practically, it is the distance between 
adjacent pixel centers measured on the ground. Equation (1) 
shows the formula of GSD: 

GSD = 𝐷×𝑃𝑥
𝑓

              (1) 

D: distance between UAV and ground 

Px: pixel size 

f: camera focal length 

A low value of GSD means a high quality of image. The 
quality of UAV images increased with high camera resolution 
or low flight altitude. 

C. Extraction and Analysis 
Several algorithms (ANN, Deep Neural Networks and 

Machine Learning) were developed and tested to extract 
meaningful information from datasets. In this section, we will 
review articles published since January 2020 to evaluate the 
last researches in this domain. 

1) Camera/smartphone images extraction: Q. Mei [1] 
presents a new Deep Learning algorithm for pavement cracks 
segmentation “DenseCrack”. The algorithm was trained and 
tested on two datasets Crack Forest Dataset (CFD) and 
Imagenet. 

W. Song [2] proposed CrackSeg, which is a Deep 
Convolutional Neural Network (CNN) for pavement cracks 
detection. CrackSeg was trained, evaluated and tested on 
CrackDataset which contains 8 188 images and was dedicated 
to the study. CrackSeg was also tested on CFD and AigleRN. 

R. Roberts [3] makes the conception and the realization of a 
Low-Cost Data Acquisition and Analysis System for PMS in 3 
phases: 

• Phase 1: Pavement images collection by using two 
smartphones and one camera. The distance from the 
pavement surface was 1500 m. 

• Phase 2: Conversion of images collected to 3D model 
by using SFM (Structure From Motion) technique. 

• Phase 3: Analyzing images and Points Cloud by Cloud 
Compare. 

• Phase 4: Points Cloud segmentation by using RANSAC 
and Fit algorithms. 

Z. Tong [4] makes a combination of an FCN (Fully 
Convolutional Network) and a GCRF (Gaussian Conditional 
Random Field) to develop a new technique of pavement 
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distress detection. This method enhances the precision of the 
detection by extracting more information about distress type, 
localization and dimensions. The algorithm contains a 
framework of incertitude calculation and a probability-based 
role to reject wrong segmentation. A dedicated dataset for 
algorithm training, validation and testing was collected 
by Datong SH5047XJCA2D5 (vehicle equipped with 
cameras). The dataset contains 8 820 images collected under 
different resolutions and formats by a vertical camera to the 
pavement surface. 

Y. Du [5] used YOLO Network v3 to create a method of 
the detection and the classification of pavement damages. A 
dataset of pavement images was prepared using a camera 
installed on a vehicle. 45 788 images were captured along 200 
KM of pavement under different weather and lighting 
conditions. 

Z. Fan [6] suggested a group of CNNs based on Probability 
Fusion for automatic detection and measurement of pavement 
cracks. This method consists of three steps: 

• Step 1: a group of CNNs was used to identify the 
structure of small cracks on raw images. 

• Step 2: the average of all networks’ outputs gives the 
probability of cracks on each pixel. 

• Step 3: Skeleton algorithm measures the prediction of 
cracks' characteristics. 

The proposed method was validated and tested on two 
datasets CFD and AigleRN. It can measure the width and the 
depth of different cracks (complex, thin, and intersecting 
cracks) based on a Crack Maps Prediction. 

X. Xiang [9] proposed a new method for cracks detection 
based on an end-to-end trainable Deep CNN. The network was 
trained on Crack500 and evaluated on three datasets Crack500, 
Cracktree200 and CFD. 

Q. Mei [12] proposed a cost-effective solution for 
pavement cracks inspection using a Grade Sport GoPro camera 
mounted on a vehicle. Two configurations of camera 
installation were studied (rear and front). Rear configuration 
was more advantageous for the following reasons: 

• Light reflection from the windshield inside the car 
reduces image quality for front configuration. 

• Front camera is relatively far from the pavement 
surface. 

• FOV (Field Of View) of the front camera is reduced by 
the car’s hood. 

• Using backup cameras of cars in future researches to 
optimize equipment needed. 

A new crack detection method ConnCrack was developed, 
which combines a Conditional Wasserstein Generative 
Adversarial Network and a Connectivity Maps. ConnCrack 
was pre-trained on two public datasets ImageNet and CFD. 
Then, it was trained and tested on the EdmCrack600 dataset 
collected for the study. 

