
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

Information Flow Control for Serverless Systems

Rishabh Chawla
The Pennsylvania State University

May 2020

Abstract—Security for Serverless Systems is looked at from
two perspectives, the server-level security managed by the infras-
tructure company and the Application level Security managed
by the tenants.The Trusted computing base for cloud systems is
enormous as it encompasses all the functions running on a system.
Authentication for systems is mostly done using ACL. Most
Serverless Systems share data and thus, ACL isn’t sufficient. IFC
using appropriate label design can enforce continuously through-
out the application. IFC can be used to increase confidence
between functions with other functions and cloud provider and
also mitigate security vulnerabilities making the system safer. A
survey of the present IFC implementations for Serverless Systems
is presented and system designs which are relevant to Serverless
Systems and could be added to Serverless Systems Architecture
and, an idea of an IFC model that could be effectively applied
in a decentralised model like serverless systems.

Keywords—Information flow control; serverless systems; lan-
guage based security; cloud computing

I. INTRODUCTION

Serverless Systems are systems where functions owned
by tenants are executed when the functions are triggered, on
platforms managed by the cloud provider. The infrastructure,
security and updates of these systems along with the hardware
are managed by the cloud provider and the tenant only
manages their function and it’s security. Security is looked
at from two perspectives, the server-level security managed by
the infrastructure company and the Application level Security
managed by the tenants. The reasons for the boom of serverless
computing are elastic scalability, ease of deployment, and
flexible pay-per-use pricing. Trusted computing base(TCB)
consists of all the parts of the system (like hardware, software,
libraries, firmware), all the components which could leave the
system vulnerable and jeopardize the security of the whole
system. The TCB for cloud systems is enormous.

A. Server-Level Security

Serverless Systems are cost-effective resource sharing plat-
forms where the tenants only pay for the time their func-
tion/service is executing/working on the machines and thus, the
machine setup time for a function i.e the microVM/container
creation and startup time has to be minimal, as that time is paid
for by the cloud provider, which does not leave a lot of scope
for setting up security measures specific for functions by the
cloud provider. The cloud provider’s platform manages func-
tion placement and scheduling, automatically spawning new
function instances on demand. This also means that multiple
functions are run on the same server, the functions owned
by different teams/companies with no security guarantees to
each other, which leaves the possibility for side-channel at-
tacks, and attacks specific to those applications/services which

might leave the host machine vulnerable. Traditional security
practices are unable to achieve the flexibility, generality and
efficiency expected by cloud providers and tenants [1].

B. Application Level Security

Users express their applications as collections of func-
tions triggered in response to user requests or calls by other
functions. With serverless systems the use of third party
services has increased which in turn increases the risk of data
vulnerability during communication, the security of the third
party services, the storage of keys used for communication
with the services. [2] Applications need to consider security
from the perspective that they are vulnerable to exploits
of the third party apps, infrastructure, other tenants sharing
the system, among others. Serverless Systems removes the
burden of managing Server Level Security for the Application
Development Teams as most tenants believe the cloud provider
they are using, though measures could be taken to increase this
confidence.

C. Paper Outline

Section 2 describes the Background on some of the dif-
ferent parts used in serverless architecture and basic idea of
attacks specific to serverless systems. Sections 3,4,5 are the
motivation to use IFC on serverless systems and explain the
need for IFC and the advantages it could bring. Section 6
explains some IFC ideas which could be applied to different
parts of the serverless architecture. Section 7 describes some
serverless, cloud and general IFC implementations. The cloud
and general implementations are on system parts which are
part of the serverless architecture and could be modified to
work on serverless architecture. Sections 8 and 9 explain the
advantages and remaining questions after adding DIFC to
serverless architecture. Section 10 is my idea of how all the
mentioned ideas and implementations could be implemented
together to setup a serverless DIFC system. Section 11 explains
some Future Research ideas/direction.

II. BACKGROUND

Many functions are run on a single bare-metal machine
in Serverless systems, to improve security a virtual machine
or container is used to execute the function, so two functions
are basically running on virtualized environments rather than
on the bare-metal machine itself and thus, separated by an
extra layer of abstraction and thus, increasing security and
making it harder for the functions to affect or read each
other’s information. We explain some exploits and mitigation
techniques used in serverless systems.

www.ijacsa.thesai.org 1 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

A. Containers

Functions are hosted inside containers as containers encap-
sulate all the underlying software required for the application
to run and are useful when applications need to run on different
environments/machines. Containers fall short as they use the
host operating system kernel, which means that there is a
fundamental trade-off between security and code compatibility
as, Container implementors can choose to improve security by
limiting syscalls, at the cost of breaking codes which require
the restricted calls [3].

B. MicroVM

MicroVM are minimilistic virtual machines. The idea
behind microVM’s were to protect against privilege escala-
tion, information disclosure, covert channels and others. With
microVMs which take less than a second to boot up, the
security measures are enhanced. Adding advanced security
features affects the performance of the system and might
not be implemented by tenants in lesser security demanding
environments [3]. To give an idea, Firecracker checks that
the host kernel has mitigation enabled for Kernel Page-Table
Isolation, Indirect Branch Prediction Barriers, Indirect Branch
Restricted Speculation and cache flush mitigation against L1
Terminal Fault among others. [3]

C. Scheduling or Warm Containers

Each function invocation should ideally take place in a
fresh environment, such as a container that is immediately
destroyed after it’s execution but to reduce the cost of setting
up an entire runtime environment for each function execution,
warm containers are cached and reused for future invocations
of the same function within a pre-configured timeout window
[4]. Opaque platform policies and scheduling algorithm de-
tails obscure this practice, making it difficult for customers
to account for such issues during application development.
Attackers can get their function on the same machine if enough
functions are deployed [5].

