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Abstract—Information diffusion in the social network has been
widely used in many fields today, from online marketing, e-
government campaigns to predicting large social events. Some
study focuses on how to discover a method to accelerate the
parameter calculation for the information diffusion forecast in
order to improve the efficiency of the information diffusion
problem. The Betweenness Centrality is a significant indicator
to identify the important people on social networks that should
be aimed to maximize information diffusion. Thus, in this paper,
we propose the RED-BET method to improve the information
diffusion on social networks by a hybrid approach that allows to
quickly determine the nodes having high Betweenness Centrality.
Our main idea in the proposed method combines both the
graph reduction and parallelization of the Betweenness Centrality
calculation. Experimental results with the currently popular large
datasets of SNAP and Animer have demonstrated that our
proposed method improves the performance from 1.2 to 1.41
times compared to the TeexGraph toolkit, from 1.76 to 2.55 times
than the NetworKit, and from 1.05 to 1.1 times in comparison
with the bigGraph toolkit.

Keywords—Information diffusion; graph reduction; between-
ness centrality; parallel computing

I. INTRODUCTION

Information diffusion is a key in social network analysis
with many potential real-world applications. For example, it
can be used for predicting large social events such as the Arab
Spring [23], for improving the recommendation performance
of products and services, and for maximizing advertising effect
to individuals. However, it is difficult and time-consuming to
be able to make the information diffusion forecast. The cause
of this problem is the characteristic of the social network as a
relatively large-scale graph with a large number of members
(number of vertices) and number of relationships (number
of edges) leading to the computation of the parameters for
forecasting diffusion takes a lot of time [3].

Graph reduction, based on the application of graph the-
ory [31], [36], is the basic and effective technique to minimize
the time to calculate parameters in graphs and the time to
analyze information diffusion forecast. Reducing unimportant
vertices and edges on the graph will make the calculation
faster. It is critical, however, to demonstrate that the reduction
does not affect the graph’s overall model.

Besides, in the problem of information diffusion, many
parameters need to be calculated to conclude the diffusion.
One of the most important parameters is centrality degree to
identify the most critical (most central) vertice in a graph [4],
which means the center of a pandemic, the main node on

the Internet, or an influential person in social networks... [22]
demonstrated the influence and the importance of centrality
computation in the problem of disease diffusion as well as
information diffusion.

Among the indicators of centrality degree [24], [28], be-
sides the Closeness Centrality, the Eigenvector Centrality, the
Betweenness Centrality (BC) [12] is an important measure,
valuable in determining a vertice is an intermediate bridge
when establishing the shortest relationships (path) between
other vertices. This centrality has been used in many practical
problems. Such as, during the current Covid-19 pandemic, the
authors in [32] used the BC indicator to identify subjects that
need to be localized soon to proactively prevent the spread of
SARS-CoV-2 coronavirus. In [13], [19], authors proved that
BC has an important influence on the acceptance and diffusion
of information. But, to compute BC for all vertices in a graph,
we must solve the problem of finding the shortest path on all
pairs of vertices in the graph, a process that takes a long time
with large graphs.

To accelerate the computation, a number of researches have
been actively performed, focus on the orientations such as
graph reduction [1], [14], [33], approximating [6], [17], paral-
lelizing using GPU [7], [15], [25] or using a high-performance
computing platform [2], [11]. Based on some previous studies,
in this paper, we propose a hybrid method to improve the
information diffusion on social networks by a hybrid approach
that allows us to quickly determine the nodes having high
BC. Our method combines two processes: graph reduction and
BC parallel computing to accelerate the computation, analyze
information diffusion forecast while proving that our method
did not affect the overall model of the graph.

The remainder of this paper is divided into four sections
as follows: Section II describes fundamental concepts and
definitions; other related works will be also presented in this
section. Our hybrid method to improve information diffusion
by graph compression and quickly determining the BC on
social networks will be given in Section III. Section IV is
dedicated to present the experiment results and evaluations
confronted with the bigGragh and NetworKit, TeexGraph
toolkits. Finally, the conclusion and future works will be
presented in Section V.