J. Liu [15] makes the conception of a method for pavement 
crack detection and segmentation based on a CNN in two 
steps: 

• Step 1: automatic cracks detection using an algorithm 
based on YOLO V3 (modified). 

• Step 2: cracks segmentation using an algorithm based 
on U-Net (modified). 

Cracks detected during the first step will be segmented on 
the second step to enhance the method precision. A dataset of 
pavement crack images was collected for the study under 
different weather conditions and noise (stains, pavement 
markings, sealed pavement, sand, leaves, branches, shadow, 
etc.). 1 066 images were collected by a smartphone (dual 
cameras 13 Megapixels) at a fixed distance from the pavement 
(1.5 m). CFD dataset images (118) were added to the study 
dataset to get 1 184 images. Then, data augmentation was 
applied to get 7 104 images. Both methods (Step 1 & Step 2) 
were trained, evaluated and tested on the global dataset. 

E. Ibragimov [18] proposes a method for automatic 
pavement distress detection based on Faster Region 
Convolutional Neural Network (Faster R-CNN). The study 
focused on four types of cracks: Longitudinal, Transverse, 
Alligator and Partial Patching. The validation of the method 
was conducted on a dedicated dataset collected for the study. 
Dataset (3 200 images) was collected by a high-resolution 
camera mounted on a vehicle moving at a speed of 30 km/h 
along 10 m * 3.7 m of pavement. 

Y. Wang [19] creates a framework RENet “Rectangular 
convolution pyramid and edge enhancement Network” for 
pavement cracks detection. RENet is based on the modified 
ResNet-18 network, which is pre-trained on the ImageNet. The 
framework was tested on two datasets CRACK500 and NEU 
inlaid Crack and compared to 7 other methods (SMD, BC, 
MIL, Yin, NLDF, FCN, FPHB and SRM) on the same 
datasets. 

2) Vision-based vs Vibration-based: J. Lekshmipathy [8] 
makes a conception and a comparison of two automatic 
methods of pavement distress detection, one based on vision 
and the other on vibration. All experiences for both methods 
were conducted on the same road segment (6.2km), and the 
results were validated by a manual survey. For the vibration 
method, accelerometers and gyroscope of a smartphone were 
used to collect data, and an Artificial Neural Network 
Technique was used to detect and classify pavement distress. 
For the vision method, data was collected by a camera (Sony 
Handycam, 8.9 Megapixels) mounted on the rear end of a car; 
images were captured at a speed between 10 and 15km/hr. 
Pavement distress detection and extension were conducted 
using a MATLAB code. 

3) UAV images extraction: M. Zeybek [10, 20] used the 
mini UAV DJI Phantom 4 RTK (P4RTK) to inspect the 
condition of a road segment (100Meters) contains small 
cracks, potholes and ruts. The proposed method constructed 
on three phases: 
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• Phase 1: collection of images by a flying UAV. 

• Phase 2: generation of Point Cloud (3D) and 
Orthomosaic with the SFM Pix4DMapper. 

• Phase 3: damage measure (diameter, perimeter, width 
and depth) conducted on 2D and 3D data by Global 
Mapper Software. 

R. Roberts [21] creates 3D models from UAV images by 
using SFM technique. The UAV used is the DJI Mavic 2 Pro 
(Commercial) with a 907g weight and 20Megapixels camera 
resolution. During data collection, 554 images were collected 
with a distance of 8 m from the ground and a GSD of 
0.97mm/pixel. RANSAC (RANdom SAmple Consensus) and 
2.5D Quadric Fit algorithms were used to segment images and 
evaluate the degradation levels. 

4) GPR images extraction: J. Gao [13] makes the 
conception of Faster R-ConvNet (Region- Convolutional 
Neural Network), which is a Deep Learning method for 
pavement distress detection. Faster R-ConvNet was trained, 
validated and tested using 3785 GPR (Ground Penetrating 
Radar) images. Images were collected using LTD-2000 GPR 
(made in China) and containing different damages: Reflection 
Crack, Water-Damage-Pit and Uneven Settlement. During 
images collection, different frequencies were used to 
guarantee dataset integrality. 