1) Device Drivers: VM’s use paravirtualised device drivers
which interact directly with the VM host via an agreed channel.
The alternative to this is a way slower virtual hardware using
the native device drivers. Cloudburst describes the vulnerability
in VM display functions of VMware Workstation that could
be exploited by a video file to take over the operating system
[6].

D. Hypervisors

Hypervisors are used to create virtual machines on bare-
metal machines. KVM is a virtualization module for linux and
is a type 1 hypervisor. It is used in Firecracker. Virtunoid is a
privilege escalation exploit on KVM made in 2011 because
of a missing check on the KVM emulation of PCI device
hotplugging, which is used for devices which don’t support
being unplugged but when unplugged left a corrupt state and
dangling pointers [7]. These kind of vulnerabilities are being
mitigated by Hypervisor verification [8].

E. Attacks on Serverless Systems

Serverless systems contain functions which generally last
seconds, thus, it is harder to attack them but there are exploits
made for this kind of system. Rapidly ex-filtrate stolen data
[9], cross-tenant side-channels [5] are some attacks for this
type of system. Persistent function compromise is possible
by malware in an in-memory partition of the system, is
another example of an attack for this system. Attackers can
also take advantage of the cloud providers warm container
reuse policy to cache a compromised copy of the function
that persists across invocations [9]. Logging and debugging
support in serverless platforms lacks the ability to monitor a
serverless application as a whole and therefore struggles to
trace sophisticated attacks, for example an attack that depends
on two executions of the function. [10]

III. PRESENT SECURITY SOLUTIONS FOR SERVERLESS
SYSTEMS

Present security solutions include language run-time li-
braries which are used to secure a single function according
to developer defined policies as part of the source code. Static
analysis of function source code could be used to detect
violations of the principle of least privilege [11] and checking
function dependencies against vulnerability databases [12].
Function developers rarely consider and secure interactions
between functions, giving rise to emergent attack vectors such
as API-based data exfiltration. There are products that model
function behavior using machine learning to detect anomalous
behaviors or wrap function event handler wrappers to inspect
specific activities [13]. There are also run-time protections
which include machine learning based detection of anomalous
function behaviors [13] to prevent event-data injection pre-
vention by inspecting incoming function invocation requests
using existing penetration testing techniques like sqlmap. Run-
time semi-automated troubleshooting based on log data, to ease
reasoning about function behavior is present to make auditing
easier [14].

IV. LACK IN PRESENT SECURITY SOLUTIONS FOR
SERVERLESS SYSTEMS

A lot of pre-compiled third-party objects and proprietary
closed-source functions don’t provide source code access
which is required by many of the present security techniques.
The present security solutions are largely function-centric and
their efficacy depends on the correctness of policies writ-
ten by the function developers, complete access to source
code and configuration files, and the compatibility of the
tool with the functions specific language runtime, platforms,
and event sources. Existing monitoring techniques offer lim-
ited observability into the interactions between functions and
most of these monitoring services are limited to strict spec-
ified/available conditions. [13] Static check tools aren’t able
to detect implicit flows. Cross invocation attacks [13] aren’t
considered by present security solutions which occur between
containers and also among reuse of containers (warm starts). A
major and serverless specific problem is lack of proper function
isolation [10]. Event injection attacks may target the function
source code which might also leak other secrets stored in the
container [15]. Azure Functions had an exploitable placement
vulnerability, which led to the exploit to run arbitrary binary

www.ijacsa.thesai.org 2 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

code in containers making them vulnerable to many kinds of
side-channel attacks [5].

V. NEED FOR DISCRETIONARY ACCESS CONTROL

Major authentication check in today’s world is done using
Access Control List(ACL), also called Role-Based Access
Control(RBAC). ACL has some limitations and vulnerabilities
which can be fixed using IFC. It may be possible to bypass
ACL checks, especially in web-based systems [16]. ACL does
not implement any further control once the data has been
authorized at entry point or discrete check point by checking
the users allowed permissions. The application is trusted not to
leak the data after the check. As there is a lot of data sharing
among applications there is a need for controlling data flows
between applications which may also send data ahead and
these checks can be done using IFC [17]. Data can propagate
or influence system behaviour indirectly in ways that aren’t
disclosed, which access control barriers at discrete points in
code do not detect, while IFC using appropriate label design
can enforce continuously throughout the application [18] IFC
[19] could be used to add security policies to data and use
these policies at run-time to control where user data flows.
Since IFC security is linked to the data that it protects, both
tenants and cloud providers can agree on the security policy,
in a manner that does not require them to depend and rely on
the particulars of the cloud software stack or application stack
in order to effect enforcement [1]. IFC [20] provides a means
to control and monitor data flow continuously, according to
policy which could restrict that the data be restricted to a
certain location in favour of laws [1]. IFC mechanisms can
help enforce non-interference policies mitigating the fact that
another system running on the same machine may observe
the public outputs. IFC supports isolation of individual users
data, and inter-tenant isolation [1]. IFC protects information
by a global security policy that cannot be overridden by a
misconfigured application. The policy explicitly and concisely
captures constraints on end-to-end information flow through
the system, majorly protecting the system by system calls
and restricting the data flowing outside the network. The
IFC system enforces the policy even for buggy or malicious
applications, thus removing application code and configuration
from the TCB of the cloud [21]. This case is valid when the
right policy check parameters are set inside the application as
used in the cloud infrastructure. A generic model to detect
type could be made which could make this model stronger.
Specifying an effective security policy is a difficult problem,
failure to adequately restrict flows violates the principle of least
privilege and leaves the system vulnerable but defining overly-
restrictive rules prevents the correct operation of the system,
thus increasing the development and testing time and requires
checking all expected flows [22].

VI. IFC SYSTEM DESIGN WITH SERVERLESS

This section contains general ideas which people have
mentioned in regards to Cloud Computing/Serverless Systems
and given a general idea of how IFC could be useful in solving
them.