II. PRELIMINARIES AND RELATED WORK

A. Notation

Social networks are represented in the form of graphs. In
which, the graph is a flexible data structure, represented as a
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set of vertices and edges, otherwise known as a set of nodes
and their relationships [26], [27].

Definition 1.1. In graph theory, a graph G, denoted G =
(V,E), is made up of a set of nodes V and a set of edges
E connecting nodes with E = {(vi, vj)|vi, vj ∈ V }. This
structure allows us to model all kinds of problems, from
building disease transmission maps, mapping systems, and
graphing of the relationships on Social Networks,...

For the convenience of evaluation, in this paper, we only
focus on unweighted graphs, but can be directed or undirected.
It means:

- Unweighted Graph: is a graph with no value assigned to
each edge.

- Simple Graph: is an unweighted graph and only has
exactly one edge between two vertices.

- Connected Graph: is a graph of existence path (u, v) from
vertice u to v for all pairs of vertices u, v ∈ V .

In this paper, we also use some concepts such as:

- Degree of the vertice, denoted deg(v) is the total number
of edges to and from vertice v. Due to considering only graphs,
the degree of the vertice v is also the number of vertices
adjacent to that vertice. The vertice v is called the hanging
vertice if deg(v) = 1 and is called the isolated vertice if
deg(v) = 0. In a directed graph, the degree of the vertice
is further divided into dout and din.

- Path is a series of vertices and edges from vertex u to
vertex v in the graph without any vertices or edges repeated.

- The shortest path between two vertices u, v, denoted
dist(u, v), with an unweighted graph, the shortest path is the
path with the smallest number of edges from u to v. If u, v
overlap dist(u, v) = 0, if u, v don’t link dist (u, v) =∞.

- Adjacent list Γ(v) is a list of vertices adjacent to v, also
known as its neighbor set of v.

Definition 1.2. The Degree Centrality of vertice v is the
number of edges associated with vertice v. This measure is
determined by the following formula:

CD(v) = deg(v) : v ∈ V (1)

Thus, the Degree Centrality of a vertice is the degree of
that vertice. With the directed graph, this measure is also
divided into CDout and CDin. For social networks, the Degree
centrality is a person’s number of friends on Facebook or the
number of followers on Twitter.

Definition 1.3. The Betweenness Centrality of a vertice v
is calculated by the following formula [29]:

BC(v) =
∑

s6=v 6=t∈V

σst(v)

σst
(2)

where σst is the number of shortest paths from vertice s
to t and σst(v) is the number of shortest paths from vertice s
to t through vertice v.

Thus, BC is the number of intermediaries one person
takes on when establishing the shortest relationships among
others [12]. In his study, Linton Freeman conceived that
the vertices with high probability lying on the shortest path
between two randomly selected vertices in the vertice set V
would have the most BC.

B. Related Work

In the studies of accelerating computation and analysis,
graph reduction is considered a highly effective method. The
essence of graph reduction is to remove/replace unneces-
sary/unimportant vertices and edges to obtain a more compact
graph and retain important vertices and necessary properties
of the graph.

Feder and Motwani in [33], Adler and Mitzenmacher
in [14] mentioned reduction by graph compression. In it, [33]
offers a compression method by using a partitioning algorithm
for the bipartite graph. The author in [14] put the compression
problem on the problem of finding the minimum spanning tree.
Basically, the graph compression method results in a more
compact graph, however, it often serves the problem of graph
storage (data or structure). For the social network analysis
problem with constantly changing data, the graph compression
is not suitable because continuous conversion between the
original graph and the compressed graph is not positive.