M. E. Torbaghan [14] proposed a method for automatic 
detection of cracks on road surfaces using GPR and established 
the limits of minimal dimensions detectable. The Singular 
Value Decomposition (SVD) algorithm reduces clutters on 
images. Then, a filter is applied to eliminate random noises. 
GPR images collection by Ground View 3 GPR (Utsi 
Electronics, 2GHz antenna) were conducted on seven 
pavement slabs samples. In total, 3.5m length of pavement 
contains 14 different cracks. Each slab is 500mm × 500mm × 
110mm dimension. To test the ability of the system to detect 
pavement damages under environmental and physical 
conditions change, the following parameters were simulated: 

• Cracks’ surface was covered with paper to simulate the 
coverage of cracks by leaves’ plants. 

• Cracks were filled with thin layers of Bitumen to test 
the ability of the system to detect voids and cracks that 
do not penetrate to the surface. 

• Cracks were filled with fine grains of sand to simulate 
debris and dust. 

5) Transfer learning: S. Ranjbar [16] adopted the Transfer 
Learning technique to ML algorithms in order to solve the 
problem of a big data need for training. He trained, on a 
dataset, the Pre-Trained Models: AlexNet, GoogleNet, 
SqueezNet, ResNet-18, ResNet-50, ResNet-101, DenseNet-
201 and Inception-v3. The dataset contains 1 500 images of 
pavement Linear Cracking, Surface Cracking and Non-
Cracking. 

IV. EXPERIENCES AND RESULTS 
In order to make a significant comparison between 

algorithms, some indicators were defined and measured. The 
most indicators used are Precision, Recall and F1 Score. 

A. Indicators Definitions 
• Precision: the percentage of real cracks detected (TP) by 

a method from the total of real cracks existing (TP+FP) 
(2): 

𝑃𝑟 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

              (2) 

• Recall: the percentage of reality (TP) on all cracks 
detection by a method (TP+FN) (3): 

𝑅𝑒 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

               (3) 

• F1 Score: is the harmonic average value of precision 
and recall (4): 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2
1/𝑃𝑟+1/𝑅𝑒

              (4) 

During algorithm tests on a dataset, damages detection is 
compared to the real damages confirmed by dataset labels. 
However, it seems that some real damages are not detected by 
the algorithm, and some damages detection by the algorithm is 
not real. Damages accuracy verification can be done at the 
region or the pixel level. Finally, four situations can be defined: 

S1: Picture/Pixel damaged according to the dataset and the 
algorithm; is counted as TP (True Positive). 

S2: Picture/Pixel damaged according to the dataset but not 
detected by the algorithm; is counted as FP (False Positive). 

S3: Picture/Pixel not damaged according to the dataset but 
supposed damaged by the algorithm; is counted as FN (False 
Negative). 

S4: Picture/Pixel not damaged according to the dataset and 
the algorithm; is counted as TN (True Negative). 

For Picture or Pixel level reasoning, the totals of counted 
TP, FP, FN and TN are calculated. Precision (Pr), Recall (Re) 
and F1 Score are calculated using (2), (3) and (4) respectively. 

B. Cracks Detection 
Several algorithms for cracks detection were proposed by 

the literature. To compare the performance of these algorithms, 
values of indicators (Precision, Recall, F1 Score) were 
collected and reviewed from publications. Table V summarizes 
indicators of the most popular cracks detection algorithms on 
the four datasets: CFD, CrackDataset, Aigle RN and 
EdmCrack600. 

On the CFD dataset, the two steps concept based on the 
CNN proposed by J. Liu [15] get the best values of Pr 
(97.24%) and F1 score (95.75%). On the same dataset, the best 
value of Re (95.70%) were achieved by U-Net method based 
on Pixel-level crack detection [15]. 

713 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 8, 2021 

On CrackDataset, CrackSeg achieved the best results on the 
three indicators: Pr=98.00%, Re=97.85% and F1 
score=97.92%. 

On Aigle-RN dataset, Z. Fan [6] achieves the best values of 
the three indicators: Pr=93.02%, Rec=91.66% and F1 score = 
92.38%. 

On EdmCrack600, best values were achieved by 
ConnCrack [12]: Pr=80.88%, Re=91.66% and F1 
score=92.38%. 