A. Warm Starts

Container creation accounts for a major chunk of time in
the response time for a function after it was called/triggered

and cost for container creation time is not paid by the tenant
and is covered by the cloud provider and thus, cloud providers
use warm starts which is reusing the container which was
recently used to run the function, so that on another function
call of that same function in a certain time limit, the container
is reused rather than creating another container, so that the
response time for the function is reduced and the cost for the
container creation doesn’t need to be paid. The cloud provider
kills a function after a certain time limit as the tenant only
pays for the time when the function is being used and not
when it is idle and waiting for a request. It is expected that
a serverless function activation handles a single request on
behalf of a specific user and only accesses secrets related to this
request. Each invocation starts from a clean state and does not
get contaminated with sensitive data from previous invocations.
Any state shared across invocations must be kept in a global
data store. Warm startup is done using the method that after
the initial invocation is complete, but before the actual function
process starts, the process is forked and the function is run
on a child process of the same process and purged after it’s
completed and this process is repeated again when the function
is called again and thus, another child process runs it. This way
the address space is in the child space and will not affect other
processes that are run on or from it [21]. This way could be
vulnerable when two child processes are running at the same
time, as there isn’t a lot of separation in that case, but in
serverless system this isn’t done. The child process would have
to strictly be limited to it’s address space as a this could be
used for cross invocation attacks. Another way is tainting the
sensitive data which is used for file access, and deleting all the
tainted data after the function execution ends before the next
function is executed on the same container [13]. We could also
taint all the changes made to the filesystem during the function
execution and revert them using something like a git svn or
snapshot but that would have a higher overhead, so one could
use tracking on all the changes on the filesystem which uses
more processing power and could increase the execution time
of the function, the time could be reduced by using even more
processing power. One of these two methods could be used
based on the trade-off of the time it takes after the execution of
the function compared to the other one taking extra processing
during function execution.

B. Termination

A container is created everytime a function is
called/triggered and thus, for serverless systems the
termination of a function can be as many times the function
is called which is generally a lot. IFC Systems which leak
information through the termination channel, where one bit
of information can be observed by observing the termination
or non-termination of the program. The parallel nature of
the serverless environment amplifies this weakness, allowing
the attacker to construct a high-bandwidth information
channel, effectively defeating the purpose of IFC [21]. The
termination channel present in most existing IFC systems
can be arbitrarily amplified via multiple concurrent requests,
requiring a stronger termination-sensitive non-interference
guarantee, which can be achieved using a combination of
static labeling of serverless processes and dynamic faceted
labeling of persistent data [21]. We can use the security
property termination-sensitive non-interference (TNSI) to

www.ijacsa.thesai.org 3 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

eliminate this channel [23]. SLam Calculus is used in the
TNSI security property to achieve termination insensitive IFC
model [24]. A way of achieving this in serverless systems
is a combination of static program labeling with dynamic
labeling of the data store, based on a faceted store semantics.
Static program labeling restricts the sensitivity of data a
serverless function can observe ahead of time, and is used
to eliminate the termination channel. Dynamic data labeling
is important to secure unmodified applications that do not
statically partition the data store into security compartments,
while the faceted store semantics eliminates implicit storage
channels also [21].

C. Sticky Policies

In serverless systems functions are short lasting and can
be run on any machine at any time, and a lot of them could
be running at the same time triggered by different users. Data
could be required for these functions to run which they get
from databases or filestores (S3 and dynamo for AWS). At
a higher level, sticky policies could be used to achieve end-
to-end control over data. In sticky policy systems, data is
encrypted along with the policy on that data. To obtain the
decryption key from a Trusted Authority (TA)(In this case the
database of filestore), a process must agree to enforce the
policy. This agreement may be considered part of forming
a contractual link between the data owner and the process
decrypting the data [25]. A logging system of the decryption
could represent a starting point of data flows and can be used
for tracking.

D. Continuous Checks

Serverless systems applications are made using a combi-
nation of functions where the data flows from one function to
another, and may also flow to third party functions for various
reasons like verification and so on. In a system like this where
data flow continues and the limitations of the data flow inside
the intranet or outside isn’t known, Continuous data checks
could be used to check that data is only used at authorized
places. This is done by storing the data with its label and any
time the data needs to be accessed its label is checked with
the process label and only if permitted, read/write operations
on the data are permitted. This system could be implemented
by the function sending the data, by checking that the function
receiving has enough access, the storage location would also
check the same. The function receiving could use the label
of the function they got the data from for confidence label
on that data. Thus, having security perspective by the one
sending and also, the one receiving the data. A function call is
given the label of the caller and actions allowed to the caller
are only permitted to that execution. Similarly any data store
being modified also stores the label with which it was modified
and stores allowed to a particular label are read or written by
that label. If any operations need to be done outside of the
permitted value of the caller, declassification [26] is used.

E. Implicit Storage Channel

A serverless function always runs on behalf of a specific
user and can be assigned a corresponding security label. The
function’s label determines its view of the data which it reads
or writes in databases or filestores, the function can only

observe the existence of data whose label does not exceed the
function’s label. In a situation where multiple functions with
incomparable labels write to the same store location(database
or filestore). We avoid information leaks in this situation
by employing faceted store semantics, where each record
can contain several values with different security labels [27].
Implicit storage channels is when the attacker infers secrets
by observing the labeled values exist within particular store
locations without observing the actual values [28]. An attacker
could check that a location contains sensitive data by writing
to a particular location and reading from there. One could
block writing to that location but that would also leak that
it contains sensitive data. One alternative would be to have
extra data copies for different labels. This is shown by data
store semantics where each record can contain multiple values.
Though this has a high runtime cost [29].