Gilbert and Levchenko in [1] gave several graph reduc-
tion methods with two algorithms KeepOne, KeepAll, and
the method of deleting redundant vertices RVE (Redundant
Vertex Elimination). In it, the KeepOne algorithm is similar
to the method of Adler and Mitzenmacher, that is to find a
minimum spanning tree for the graph. This method allows
to keep the maximum number of important vertices and the
vertices located between those important vertices, however,
the biggest disadvantage of this method is that it does not
preserve the shortest path between the two vertices. In con-
trast to it, KeepAll is an algorithm that allows retaining the
shortest path between important vertices. It can be said that
the two algorithms have their own strengths and are suitable
in certain cases (for example, KeepOne will be suitable for
the network planning problem, KeepAll is suitable for the
problem of finding the shortest way in traffic), however, they
are not suitable for social network analysis problems. RVE
is the closest method to analysis and computation on social
networks, this method allows the elimination of vertices that
have a common adjacent one. The method is often applied
in communication network reduction with the elimination of
unnecessary redundant nodes. If applied in social network
analysis, it can delete the unimportant vertices. But besides
that, if the important vertices have a common adjacent one,
one of which is also removed.

In previous research, we relied on the idea of the redundant
vertex elimination - RVE method, which is to reduce the
graph based on the replacement of the equivalent 1-degree
vertice. That is, in the reduction process, we only consider
the hanging vertices, deg(v) = 1 equivalent to BC = 0.
In that research, we have given the solution, described the
algorithm, and experimented on the small simulated network of
100 vertices. In this paper, in addition to the parallelization, we
also came up with the specific pseudo-code algorithm, proved
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the effectiveness of the method in the problem of information
diffusion, and experimented with it on some larger datasets.

For the quick BC computation, this is also the content
that many researchers are interested in. At first, there are
several methods to solve APSP problems, such as Floyd-
Warshall’s algorithm, Johnson’s algorithm [34] and Brandes
algorithm [35]. Compared with calculating APSP by Floyd-
Warshall algorithm (computation complexity O(|V |3))) and
Johnson’s algorithm (complexity O(|V |2log(|V |) + |V ||E|))),
then Brandes’ algorithm with time complexity is O(|V ||E|)
on an unweighted graph and O(|V ||E| + |V |2log(|E|)) on a
weighted graph is considered the most effective algorithm to
compute BC for all vertices in graph.

Riondato and Kornaropoulos in [17], Mahmoody,
Tsourakakis and Upfal in [6] give an idea of the fastness
approximation computing the BC based on sampling
technique. According to this method, some of the shortest
paths will be randomly sampled, thereby applying the
algorithm to estimate the distance between the vertices and
approximate the BC.

Bernaschi, Carbone and Vella in [15], Fan, Xu and Zhao
in [25], McLaughlin and Bader in [7] gave advanced solutions
to speed up BC computation by parallelizing computation
processes using GPU graphics processors. The author in [15]
also combines multiple GPU sets and parallel models using
distributed memory MPI to speed up computation. Notably,
these methods all use the classic Brandes algorithm.

Ching in [2], Wei, Chen, Zhou, Zhou, and He in [11]
suggest using the GraphLab and Apache Giraph toolkits on
complex computation infrastructures such as cluster computer
systems or high-performance supercomputers. However, these
toolkits are mainly designed to analyze very large networks up
to trillions of edges, not really efficient for computation with
real networks not too large as Facebook.

In addition to the above methods, improving BC computa-
tion performance can be applied by parallelizing the NetworKit
toolkit or the TeexGraph toolkit for large-scale social network
analysis. These tools all use a parallel shared memory model
and use the OpenMP library to parallelize BC metrics. One of
our research in [21] is the parallelization of SSSP calculations
in Brandes algorithm with parallel thread programming model
on CPU and using CilkPlus library.

In the above studies, there is currently no research focusing
on combining the process of graph reduction and improving
the performance of calculating the betwenness centrality when
solving the problem of information dissemination on social
networks. This is the main motivation for us to propose a
method overcoming this challenge in this paper.