C. Non-Cracks Distress Detection and Analysis 
Other methods were not limited to cracks studies, but they 

open the scope to analyze other damages: Pothole, Patching, 
Ruts, Manhole, etc. 

R. Roberts [3] creates a low-cost imagery model for 
detecting and analyzing pavement distress. Images were 
collected using one camera (Nikon D5200) and two 

Smartphones (Huawei P20Pro and Samsung GalaxyS9). The 
accuracy of using mobile images to create 3D models was 
proved [3]. To evaluate smartphones’ utility, Weibull 
parameters were measured (Shape and Scale) for the three 
distress surveys of the study, as illustrated in Table VI. 

Y. Du [5] makes the conception of a method for pavement 
distress detection and classification based on YOLO Network 
v3. The method was tested on the dataset collected for the 
study, which contains three sets: 10 000, 20 000 and 30 000 
images set. Best values were achieved on the 30 000 images 
set. For Manhole distress (9 567/30 000 images), AP=92.7% 
and F1=93.20% which represent the higher values. Minor 
values were relative to Potholes detection (1093/30 000 
images) with AP=60.2% and F1=67.03%. On the same dataset, 
the algorithm was compared to Faster R-CNN and SSD using 
AP (Average Precision), F1 Score and operation time 
indicators (Table VII). 

TABLE V. CRACKS DETECTION ALGORITHMS COMPARISON ON FOUR DATASETS 

Algorithm 
CFD (%) CrackDataset [2] (%) Aigle RN (%) EdmCrack600 [12] (%) 
Pr Re F1 Pr Re  F1 Pr Re F1 Pr  Re F1 

Dense Crack 201 92.02 91.13 91.58          
Canny 43.77  73.07 45.70    19.89 67.53 28.81 1.69 34.17 3.14 
FFA 78.56 68.43 73.15    76.88 68.12 68.17    
CrackTree 73.22 76.45 70.80          
CrackForest (SVM) 82.28 89.44 85.71 86.28 85.46 85.86 90.28 86.58 88.39    
MFCD 89.90 89.47 88.04          
CrackNet-V 92.58 86.03 89.18          
U-Net 92.54 89.51 89.90 96.99 97.09 97.04    76.33 70.88 71.52 
Z. Fan (2020) [6] 95.52 95.21 95.33    93.02 91.66 92.38    
Local Thresholding 77.27 82.74 74.18    53.29 93.45 66.70    
Structured Prediction 92.27 94.89 93.12    91.88 88.61 90.21    
ResNet152-FCN  87.83  88.19  88.01       78.98 56.51 62.78 
VGG19-FCN  92.80  85.49 88.53       80.22 59.93 65.18 
ConnCrack [12] 96.79  87.75 91.96       80.88 76.64 76.98 
Crack IT 67.23 76.69 71.64    76.85 74.32 76.56 12.33 7.14 4.75 
J. Liu [15] (Two Steps) 97.24 94.31 95.75          
Ai. Jiang (2018) 90.70 84.60 87.00          
Jenkins et al. (2018) 92.64  82.82  87.38          
Bang et al. (2019)  93.57 84.90  89.03          
Nguyen et al. (2018) 93.06  89.31  91.14          
Fan et al. (2018)  91.19  94.81  92.44          
Cheng et al. (2018) 92.12  95.70  93.88          

TABLE VI. WEIBULL PARAMETERS IN THE THREE DISTRESSES SURVEYED [3] 

DEVICE DISTRESS 1 DISTRESS 2 DISTRESS 3 
Shape Scale Shape Scale Shape Scale 

Huawei P20 Pro 1.186156 0.002275 0.941246 0.001772 0.725207 0.002148 
Samsung Galaxy S9 0.981589 0.002794 1.005422 0.001528 1.183398 0.001785 

TABLE VII. COMPARISON BETWEEN YOLOV3, FASTER R-CNN AND SSD ON THE COLLECTED DATASET [5] 

Distress Type Higher AP Higher F1 Score Minor Operation Time 
Crack  Faster R-CNN : 49.3 % Faster R-CNN : 54.88 % 