F. Audit Logs

If an IFC system is made at the cloud level, including the
network, OS and continuing to the application/function level,
all this data flow can be used as a logging system. Enforcement
of IFC can provide the opportunity for recording flow decisions
to build a provenance like audit graph. This can be analysed
to understand where, how, why and by whom the data was
manipulated within the system. This audit data, captured
during IFC enforcement, can help to demonstrate compliance
with regulations by providing tangible traces, showing how
the data was handled [30]. Under a conservative assumption
that all secrets obtained during function execution propagate
to all its outputs, we can track the global flow of information
in the system by monitoring inputs and outputs of all functions
in the system [21]. Audit Logs are made by tracking all
information flow using tainting. An important detail is to get
all the information before logging which would be necessary
for analysing, thus, the point where the logs are stored needs
to be as late as possible to get the most logs and we also
need to consider the high performance penalty cost for it and
minimize it. Major challenges with this system is being able
to track all information flows and the logs being enough to
recreate the situation or analyse the situation completely [31].

VII. IFC IMPLEMENTATIONS FOR SERVERLESS SYSTEMS

A. Hardware Level - General Implementation

RIFLE [32] translates normal binary code to run on hard-
ware with IFC tracking. Dynamic information flow tracking
can be used at this level for checking the use of spurious
values being used as instructions or pointers [33]. In serverless
systems this method any attacks on the underlying hardware
where the calls are sent to using the virtual machine can be
checked.

B. Kernel Level - Cloud Implementation

Information flows in a system are only generated through
system calls and shared memory between processes. If shared
memory is restricted then information flows could only be
generated using system calls. The entities defined in this model
are processes, files, pipes and sockets. Privileges are only
associated with processes(active entities). All labelled entities
are allocated their labels when they are created. For a process

www.ijacsa.thesai.org 4 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

creating some entity the sub-rules associated with the flow are
that the created entity inherits the labels. Certain processes
have privileges, allowing them to change their labels that is,
those processes are able to change their security context using
declassification. The labels of passive entities (files, pipes and
sockets) can’t be changed. Processes are further associated
with privileges over their tags. System calls creating flows
are intercepted and IFC constraints are applied, enforcing
IFC according to the labelling, other system calls are left
unintercepted. The cloud tenant decides the labels and tags
for processes and calls [34]. This case is valid in serverless
systems as we run only one function inside a microVM and
if there is any information flow between functions or third
party services it has to go outside the function/microVM using
system calls, as nothing else is running on the microVM thus,
no shared memory among usage. This system can be used to
restrict any malicious code injected from sending data outside
the microVM and thus, restricting the outflow. The access to
the microVM is protected and restricted by the cloud provider.

C. VM Level - General Implementation

Argos [35] modifies the QEMU(type-2 hypervisor which
can be combined with KVM to make a type-1 hypervisor)
virtualisation framework to extend the target code so that it
defines isolation regions and checks information flow meta-
data. It uses dynamic taint analysis to detect exploits and
protects unmodified operating system processes. It checks the
network data throughout execution to identify their invalid use
as jump targets, function addresses, instructions. It has a very
high overhead but could be used to find signatures which can
be used with almost no overhead to find exploits during run-
time [35]. This system is used to protect the VM itself so that
the VM runs and terminates smoothly. This system could be
used to confirm that the VM is restricted to the allowed and
approved capabilities. Running this system on actual machines
doesn’t seem feasible because of the overhead but a system like
this is very useful to actually analyse the new attacks that are
being created and get their signatures to block them on actual
running machines.

D. OS Level - General Implementation

If IFC is enforced at OS level, the applications running
above the OS, run under the policy constraints expressed by
the IFC labels tags. They do not need to be trusted not to leak
data through the monitored labels in the processes [36]. This
system has DIFC implemented at the granularity of processes,
and integrates DIFC controls with standard communication
abstractions such as pipes, sockets, and file descriptors via a
application level reference monitor. This interface helps pro-
grammers secure existing applications. This system enforces
the DIFC policy during runtime. The application consists of
two types of processes. Untrusted processes are generally used
for most of the work. They are constrained by, and maybe
unaware of the DIFC controls. Trusted processes are aware of
DIFC and setup the privacy and integrity controls that constrain
untrusted processes. Trusted processes also have the privilege
to selectively violate information flow control for example,
by declassifying private data, or by endorsing data as high
integrity. The system represents each resource a process uses
to communicate as an endpoint, including pipes, sockets, files,

and network connections. A process can specify what subset
of its privileges should be exercised when communicating
through each endpoint. Uncontrolled channels are modeled as
endpoints that exit the DIFC system. This can be used as a
security policy for end-to-end integrity protection. It can pull
third-party plugins into its address space, but with end-to-end
integrity protection, users can enforce that selected plugins
never interact and potentially corrupt sensitive data, either on
input or output [36]. This system can also be used by the
cloud provider to restrict the usage of the functions as the
microVM, the OS and underlying hardware is managed by the
cloud provider. The cloud provider can have different levels
setup and the functions can decide the amount of freedom
they require and the cloud provider could isolate categories of
functions in their own DMZ (Demilitarized Zone).

E. Network Level - Serverless Implementation

This system has agents residing in function containers to
monitor storage and network behaviors. These agents dynam-
ically generate taint labels that describe each function’s file
accesses and network requests. These labels are reported to
a centralized controller. The controller then aggregates this
information to discover the flow paths of the application.
The information flow monitored by the controller can be
restricted based on the security policy. Function calls are
monitored with taint labels that and called/triggered using
REST based APIs in this system. The system works with
deploying a transparent forward proxy in each container that
begins proxying network requests when the container starts.
The network proxy performs network level tainting. The proxy
inspects the REST call to determine appropriate labels with
which to taint the current flow, which are mostly mentioned
in the Rest call itself, and are compared with the policy file.
Each invocation request is a unit of work in FaaS, functions
are short-lived and taint labels are assigned per request. The
“taint explosion” problem occurs because of this. The network
taints can be summarized when a function makes multiple
calls to the same domain, thus compressing the taint labels.
Function level operations are checked across workflows to
capture inter-function security violations. There can be Data
leak through the network as Static network policies are by-
passed by passing data to downstream functions with network
access. This can be mitigated with Network level taint tracking.
Another type of attack could be the Cross invocation side
channel where residual data in warm containers is leaked
across invocations and this can be mitigated using File access
taint tracking and function garbage collection [13]. A similar
design is mentioned in [37] where labels are used on data
and communication between libraries is done using messages
and based on the level of the process any data in the message
above that label level is removed. Continuing on the previous
system, the agent contains a system call tracing mechanism
for monitoring function file I/O, allowing the system to detect
cross-invocation flows resulting from container reuse. After
the function finishes execution, all data on disk that was
modified by the function is erased from the container. As
current attacks require an explicit data flow from one function
execution to another this procedure is sufficient to deny cross-
invocation capabilities to the attacker. Commercial platforms
provide only a small writable partition using an in-memory
filesystem, the approach is significantly more efficient than