III. RED-BET HYBRID METHOD TO ACCELERATE THE
COMPUTATION IN INFORMATION DIFFUSION PROBLEM

Based on the above analysis, in this paper, we propose a
hybrid method to improve the information diffusion on social
networks represented by an unweighted graph. This method is
based on the combination of two processes:

i. The graph reduction is based on replacing the equivalent
1-degree vertices.

ii. Paralleling SSSP calculations in Brandes algorithm with
parallel thread programming model on CPU using CilkPlus
library.

Since then, we call the proposed hybrid method namely
RED-BET .

In this study, we still use a graph data structure approach
like [20] to improve the cache hit rate when referring to graph
data. Thus, the large-scale graph G = (V,E) is organized
by the adjacent vertex lists where each vertex is assigned an
identifier from 0 to |V |−1. For edge data, sorted vertex vectors
are used to represent the graph edges. That means the graph
edges are structured in the vectors array Edges[u] ∀u ∈ V . For
real-world social networks, such as Twitter or Facebook, the
vertices number is small than 232. Therefore, the graph data is
allocated by a 4-byte integer vectors array and our method can
analyze a graph with the largest number of vertices possible
being 232.

A. Graph Reduction

The first step in the reduction of the graph is to determine
the equivalent 1-degree vertices. 1-degree means hanging ver-
tices deg(v) = 1 and equivalent mean that they must have
a duplicate set of adjacent vertices Γ(v). And since they are
1-degree vertices (with a single adjacent vertice), we can say
that we need to find the hanging vertices that have a common
adjacent vertex.

To do this, we need to proceed with graph search-
ing [30], [18], [9]. While considering whether to use breadth-
first searching (BFS) or depth-first searching (DFS), we found
that the first phase of Brandes’ BC computation that we
improved was the browse by BFS. Therefore, we proceed to
integrate the graph reduction into the graph searching phase,
ie also using the BFS method.

After determining the equivalent vertices above, replacing
them is understood that we will choose a single vertice to
represent, or that is, delete the equivalent vertices and leave a
single vertice. This reduction reduces the size of the graph,
which in turn will certainly change the result of the BC
computation of vertices. However, there are two reasons for
us to decide to still reduce the graph. Firstly, the vertices that
we replace are the hanging 1-degree vertices, the Betweenness
Centrality BC = 0, meaning the vertices are not important,
their removal does not affect the graph too much.

Secondly, in analyzing the social network graph, we care
about which vertice is “most important”, or which vertice has
the highest centrality or the highest BC not about what is
the exact BC of that vertice. Our reduction method allows
to ensures that the ”most important” property of those vertices
is preserved.

Thus, the graph reduction algorithm is illustrated as fol-
lows:
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Algorithm 1: Graph Reduction Algorithm
Input: G = (V,E), is organized as an vector array

Edges[][]
Data: queue Q← , stack S create the hollow (empty)

and its able to contain |V | vertices
Output: Edges[][] of G have been reduced
/* Phase 1. Graph reducing */
foreach v ∈ V do

while Q not empty do
v ← Q.pop();S.push(v) ;
foreach
w ∈ Edges[v]&&Edges[w].Size() = 1 do

if u ∈ Edges[v]&&Edges[u].Size() = 1
then Edges[v]← Edges[v]\{u} ;
/* delete u from Adjacent
list of v */
Edges[u] = {} ; /* delete vertice
u */

;
end

end
end
return Edges[][];

Fig. 1. Test with Random Graph of 500 Vertices.

To prove the effectiveness of graph reduction in the In-
formation diffusion problem, based on the method and library
(NDlib) in [8], we tested the information diffusion process
on some random graphs using the SIR model and compare
it with that process when the graph is reduced. For the first
time, we used a random graph of 500 vertices, the probability
to generate edges is 0.005, with 50 times the information
was diffused. The results are shown in Fig. 1 with the light
line describing the ratio of the graph before reduction and

Fig. 2. Test with Random Graph of 400 Vertices.