YOLOv3 (Batch = 64) 
364.965 /S 

Patch-Crack  Faster R-CNN : 72.3% Faster R-CNN : 76.58% 
Pothole  YOLOv3 (Batch = 64) : 38.6% YOLOv3 (Batch = 96) : 40.88% 
Patch-Pothole  YOLOv3 (Batch = 64) : 63.3% YOLOv3 (Batch = 64) : 68.55% 
Net Faster R-CNN : 53.5% Faster R-CNN : 56.90% 
Patch-Net  Faster R-CNN : 41.9% Faster R-CNN : 44.32% 
Manhole Faster R-CNN : 86.1% Faster R-CNN : 90.45% 
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Faster R-CNN makes good performances on detecting 
Cracks, Patch-Cracks, Nets, Patch-Nets and Manholes. 
However, YOLOv3 makes good performances on Pothole and 
Patch-Pothole detection and makes minor Operation time for 
all distress types detection (365 /S). 

E. Ibragimov [18] develops an algorithm for automatic 
pavement damage detection based on Faster R-CNN. The 
method was tested on a dataset collected for the study that 
contains three types of damage: Linear cracks, area cracks and 
patching. The method makes good performances on detecting 
area cracks and patching. On patching detection, Precision, 
Recall, and F1 Score were respectively 84.00%, 88.09% and 
87.21%. Difficulties were occurred on the detection of Linear 
Cracks (Longitudinal and Transverse): Pr=38.15%, 
Re=41.23% and F1=31.86%. 

D. Algorithms Tested on UAV Images 
M. Zeybek [10] used Pix4DMapper (SFM) to create Points 

Cloud 3D models based on UAV images. Global 

Mapper software was used to detect and measure damages. 
Four features (diameter, perimeter, length and depth) were 
measured on four potholes and seven ruts. Software 
measurement was compared to data collected from a survey. 
Software errors (M soft – M field) and RMSE values are 
illustrated in Table VIII. M. Zeybek [10] proved also that 
measurement precision increases and error from field 
measurement decreases when the density of Points Cloud 
becomes large. As mentioned in Section III, the density of 
Points Cloud depends on the GSD value which depends on the 
UAV altitude. Four UAV GSD configurations were studied: 

• 5mm GSD configuration presents the minor RMSE 
values: RMSE (diameter) = 4.41cm, RMSE (perimeter) 
= 0.03cm and RMSE (depth) = 0.03cm; 

• 10mm GSD configuration: RMSE (diameter) = 8.53cm, 
RMSE (perimeter) = 4.18cm and RMSE (depth) = 
0.03cm; 

• 15mm GSD configuration: RMSE (diameter) = 
16.29cm, RMSE (perimeter) = 6.08cm and RMSE 
(depth) = 0.03 cm; 

• 20mm GSD configuration presents the higher RMSE 
values: RMSE (diameter) = 20.38cm, RMSE 
(perimeter) = 6.72cm and RMSE (depth) = 0.05cm. 

TABLE VIII. ERRORS AND RMSE FOR DISTRESS MEASURED BY GLOBAL 
MAPPER SOFTWARE [10] 

MEASUREMENT  
TYPE SAMPLE ERROR INTERVAL  

(cm) RMSE 

Diameter 4 Potholes 0.1 – 1.5 0.010 

Depth 
4 Potholes  
and  
7 Ruts 

0.1 – 3.7 0.009 

Length 7 Ruts 2.0 – 15.5 0.301 

Perimeter 4 Potholes 13.4 – 32.2 0.076 

R. Roberts [21] used DJI Mavic 2 Pro (UAV) images to 
measure distress. During the 3D Cloud conception, the GSD 
was fixed on 0.97mm/Pixel to get 90 508 878 Points Cloud. 
RMSE values for Control Points and Check Points on the 
three3 axes (X, Y, Z) were measured. RMSE range was 
between 0.0078m and 0.0119m. 

E. Algorithms Tested on GPR Images 
J. Gao [13] proposed the Faster R-ConvNet method, which 

was trained and tested on a GPR images dataset contains four 
damages: 

• Reflection crack: Pr = 88.31% and Rec =  89.04%; 

• Water-damage pit: Pr = 90.56% and Rec = 89.68%; 

• Uneven settlement: Pr = 88.51% and Rec = 91.04%; 

• Overall: Pr = 87.13% and Recall = 89.92%. 