www.ijacsa.thesai.org 5 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

Fig. 1. Network Layer Design Architecture Presented in [13].

destroying and re-provisioning the entire container. The agents
also check taint labels on file accesses and file access behaviors
as they may violate security constraints of the application.
Garbage collection is performed after each function invocation,
the set of modified files are not tainted by previous function
executions [13] (Fig. 1).

F. Service Level - Cloud Implementation

The system’s Model generator component is responsible for
building a model that semantically simulates the lifecycle or
runtime execution of the candidate application. Then, the IFC
engine performs information flow analysis on the unmodified
application’s bytecode with the help of the generated model.
The vulnerability detector pinpoints insecure flow paths that
violate data integrity and confidentiality. The result publisher
component refines and reports the analysis results to the
cloud provider and tenant. Based on the results, it decides
if a security certificate should be granted to the candidate
application, which is sent to both the cloud provider and
tenant [38] (Fig. 2). The system uses IFC based on System
Dependence Graph (SDG) and program slicing techniques for
security inspection. The SDG has the advantage to model the
information flow through a program by capturing both data and
control dependencies [39]. Even with this model, the system
is prone to stealth type attacks. This system can be added to
serverless systems as a separate utility which could be used
when any abnormality is detected to check the request, because
this system has a very high overhead.

G. Application Level Implementation on Hadoop using In-
lined Reference Monitor (IRM) - Cloud Implementation

IRM [40] implementation carefully leverages object en-
capsulation, control-flow safety, and type-safety properties of
the binary language in which the function code is expressed,
to guarantee that the surrounding untrusted code into which
the IRM is in-lined cannot corrupt or circumvent the IRM’s
security programming at runtime. IRM whose programming
is in-lined into untrusted binary jobs as they arrive at the
cloud edge. After in-lining, the modified jobs self-enforce the

security policy. The in-lined enforcement code maintains and
consults an information flow graph (IFG) implemented as a
distributed data resource within the cloud. The IFG tracks
information flows between the various principals, and the
IRM prohibits job operations that introduce explicit flows that
violate any defined policy. This makes it easy to implement and
adapt to real world clouds, since the cloud and the enforcement
can be maintained completely orthogonally. It achieves this by
enforcing an IRM that is in-lined into untrusted binary jobs at
the cloud’s edge. The resulting jobs self-monitor their accesses
and collectively maintain a distributed information flow graph
within the cloud, which tracks the history of flows and pro-
hibits policy-violating operations. Well-established IRM design
methodology is applied to secure the IRM against attacks from
the code into which it is in-lined, protecting it even from threats
that know all the IRM’s implementation details. This system
is limited by enforcement of mandatory access controls of
explicit information flows between principals [41]. A system
like this is hard to implement in serverless systems as the
functions last under a second and aren’t running all the time,
so IRM would have a heavy startup overhead and wouldn’t
be very useful as it isn’t running all the time, else it’ll have
to converted to a system which stores its state in a database
and retrieves it everytime it starts up. I think that the cost
and performance overhead would outweigh it’s benefits. A
system like this could be implemented at the cloud infras-
tructure level where the cloud enforces some principals and
based on environments which need more security could have
more/stricter enforcement which would increase the processing
and runtime of the function and thus, the cost. This system will
be useful at a cloud level for applications deemed dangerous
by the cloud and yet requiring a lot of privileges. This system
could be used to limit these applications from a moral and
legal perspective. The idea of this system is to enforce a
system that does not believe the cloud infrastructure. We could
consider an implementation of a web-based application, where
the front page is always running on a low system with an
IRM system enabled and every other process is done using
serverless systems, and thus, the scaling and running of all the
serverless systems will be managed by the cloud infrastructure
itself and these functions, would connect and interact with the

www.ijacsa.thesai.org 6 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

Fig. 2. Service Layer Design Architecture Presented in [38].

IRM system, thus, creating their own IFC system and enforcing
security in this untrusted cloud infrastructure. This kind of
system can be very useful for banks or similar institutions.

H. Chinese Wall - General Implementation

Chinese Wall Security Policy [42] makes use of subjects
and objects to prevent information flows which cause conflict-
of-interests between tenants. Data is divided into conflict
categories (conflict-of-interest class) and subdivided into sub-
divisions based on their profile. When data from a sub-division
is accessed, all data from that sub-division can be accessed but
data from the broad conflict class can’t be accessed anymore
but data from other broad conflict classes can be. Access
to data is constrained by what data the subject has already
accessed. All subjects are allowed to access at most one data-
set which belongs to a same conflict-of-interest class. A subject
can freely access any object in the sanitized security group,
which is a conflict category.(data which doesn’t need restric-
tion). [43] For scaling purposes we could use a decentralised
Chinese wall mechanism mentioned by Minky. [44] The decen-
tralised mechanism uses Law Governed Interaction mechanism
where authorization is required before accessing any resource.
Chinese-Wall Process Confinement (CWPC) could be used for
practical application-level distributed coalitions that provide
fine-grained access controls for resources and that emphasize
minimizing the impact on the usability [45]. The centralized
system can be applied to serverless systems by classifying the
functions using conflict categories and using that strategy to
allocate VM’s. Thus, there is lesser conflict of functions on
the same VM. The CWPC way can be used to check for
data request access on the functions from the service provider
and the validation method which can be used based on the
Minky Law Governed Interaction way where functions have to

authorize the usage of data by the other functions if there is an
conflict. This is an idea of to increase trust between functions
and their working together with conflicts. This system requires
a lot of trust by the functions to the cloud provider and the
cloud provider needs to maintain strict security policies so that
no information gets leaked as the cloud provider will have a
lot of sensitive information with this method.