TABLE I. COMPARE THE DIFFUSION TIME (SECONDS)

Times
Graph with 500 nodes Graph with 400 nodes
Before After Before After

1 1.30 1.25 1.28 1.20

2 1.27 1.23 1.26 1.20

3 1.28 1.25 1.25 1.19

4 1.32 1.24 1.26 1.20

5 1.28 1.22 1.25 1.18

6 1.28 1.24 1.28 1.21

7 1.29 1.23 1.24 1.18

8 1.32 1.25 1.24 1.19

9 1.31 1.25 1.25 1.18

10 1.30 1.24 1.26 1.20

a bold line describing the ratio of the graph after reduction.
The results showed that the ratios of Susceptible, Infected, and
Removed had not much difference between the two graphs.

The second time, we used a random graph of 400 vertices,
the probability to generate edges is 0.004, with 50 times
the information was diffused. The results in Fig. 2 show the
same result. The total time after performing 10 times for each
experiment is shown in Table I.

The results from Fig. 1, 2, and Table I showed the ef-
fectiveness of the graph reduction method in speeding up the
process of analyzing and diffusing information.
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B. Paralleling the Betweenness Centrality Computation Pro-
cess

First of all, to represent graphs there are three main
methods: (1) edge list, (2) adjacent matrix, and (3) adjacent
list. In a relatively large-scale graph, the edge-list method is
quite simple, but the calculation on the graph such as inserting,
deleting vertices is difficult. The adjacent matrix method is
also not usable due to memory size limitations. Therefore, the
most suitable is the adjacent list method. Thus, for vertice
data, in the graph G = (V,E), each vertice is assigned a
value from 0 to |V | − 1. For edge data, vertice vectors are
arranged to represent the edges of the graph, or edge data will
be represented in the vector array.

Secondly, the BC computation by the method of Brandes
depends largely on the BFS graph searching process. To reduce
the size of the queue when searching, each time we search
a vertex u, we will use the Maps array where the v-th bit
position represents the searching state or not of vertice v. The
Queue queue is also organized to store the shortest distance
from u to the searched-vertice in the Queue. Due to the
large size of the Queue queue and searching bookmark Maps
array (with the number of elements equal to V ), the memory
allocation will take a lot of time. So we will preallocate the
memory containing these arrays corresponding to the number
of threads that can execute in parallel.

Thirdly, to be able to exploit the performance of multi-core
CPUs, our plan to parallelize BC computation is to execute BC
computations in parallel on different vertices, not parallelize
the searching process and compute the shortest path from
one vertice to all other vertices (SSSP). This approach allows
SSSP searching to be performed in specialized threads, thereby
improving cache access speed.

Fourthly, the libraries for parallelization, such as CilkPlus,
OpenMP, and Pthread, Leist and Gilman in [5] experimented
and demonstrated the CilkPlus library give a better speed-up
factor than OpenMP and Pthread. Accordingly, we will use the
Cilkplus library to install the parallel computation.

Finally, it can be said that computing on the graph with
a large number of vertices and edges, in which the BC is a
relatively difficult problem in parallel. The reason is that in
Phase 2 of the algorithm, the accumulation process requires
a simultaneous control technique to process the accumulated
data from parallel threads. During research and testing, we
added a reducerBC[v] vector in the Cilkplus library [16].
Technically, reducer allows creating a separate cumulative
variable for each thread, and combining its own cumulative
variable will result in the correct order when the threads end.
That is reducerBC[v] vector allows to update the BC value of
vertice v when executed in parallel with the Cilkplus library.

From there, the algorithm to compute BC in parallel has
been given in [21] and shown in Algorithm 2.

As can be seen, the time complexity of algorithm 1 is
O(|V |∗|E|) and algorithm 2 is O( (|V |∗|E|)

t ). So with algorithm
2, if deployed algorithm with a thread t = 1, it would equal
the complexity of Brandes’ base algorithm of O(|V | ∗ |E|).
However, if this algorithm is executed in parallel with t threads,
the time complexity of the algorithm will be reduced by t
times.