M. E. Torbaghan [14] proposed a method for automatic 
crack detection based on GPR images. Table IX summarizes 
the ability of the method to detect cracks on raw and processed 
images. It was observed that on raw images, cracks width 
inferior to 8.6mm cannot be detected, between 8.6mm and 
16.5mm were hard to detect and only superior to 31mm can be 
detected easily. However, on processed images, it was possible 
to detect cracks from 7mm width. On the other hand, PSNR 
(Peak-Signal-to-Noise Ratio) was analyzed for slabs uncovered 
and covered (with papers, thin layers of asphalt and filled with 
sand). PSNR for small-width cracks can’t be analyzed. 

F. Transfer Learning  
To assure a good training for algorithms and reduce the 

need for a big amount of data, S. Ranjbar [16] trains a group of 
8 pre-trained algorithms on a dataset containing 1 500 images. 
SqueezNet achieved the higher values of Accuracy, Pr and F1-
score as illustrated in Table X. 

TABLE IX. THE ABILITY OF THE METHOD TO DETECT GPR IMAGES [14] 

Crack  
N° 

LOCATION  
(cm) 

WIDTH  
(mm) 

RAW  
IMAGES 

PROCESSED  
IMAGES 

1 24.0 14.4 Hard Good 

2 59.0 1.1 No No 

3 88.5 4.5 No Hard 

4 110.0 16.5 Hard Good 

5 136.5 10.1 Hard Good 

6 161.0 8.6 No Hard 

7 192.0 1.3 No No 

8 210.0 31.3 Good Good 

9 239.0 3.4 No Good 

10 258.0 4.2 No No 

11 265.0 5.7 No Hard 

12 294.0 7.0 No Good 

13 317.0 34.2 Good Good 

14 371.0 4.7 No Hard 
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TABLE X. COMPARISON OF PRE-TRAINED ALGORITHMS ON THE 
DATASET STUDY[16] 

PRE-TRAINED  

ALGORITHMS 
ACCURACY PRECISION F1 SCORE 

AlexNet 97.80% 96.70%  
 

96.70% 

SqueezNet 99.10% 98.60% 
 

98.60% 
 

GoogleNet 98.90% 98.40% 
 

98.40% 
 

ResNet-18 97.90% 96.90%  
 

96.80% 

ResNet-50 97.40% 96.10%  
 

96.10% 

ResNet-101 97.20% 95.80%  
 

95.70% 

DenseNet-201 98.40% 97.60%  
 

97.60% 

Inception-v3 98.50% 97.70%  
 

97.70% 

*Blood values are higher.* 

V. LIMITATIONS AND FUTURE RESEARCH 

A. Limitations 
Despite multiple researches conducted, automatic detection 

and maintenance of pavement distress are still reals issues in 
Smarts Cities. As we reviewed in previews sections, multiples 
sensors, software and algorithms were employed to find 
optimal solutions. However, results still under the perspectives 
of Smarts Cities’ designers. Currents solutions are suffering 
multiple limitations on data collection, datasets construction, 
algorithms training and data analysis. 

1) Data collection: sensors used to collect pavement data 
are facing the issue of getting details about small damages 
(~1cm). Environmental changes caused directly by small 
damages are very low. For this reason, parameters (such as 
temperature, vibration, etc.) are not very significant on 
pavement health monitoring concept. 

GPR images are constructed based on electromagnetic 
signals reflected from pavement surfaces. Small damages 
reflect very weak signals that can’t be easily analyzed, even if 
after processing operations. 

Vision-based sensors (Cameras or Smartphones) are the 
best tools used for pavement monitoring. However, getting 
information about small damages depends on the camera’s 
parameters (resolution, focal length and FOV). Despite using a 
high-quality camera, we should reduce the distance from the 
pavement, which is not always possible during traffic. 

UAV makes great progress on pavement monitoring, by its 
ability to move around the pavement and collect images from 
different distances and angles. However, UAVs are still limited 
on embedded sensors types and quantity, weight, minimal 
altitude, range and the capacity of batteries. 

2) Datasets: Multiple datasets present a limited number of 
images and distress types. Otherwise, a few datasets contain 
images with complex situations such as climate effects, low 
lighting and small objects noise. Also, the dataset should 
contain images with a high density of damages and degraded 
conditions. 