VIII. ADVANTAGES

DIFC [46] will be useful on serverless systems for manag-
ing and securing information flows both within and between
virtual machines and, the overall flow within the cloud. Con-
tinuous check of data at every usage point will prevent data
leakage and unauthorized use. It would also allow the appli-
cations to define their own independent security terminology
dynamically [1]. IFC tracks all data flows in order to detect
policy violations, it can be used to provide detailed logs for
audit purposes [1]. The IRM system makes it possible for
systems like banks to switch to public cloud, still having
and enforcing their own high level of security. The warm
container method increases confidence and decreases security
vulnerability with an IFC implementation.

IX. TRADE-OFF

• Data sharing between virtual machines could be done
through the intranet having IFC enabled on the net-
work level of the cloud system or have the data
sourced through a secure system where it gets autho-
rized. Using a secure system for authorization would
reduce the burden on the developer but will only leave
a generic check mechanism on IFC and possibly a
higher overhead.

www.ijacsa.thesai.org 7 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

• There is a higher development and design time for
DIFC integration which can help reduce the security
vulnerabilities for the systems integrating themselves
with the security policy.

• Implementing a DIFC model at different levels in the
cloud system where it is integrated with the other
levels and set by the cloud provider, one of the
main advantages could be the network analysis which
restricts the flow of sensitive data outside the cloud
intranet. We can also restrict the flow of data between
functions with labelling but the problem here would
be that on a real world scale which have billions of
functions and a very vast and diverse infrastructure,
a lot of labels would be required for some part of
data from a label to pass to another and restrict to
others/some specific ones.

• Flow of data received by a function can be blocked by
blocking transitivity, but it might break the functional-
ity if it is required, so transitivity is also a parameter
that would have to be considered with labels. With
a vast network, the checking of this data at every
point would be a heavy overhead apart from managing
the data and where it could flow. This would in
turn increase the development time and one would
have to continue checking till it reaches the end
point, checking all allowed use cases, adding extra
labels which are allowed to use its data and adding
restrictions based on when that data flow is supposed
to stop.

• Updating the infrastructure or functions would affect
each other and has a very high chance of breaking
functionalities, thus, upgrading would have to be in
phases where both phases are working at a time till
everyone moves to the new model. So the effort for
updating is increased as there can’t be fast updates and
any update would force every function that it depends
on and those functions that depend on it to be updated
and tested.

• Onboarding of new personal would take a lot of time
to this system.

• Taint tracking systems would not work if the developer
tried to evade them. Using channels outside of the
policy are known as covert channels [47].

• Setting up a system like this for a cloud provider
would take a lot of effort and money, which wouldn’t
necessarily result in an increase in revenue but would
lead to more confidence by the tenants in the cloud
system. Tenants setting up their security from a cloud
provider they don’t trust would require very heavy
security and is almost impossible without set models
and to only setup for one particular application. Thus,
the feasibility of this system is forced on people
making a generic model which is adapted and updated
by the tenants and cloud providers like other services.

• The cloud provider will have a lot more sensitive and
analyzed data because of this system, thus, the cloud
provider keeping this data secure and not exploiting
this data would require legal implications so as to

keep the cloud provider in check and regular audits
by a central authority which regularly audits the cloud
system and the data used for the cloud auditing and
confidence that it hasn’t been tampered with can be
gotten by this(DIFC) system itself.

X. IMPLEMENTATION

A nontermination sensitive DIFC can be setup on the
cloud which is integrated into the network level, OS level,
only allowing authorized system calls checked by the cloud
provider and the specific tenant receiving the request based
on their request policies. Using the VM level implementation
mentioned above securing itself from the bare-metal machine
attacks. A general norm of label-set which are configured in
the cloud system and could be extended by the application,
along with an intranet DMZ set which blocks the flow of
data outside the DMZ unless it contains authorized labels.
DIFC having library extensions(eg boto3 by amazon for AWS
for python language) which be imported and extended to the
applications. A system like this could have checks from the
starting point i.e the REST call till the end of point where
the data will flow and could also have legal limitations which
check the data based on location among others. All third-party
plugins into each function are used with end-to-end integrity
protection and the functions can define policies so that selected
plugins never interact and, potentially corrupt sensitive data or
only certain plugins interact with sensitive data. A Chinese
wall setup could be used to present and restrict any functions
being run on the same machine which have conflicts with each
other. There could be a service level implementation where any
suspected activity could be checked before sending it to the
actual function, as this would have a high overhead but the
payment of this system would have to be figured out. Any
function which wants extra security could have sticky policies
which could be used to log all data decryption, thus always
having a log of everybody getting the data at this source and
the data is only present here and only gets decrypted through
the sticky policy. The overall flow of data is monitored using
the IFC system and logged and thus, these detailed logs can be
used for verification and checking of the cloud infrastructure,
tenants and other functions. The logging level shown will only
be for their data and the other data will be obliqued. The
system will have multiple data copies for different labels to
stop implicit storage channels and with function owner will
be notified if any activity which does not follow the policy
defined for the storage channels. Warm Startup is present
with all sensitive data being removed which was identified
by tainting. This system would improve security confidence
between functions and also with the cloud provider. Blockchain
methodology could be added to the Audit log to show that it
hasn’t been modified and present confidence in the Audit Log.