Algorithm 2: Computation of BC in parallel
Input: G = (V,E) have been reduced, is organized

as Edges[][] vector field
Data: queue Q← , stack S create the hollow (empty)

and its able to contain |V | vertices ;
dist[v]: to save the distance from the source vertice to
v ;
Pred[v]: to store the list all the vertices on the
shortest path from the source vertice to v ;
σ[v]: the number of shortest paths from the source
vertice to v ;
δ[v]: the number of shortest paths from the source
vertice through v ;
reducerBC[v]: vector contains BC values of all
vertices v and allows the concurrency update in
parallel with CilkPlus library;
Output: BC[.] for any v ∈ V
/* Execute in parallel using CilkPlus

library */
for s = 0 to Edges.size() do

/* Phase 2. Graph researching */
foreach v ∈ V do Pred[v]← empty list;
dist[v]←∞;σ[v]← 0 ;
dist[s]← 0;σ[s]← 1;Q.push(s) ;
while Q not empty do

v ← Q.pop();S.push(v) ;
foreach w ∈ Edges[v] do

if dist[w] ==∞ then
dist[w]← dist[v] + 1;Q.push(w) ;

if dist[w] == dist[v] + 1 then σ[w]←
σ[w] + σ[v];Pred[w].push back(v);

end
end
/* Phase 3. Accumulation */
foreach v ∈ V do δ[v]← 0;
while S not empty do

w ← S.pop() ;
for v ∈ Pred[w] do
δ[v]← δ[v] + σ[v]

σ[w] .(1 + δ[w]);
if w 6= s then
reducerBC[w]← reducerBC[w] + δ[w];

end
end
reducerBC.move out(BC) ; /* to return
the results to vector BC */

return BC[.] ;

C. Red-Bet Hybrid Method

The proposal RED-BET hybrid method is based on both the
graph reduction and paralleling the BC computation process.
First of all, the graph reduction is performed before the BFS
phase in order to reduce both the vertices and the edges of
graph. After that the BC computation process is executed
to find the most important vertices in the social network.
However, to consolidate the information diffusion, we have to
prove the two mentioned contents above that the vertices that
we replace are not important, their removal does not affect the
graph too much and the “most important” property of those
vertices is preserved.
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Fig. 3. Graph Before Reducing.

TABLE II. RESULT OF COMPUTING BC AND CC BEFORE REDUCING

Vertice BC CC Vertice BC CC Vertice BC CC
A 0 0.24 H 176 0.44 O 1 0.31

B 0 0.24 I 0 0.31 P 3 0.32

C 24 0.36 J 163 0.45 Q 66 0.33

D 71 0.31 K 133 0.42 R 0 0.25

E 0 0.29 L 10 0.37 S 0 0.25

F 49 0.37 M 10 0.37

G 24 0.35 N 0 0.31

Fig. 4. Graph After Reducing.

To prove that we experiment on a simple graph with 19
vertices, 28 edges as shown in Fig. 3. Applying the formula
to calculate the BC and the Closeness Centrality (CC), we get
the results as Table II.

Thus, H is the vertice with the highest Betweenness Cen-
trality BC[H] = 176 (then to the vertices J and K), J is the
vertice with the highest Closeness Centrality CC[J ] = 0.45
(after to the vertices H and K). With a simple small graph,
intuitively we can see that vertices A and B are 2 equivalent
1-degree vertices, similarly vertices R and S are 2 equivalent
1-degree vertices. Apply the proposed graph reduction method,
we obtain the graph after reduction as in Fig. 4.