3) Data analysis: most of the researches conducted were 
focusing on crack damages. Other types of damage (pothole, 
bump, ruts, etc.) are pending more specific methods and 
analysis. Otherwise, most of the papers are conducted on the 
field of the detection level. Measurement of pavement 
damages’ dimensions (length, depth, diameter, perimeter, etc.) 
is still at its beginning. Also, studies and experiences were 
limited to small sections of the road. To the best of our 
knowledge, no study was conducted on monitoring a big 
network of roads as expected in Smarts Cities, to evaluate the 
ability of the system to handle a big amount of data. 

B. Futures Research 
To overcome the mentioned limitations and to achieve an 

efficient automatic pavement distress detection and 
measurement in Smarts Cities, we need to open the following 
scopes of research: 

• Developing tools and methods for collection and 
analyzing small pavement damages ~ 1 cm. 

• Generalization of pavement distress detection and 
measurement methods for other damages types than 
cracks. 

• The conception of pavement damages datasets, 
exhaustive and dense, to avoid algorithms 
“Overfitting”. 

• Development of pavement distress detection and 
measurement algorithms based on “Ensemble 
Learning” and “Transfer Learning”. 

• Extraction of pavement damages from UAV videos 
streaming. 

• Replace using multiple software and algorithms by End-
To-End algorithms. 

• Development of a GPS navigation system that can alert 
drivers about road damages. 

• Using as a low-cost solution, Backup cameras and GPS 
navigation systems of cars to conduct pavement surface 
conditions. 

• Development of a “User-Friendly” smartphone 
application to help drivers to avoid road damages. 

• Using Google Earth images to enhance pavement 
distress datasets quality for a large roads network. 

VI. DISCUSSION 
Multiple software and algorithms were trying to extract 

meaningful information about pavement damage. Recently, 
Machine Learning and Deep Neural Networks are methods that 
achieved better results. The efficiency of these methods 
depends on the quality of data collected and algorithms training 
conduction. Multiple datasets were collected using fixed or 
mobile sensors to help with algorithms training, evaluation and 
testing. Several free datasets were collected under different 
conditions: weather, day/night, noise and data-making 
confusion (land markers, small objects, dust, etc.). 
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Until today, there are no robust methods or algorithms that 
can extract all existing distress, including small damages, on a 
big network of roads. Such a situation is sometimes due to the 
poor quality of data collected, the lack of training conducted 
for algorithms, or the non-possibility to handle a big amount of 
data at a determined timing. 

Our concept will focus on using multiple UAVs 
(Unmanned Aerial Vehicules) to monitor roads surface. Videos 
will be taken from different altitudes and angles by multiple 
sensors. UAVs will be managed to capture all data required 
and transmit it to a ground station for validation or rejection. A 
pre-trained algorithm will be used to extract pavement 
damages from frames’ videos. Fig. 1 illustrates the flowchart of 
our study. 

VII. CONCLUSION 
Automatic Pavement Distress Detection and Measurement 

is one of the most challenges in Smarts Cities. PMS (Pavement 
Management System) aims to keep road surfaces healthy and 
available all the time. For this reason, at each moment, 
pavement condition and futures evolution should be defined 
with high accuracy. We keep in mind that, Smarts Cities are 
looking for a low-cost solution, automatic, robust and able to 
handle a big amount of data. 

During our review of state-of-the-art methods, it was 
observed that most of the papers were limited to the detection 
and measurement of specific damages on small pavement 
sections. Also, small damages were hard to analysis too and 
training still a real issues that needs to be overcome. 

In Smarts Cities, roads networks are huge. For this reason, 
we need to deploy multiples sensors, to enhance the situation 
awareness about the health of road surfaces. The use of UAVs 
gives the flexibility to move around the three dimensions and 
change distances/angles from the pavement. Frames extracted 
from videos are containing meaningful information than simple 
images. To avoid overload, frames can be filtered before 
distress extraction operation. 

Training of the algorithm is a critical operation that could 
be conducted periodically. Algorithm detection can be 
examined during surveys until detection achieves the accuracy 
and the maturity required. 

 
Fig. 1. Flowchart of the Study. 
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