XI. FUTURE RESEARCH DIRECTION

• A Dynamic IFC Model for serverless systems is made
by [21] in which the main points are described above
in the Network Level Section. The model has inherent
assumptions where almost all of the TCB is considered
safe and data integrity isn’t considered. Reuse of
containers and warm starts or multiple invocations to
the same function aren’t considered. The system could
be extended to include all these points.

www.ijacsa.thesai.org 8 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

• With serverless systems a lot of the services required
are outsourced, for example the authentication service
for AWS i.e AWS Cognito is used in a lot of serverless
functions rather than using their own. What kind of
extra risk does outsourcing things bring and how does
IFC mitigate it is another field where more information
with some data for proof is needed, the ideas are
expressed in this paper.

• The monitoring of function requests moves the state-
less architecture to a stateful architecture. How could
we implement IFC while keeping a stateless architec-
ture.

• A computation layer based on label, isolated in a
DMZ where only the public output is allowed to
leave the overall virtual DMZ network, so all private
computation is done inside.

• An cloud implementation which presents the model
with an norm based label structure and doesn’t have
a heavy overhead on performance and time compared
to the present system. A prototype proof of concept
for the real world.

• An implementation of a model described above could
be a starting point with all the system design features
mentioned considered. The implementation shouldn’t
consider TCB to be safe.

XII. CONCLUSION

A survey of the present IFC implementations is presented
and system designs which are relevant to Serverless Systems
that could be added to Serverless Systems Architecture and,
an idea of an IFC model that could be effectively applied in a
decentralised model like serverless systems. The overall idea
of this paper assumes that all of the TCB is vulnerable and
gives implementations/ideas which could be used to increase
confidence between functions with other functions and cloud
provider and also mitigate security vulnerabilities making the
system safer.

ACKNOWLEDGMENT

I thank Danfeng Zhang for his helpful suggestions on early
drafts of the paper.

LIST OF ABBREVIATIONS

ACL: Access Control List
DIFC: Decentralized Information Flow Control
DMZ: Demilitazied Zone
IFC: Information Flow Control
RBAC: Role-Based Access Control
TA: Trusted Authority
TCB: Trusted Computing Base
TNSI: Termination-Sensitive Non-interference
VM: Virtual Machine

REFERENCES

[1] Jean Bacon, David Eyers, Thomas FJ-M Pasquier, Jatinder Singh,
Ioannis Papagiannis, and Peter Pietzuch. Information flow control for
secure cloud computing. IEEE Transactions on Network and Service
Management, 11(1):76–89, 2014.

[2] Alexander Posashenki. How serverless is chanding security: The
good, bad, ugly, and how to fix it. https://distillery.com/blog/
serverless-is-changing-security/, 2019.

[3] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Fire-
cracker: Lightweight virtualization for serverless applications. In 17th
{USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 20), pages 419–434, 2020.

[4] Tim Wagner. Understanding container reuse in aws lambda. https:
//aws.amazon.com/blogs/compute/container-reuse-in-lambda/, 2014.

[5] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. Peeking behind the curtains of serverless platforms. In
2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18),
pages 133–146, 2018.

[6] Kostya Kortchinsky. Cloudburst: A vmware guest to host escape story.
Black Hat USA, 19, 2009.

[7] Nelson Elhage. Virtunoid: A kvm guest- host privilege escalation
exploit. Black Hat USA, 2011, 2011.

[8] Dirk Leinenbacih and Thomas Santen. Verifying the microsoft hyper-v
hypervisor with vcc. In International Symposium on Formal Methods,
pages 806–809. Springer, 2009.

[9] Rich Jones. Gone in 60 milliseconds intrusion and exfiltration in
server-less architectures. https://media.ccc.de/v/33c3-7865-gone in
60 milliseconds/, 2016.

[10] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah,
Aleksander Slominski, et al. Serverless computing: Current trends and
open problems. In Research Advances in Cloud Computing, pages 1–20.
Springer, 2017.

[11] Avraham Shulman, Ory Segal, and Shaked Yosef Zin. Methods
for securing serverless functions, January 3 2019. US Patent App.
16/024,863.

[12] Develop fast, stay secure. https://snyk.io/.
[13] Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael Grace, Amir

Rahmati, and Adam Bates. Valve: Securing function workflows on
serverless computing platforms. International World Wide Web Confer-
ence Committee (IW3C2), 2020.

[14] Johannes Manner, Stefan Kolb, and Guido Wirtz. Troubleshoot-
ing serverless functions: a combined monitoring and debugging ap-
proach. SICS Software-Intensive Cyber-Physical Systems, 34(2-3):99–
104, 2019.

[15] Jeremy Daly. Event injection: Protecting your
serverless applications. https://www.jeremydaly.com/
event-injection-protecting-your-serverless-applications/, 2018.

[16] Michael Dalton, Christos Kozyrakis, and Nickolai Zeldovich. Nemesis:
Preventing authentication and access control vulnerabilities in web
applications. 2009.

[17] Thomas Pasquier, Jean Bacon, Jatinder Singh, and David Eyers. Data-
centric access control for cloud computing. In Proceedings of the 21st
ACM on Symposium on Access Control Models and Technologies, pages
81–88, 2016.

[18] Thomas FJ-M Pasquier, Jatinder Singh, Jean Bacon, and Olivier Her-
mant. An information flow control model for the cloud.

[19] Dorothy E Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236–243, 1976.

[20] Joseph A Goguen and José Meseguer. Security policies and security
models. In 1982 IEEE Symposium on Security and Privacy, pages 11–
11. IEEE, 1982.

[21] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk,
Mooly Sagiv, Thomas Schmitz, and Keith Winstein. Secure serverless
computing using dynamic information flow control. arXiv preprint
arXiv:1802.08984, 2018.