Applying the formula for calculating the BC and CC with
the graph after reduced, we get the results as Table III. After
reduction, H is still the vertice with the highest Betweenness
Centrality BC[H] = 140 (then to the vertices J and K),
J is also the vertice with the highest Closeness Centrality
CC[J ] = 0.48 (then to the vertices H and K). Thus, it can

TABLE III. RESULT OF COMPUTING BC AND CC AFTER REDUCING

Vertice BC CC Vertice BC CC Vertice BC CC
A 0 0.24 H 140 0.47 O 1 0.33

B - - I 0 0.33 P 2 0.33

C 14.67 0.37 J 129 0.48 Q 30 0.33

D 35 0.31 K 98 0.44 R 0 0.25

E 0 0.30 L 9 0.39 S - -

F 37.67 0.38 M 9 0.39

G 14.67 0.36 N 0 0.32

be concluded that graph reduction by the proposed method,
although changing the centrality value, does not affect the
properties and important vertices of the graph for the diffusion
information analysis problem.

For validating this method, we will conduct experiments
in the next section to prove that: (1) the reduction brings
more efficiency in parallelization than the non-reduction, that
is, the experimental results of this research’s algorithm are
more optimal than the bigGraph algorithm [21]; (2) the speed-
up factor of the proposed algorithm compared to the two
tools NetworKit and TeexGraph is clearer than the speed-up
factor of bigGraph algorithm when compared to the two tools
NetworKit and TeexGraph.

IV. EXPERIMENT AND EVALUATION

To evaluate the effectiveness of the hybrid method in
accelerating the BC calculation, we installed our algorithm on
the computer with 2 x CPU (2-cores per CPU) configuration,
128 GB main memory, operating system CentOS Linux release
7.4.1708, gcc 7.2.0 compiler. This computing system was
configured with a maximum of 36-threads in parallel.

A. Datasets

To test the above algorithm, we have collected social
network data sets published from two major organizations,
SNAP [10] and Aminer Datasets for Social Network Anal-
ysis [37] including:

- ego-Facebook: A data set built from Facebook’s friends’
lists. These lists are gathered from members participating in
the Facebook application-based survey (DS1).

- gemsec-Facebook: A data set consisting of 8 subnets built
to represent legitimate Facebook pages. These Facebook pages
are modelled with vertices and edges representing the links
between those pages. Due to the size and time limitations,
we only selected two large networks in the gemsec-Facebook
dataset for testing: Politician (DS2) and Artist (DS3).

- com-DBLP: This is a dataset that represents the DBLP
co-authorship network (DS4).

- com-Youtube: This dataset is collected from the ground-
truth communities in Youtube social network (DS5).

The above data sets are all connected graphs, their main
characteristics are illustrated in Table IV.
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TABLE IV. EXPERIMENT DATASET CHARACTERISTICS

Dataset Edges Nodes Diameter
ego-Facebook (DS1) 88,234 4,039 8

gemsec-Facebook Politician (DS2) 41,729 5,908 14

gemsec-Facebook Artist (DS3) 819,306 50,515 11

DBLP (DS4) 1,049,866 425,957 23

Youtube (DS5) 2,987,624 1,157,828 24

TABLE V. EXECUTION TIME (SECONDS) TO COMPUTE BC

Threads
DS1 DS2 DS3

bigGraph RED-BET bigGraph RED-BET bigGraph RED-BET

1 3.03 2.85 8.20 7.74 1129.47 1065.53

4 1.51 1.42 4.52 4.25 556.46 524.98

16 0.54 0.51 1.60 1.51 196.46 185.34

36 0.23 0.22 0.74 0.70 99.85 94.201

Fig. 5. Execution Time (Seconds) to Calculate BC of RED-BET.

B. Results and Evaluation

It should be noted, our previous research results in [21]
have proven that executing more parallel threads will increase
the speed up (i.e. time to compute BC less). Therefore, in this
study, we do not re-prove the above content and only focus
on proving two contents as mentioned in Part II, that is: (1)
the reduction method brings more parallelization effect than
the non-reduction, it means that the experimental results of
this study (RED-BET) are more optimal than the bigGraph
algorithm in the study [21]; (2) the speed-up factor of RED-
BET compared to the two tools NetworKit and TeexGraph is
clearer than the speed-up factor of bigGraph algorithm when
compared to the two tools NetworKit and TeexGraph.