[22] Hayawardh Vijayakumar, Guruprasad Jakka, Sandra Rueda, Joshua
Schiffman, and Trent Jaeger. Integrity walls: Finding attack surfaces
from mandatory access control policies. In Proceedings of the 7th ACM
Symposium on Information, Computer and Communications Security,
pages 75–76, 2012.

[23] Andrei Sabelfeld and David Sands. A per model of secure information
flow in sequential programs. Higher-order and symbolic computation,
14(1):59–91, 2001.

www.ijacsa.thesai.org 9 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

[24] Nevin Heintze and Jon G Riecke. The slam calculus: programming
with secrecy and integrity. In Proceedings of the 25th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
365–377, 1998.

[25] Siani Pearson and Marco Casassa-Mont. Sticky policies: An approach
for managing privacy across multiple parties. Computer, 44(9):60–68,
2011.

[26] Andrei Sabelfeld and David Sands. Dimensions and principles of de-
classification. In 18th IEEE Computer Security Foundations Workshop
(CSFW’05), pages 255–269. IEEE, 2005.

[27] Thomas H Austin, Tommy Schmitz, and Cormac Flanagan. Multiple
facets for dynamic information flow with exceptions. ACM Transactions
on Programming Languages and Systems (TOPLAS), 39(3):1–56, 2017.

[28] Thomas H Austin and Cormac Flanagan. Permissive dynamic informa-
tion flow analysis. In Proceedings of the 5th ACM SIGPLAN Workshop
on Programming Languages and Analysis for Security, pages 1–12,
2010.

[29] Thomas H Austin and Cormac Flanagan. Multiple facets for dynamic
information flow. In Proceedings of the 39th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
165–178, 2012.

[30] Thomas FJ-M Pasquier and David Eyers. Information flow audit for
transparency and compliance in the handling of personal data. In
2016 IEEE International Conference on Cloud Engineering Workshop
(IC2EW), pages 112–117. IEEE, 2016.

[31] Afshar Ganjali and David Lie. Auditing cloud management using
information flow tracking. In Proceedings of the seventh ACM workshop
on Scalable trusted computing, pages 79–84, 2012.

[32] Neil Vachharajani, Matthew J Bridges, Jonathan Chang, Ram Rangan,
Guilherme Ottoni, Jason A Blome, George A Reis, Manish Vachhara-
jani, and David I August. Rifle: An architectural framework for user-
centric information-flow security. In 37th International Symposium on
Microarchitecture (MICRO-37’04), pages 243–254. IEEE, 2004.

[33] G Edward Suh, Jae W Lee, David Zhang, and Srinivas Devadas. Secure
program execution via dynamic information flow tracking. ACM Sigplan
Notices, 39(11):85–96, 2004.

[34] Thomas FJM Pasquier, Jean Bacon, and David Eyers. Flowk: Infor-
mation flow control for the cloud. In 2014 IEEE 6th International
Conference on Cloud Computing Technology and Science, pages 70–
77. IEEE, 2014.

[35] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. Argos: an
emulator for fingerprinting zero-day attacks for advertised honeypots
with automatic signature generation. ACM SIGOPS Operating Systems
Review, 40(4):15–27, 2006.

[36] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M Frans
Kaashoek, Eddie Kohler, and Robert Morris. Information flow control
for standard os abstractions. ACM SIGOPS Operating Systems Review,
41(6):321–334, 2007.

[37] Jatinder Singh, Thomas FJ-M Pasquier, Jean Bacon, and David Eyers.
Integrating messaging middleware and information flow control. In
2015 IEEE International Conference on Cloud Engineering, pages 54–
59. IEEE, 2015.

[38] Marwa Elsayed and Mohammad Zulkernine. Ifcaas: information flow
control as a service for cloud security. In 2016 11th International
Conference on Availability, Reliability and Security (ARES), pages 211–
216. IEEE, 2016.

[39] Christian Hammer and Gregor Snelting. Flow-sensitive, context-
sensitive, and object-sensitive information flow control based on pro-
gram dependence graphs. International Journal of Information Security,
8(6):399–422, 2009.

[40] Fred B Schneider. Enforceable security policies. ACM Transactions on
Information and System Security (TISSEC), 3(1):30–50, 2000.

[41] Safwan Mahmud Khan, Kevin W Hamlen, and Murat Kantarcioglu.
Silver lining: Enforcing secure information flow at the cloud edge. In
2014 IEEE International Conference on Cloud Engineering, pages 37–
46. IEEE, 2014.

[42] David FC Brewer and Micheal J Nash. The chinese wall security policy.
In null, page 206. IEEE, 1989.

[43] Ruoyu Wu, Gail-Joon Ahn, Hongxin Hu, and Mukesh Singhal. In-
formation flow control in cloud computing. In 6th International
Conference on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom 2010), pages 1–7. IEEE, 2010.

[44] Naftaly H Minsky. A decentralized treatment of a highly distributed
chinese-wall policy. In Proceedings. Fifth IEEE International Workshop
on Policies for Distributed Systems and Networks, 2004. POLICY 2004.,
pages 181–184. IEEE, 2004.

[45] Yasuharu Katsuno, Yuji Watanabe, Sanehiro Furuichi, and Michiharu
Kudo. Chinese-wall process confinement for practical distributed
coalitions. In Proceedings of the 12th ACM symposium on Access
control models and technologies, pages 225–234, 2007.

[46] Andrew C Myers and Barbara Liskov. Protecting privacy using the
decentralized label model. ACM Transactions on Software Engineering
and Methodology (TOSEM), 9(4):410–442, 2000.

[47] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. Timing-
and termination-sensitive secure information flow: Exploring a new
approach. In 2011 IEEE Symposium on Security and Privacy, pages
413–428. IEEE, 2011.

www.ijacsa.thesai.org 10 | P a g e