First, we tested the RED-BET algorithm and bigGraph
algorithm with three datasets DS1, DS2, DS3 with 4 circum-
stances 1, 4, 16, 36 parallel threads. The aggregated results
were based on the average execution time after 10 test runs
for each solution and presented in Table V.

The result above shows that the proposed algorithm RED-
BET combines graph reduction and parallelization have a
smaller execution time, ie better performance than the big-
Graph algorithm in previous studies [21]. To visualize, Fig.
5 shows the change of BC computation time with RED-BET
algorithm when the number of parallel threads changes similar
to the bigGraph algorithm.

Obviously, combined with the research [21], the proposed

TABLE VI. TIME TO COMPUTE BC (SECONDS)

Datasets RED-BET bigGraph TeexGraph NetworKit
DS1 0.22 0.23 0.31 0.56

DS2 0.70 0.74 0.84 1.70

DS3 94.20 99.85 110.58 234.12

DS4 2193.54 2345.62 2694.78 4823.47

DS5 50977.15 56071.60 68744.80 90522.30

TABLE VII. SPEED UP FACTOR OF RED-BET COMPARED WITH
BIGGRAPH, TEEXGRAPH AND NETWORKIT WHEN COMPUTING BC

Datasets RED-BET /
bigGraph

RED-BET /
TeexGraph

RED-BET /
NetworKit

DS1 1.05 1.41 2.55

DS2 1.06 1.2 2.43

DS3 1.06 1.17 2.49

DS4 1.07 1.23 2.2

DS5 1.15 1.35 1.76

algorithm RED-BET would also be more efficient than the
NetworKit and TeexGraph toolkits. However, to be objective
in research, we continue to test the RED-BET algorithm with
two datasets DS4, DS5 to compare and evaluate the speed-
up factor compared to NetworKit and TeexGraph. In all tests,
we used 36 parallel threads (the maximum number of threads
on the system). Table VI illustrates the average time of 10
executions of the BC center calculation of the four solutions
in the test.

Detailed representation of the time to compute the BC of
four solutions is illustrated in Fig. 4. Table V and Fig. 6 con-
firmed that the RED-BET algorithm has a smaller execution
time than the TeexGraph and NetworKit toolkits. The speed
up factor of the proposed algorithm compared to the bigGraph
algorithm and the two tools TeexGraph and NetworKit are
shown in Table VI.

Thus, for all three datasets, the RED-BET algorithm gives
better performance, computing the BC in the shortest time
compared to the tools TeexGraph, NetworKit as well as
bigGraph algorithm in the previous study. Table VII also shows
the speed-up factor of RED-BET is clearer when compared
to TeexGraph, NetworKit, 1.2 to 1.41 times when compared
to TeexGraph and 1.76 to 2.55 times when compared to
NetworKit.

V. CONCLUSION

In this paper, we focus on accelerating the computation
in information diffusion on the social network. The proposed
RED-BET method is based on both the graph reduction and
the parallelization of BC computation. Specifically, it combines
the process of reducing the graph based on replacing the equiv-
alent 1-degree vertices and parallelizing the SSSP calculations
in Brandes’ algorithm with the parallel thread programming
model on the CPU and using the CilkPlus library. The time
complexity of the proposed algorithm is O( (|V |∗|E|)

t ), where
t is the number of parallel threads.
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Fig. 6. Evaluation of BC Execution Time for Different Solutions (Seconds).

Our RED-BET algorithm was tested with some datasets
published from two major organizations, SNAP and Aminer.
Test results show that our solution is more efficient 1.2 to 1.41
times than the TeexGraph toolkit, 1.76 to 2.55 times than the
NetworKit toolkit, and 1.05 to 1.1 times than the bigGraph.

In future work, we will focus on expanding our method
to accelerate the calculation of other metrics in information
diffusion analysis on the social network.
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