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Abstract—Recently, space research advancements have 

widened the scope of many vision-based techniques. Computer 

vision techniques with manifold objectives require that valuable 

features are extracted from input data. This paper attempts to 

analyze known feature extraction techniques empirically; Scale 

Invariant Feature Transform (SIFT), Speeded up robust features 

(SURF), Oriented fast and Rotated Brief (ORB), and 

Convolutional Neural Network (CNN). A methodology for 

autonomously extracting features using CNN is analyzed in more 

detail. The autonomous process demonstrates the use of 

convolutional neural networks for feature extraction. Those 

techniques are studied and evaluated empirically on lunar 

satellite images. For analysis, a dataset containing different affine 

transformations of a video frame is generated from a sample 

lunar descent video. The nearest neighbor algorithm is then 

applied for feature matching. For an unbiased evaluation, a 

similar process of feature matching is repeated for all the models. 

Well-known metrics like repeatability and matching scores are 

employed to validate the studied techniques. The results show 

that the CNN features showed much better computational 

efficiency and stable performance concerning matching accuracy 

for lunar images than other studied algorithms. 

Keywords—Artificial intelligence; convolutional neural 

network; computer vision; feature extraction; machine learning; 

satellite images; space research 

I. INTRODUCTION 

Recent advances in space exploration have opened doors 
for many research challenges. Processing real-time videos and 
images captured through spacecraft cameras is one of such 
challenging tasks. Extracting features useful for further space 
exploration and navigation tasks is at the primary stage. A 
spacecraft, once injected into a planet's orbit, keeps on 
orbiting around the planet. While in orbit, it keeps on 
capturing videos and images through its onboard cameras. 
Such kinds of motion result in spatially transformed images of 
the same scene majority of times. Detecting points of interest 
from such images or videos in real-time is of paramount 
importance and a challenging task indeed. 

Many proven systems exist which work as image pre-
processing techniques for computer vision tasks. There are 
few areas like image retrieval, medical imaging, object 
detection, and recognition where these techniques are 
extensively used. But in this era of automation and artificial 
intelligence, manual pre-processing of images needs to be 
avoided. Hence many new systems have been developed with 

automated feature detection procedures in these domains using 
deep CNNs. Still, the area of space research has a scope to 
enter into this automation. This paper intends to analyze a few 
feature extraction techniques concerning their suitability and 
sustainability in space applications. 

II. RELATED WORK 

There are many state-of-the-art algorithms available in the 
literature as feature detectors & descriptors. Still, their 
computational complexity does not allow them to be used for 
real-time tasks. Few comparisons amongst them are available 
in the reviews [1]–[8]. Many of these algorithms are proposed 
for detecting and describing points of interest from an image. 
Initial emphasis was only detecting points of interest or edges 
from raw images for object detection tasks. Later the focus 
was shifted to object recognition tasks by taking care of spatial 
transformations. For keypoint extraction, remarkable work is 
brought in by the Harris Corner detector [9] and Scale 
Invariant Feature Transform (SIFT) [10]. Harris Corner 
detector can extract key points valid for feature tracking 
algorithms, while SIFT addresses invariance's challenge to 
affine transformations. But these algorithms were 
computationally intensive, and hence the next challenge was 
to speed up the feature detection process. Researchers 
eventually discovered the new developments like Speeded up 
robust features (SURF) [11], [12], Features from accelerated 
segment test (FAST) [13], [14], Binary robust independent 
elementary features (BRIEF) [15], and Oriented FAST and 
rotated BRIEF (ORB) [16]. Through the literature, SURF is 
found to deliver quality features and is computationally 
efficient as well. ORB, which is a combination of FAST & 
BRIEF, is computationally speedy than SURF, but the features 
it extracts are not suitable for image matching tasks. 
Moreover, these algorithms are standalone versions, and their 
real-time applicability is questionable. Few works 
demonstrated the use of feature extraction techniques specific 
to application domains like medical imaging [17], image 
retrieval systems [18], and gesture recognition [19], [20]. 

In the last decades, few deep learning techniques and 
convolutional neural network techniques[21], [22], [2] are also 
developed with an abundance in data availability and 
computationally powerful resources in recent years. The 
ultimate target of these techniques is image recognition and 
computer vision task. Many of these techniques rely on 
already built and tested deep neural network models like 
Inception [23], VGG [24], XCeption [25], ResNet [26]. Many 
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researchers have used transfer learning by finetuning ready 
models for reaching their goals. Two things must be clear in 
transfer learning before using a particular base model; the first 
is the dataset on which the model is trained, and the second is 
the intended application domain. Most of these well-known 
models are trained on a generalized IMAGENET 
(http://www.image-net.org) dataset. Hence the knowledge 
gained through its training is adapted in current research, 
aiming to deal with data consisting of satellite images and 
videos. 

The real-time requirements to address space research 
challenges and the existing methods discussed so far motivate 
us to empirically analyze a few feature extraction techniques 
like SIFT, SURF, ORB, and CNN. An automated feature 
extraction process using a convolutional neural network 
(CNN) is also designed and implemented for experimental 
analysis. Hence, this work's primary purpose is to study these 
techniques empirically and analyze their performance 
concerning time-critical space applications. For this purpose, a 
dataset consisting of lunar images is constructed from videos 
captured by a spacecraft's onboard cameras. Each image is 
spatially transformed with the known transformation matrix. 
Features are extracted from each image and its transformed 
versions using all the studied techniques. Image matching 
using the nearest neighbor algorithm is performed for each 
image tuple (reference image, transformed image). Ideally, 
when an image is spatially transformed, its transformed 
versions show many similarities in detected features as long as 
a downward-looking camera captures the video with minimal 
frame delay. One can efficiently compute the ground truth 
feature vector with known transformations by applying the 
same transformations to the reference image's features. 
Finally, their results are validated with available performance 
metrics and compared with each other. 

The details of state-of-the-art techniques like SIFT, SURF, 
ORB are prevalently available in the literature. Past few years, 
the scope of CNN is widened due to the automation in the 
feature extraction process. Still, for few domains like space 
research, some more analysis is needed for testing its 
reliability. This paper is intended to perform a comparative 
analysis of these techniques for space research applicability. 
For testing the validity of the analysis, CNN features are 
compared with the SIFT, SURF, and ORB features. 

This paper is organized as follows: Section 2 discusses an 
automated feature extraction process using a CNN 
architecture. Section 3 elaborates on experimental setup and 
dataset generation. The performance metrics are discussed in 
Section 4. Section 5 discusses results and comparisons in 
classical algorithms, and finally, Section 6 concludes the 
paper. 

III. AN AUTOMATED FEATURE EXTRACTION PROCESS 

USING CNN 

A. Selecting a ResNet Architecture for CNN Features 

Transfer learning is used to generate features. The CNN 
architecture consists of a ResNet as a base model without a 
classification layer, as shown in Fig. 1. It is then cascaded 
with one flatten layer, 2 fully connected (FC) layers at the end. 

The output of convolutional layers is 3-dimensional maps-
(      ) . The first two dimensions are the size of a 
feature map, and the last dimension is the number of maps 
generated at each layer. The number of feature maps 
corresponds to the number of filters. After the last 
convolutional layer, a flattened layer is introduced to flatten a 
3-dimensional tensor into a single dimension. FC layers at the 
end serve as an output layer for the Model. The number of 
computational units in this layer will decide the dimensions of 
the feature vector. A general deep learning network model 
expects softmax or other nonlinear functions at the output 
layer for targeting classification or another more vital task. 
The goal is to extract features, so the nonlinear function 
interface at the output layer is removed from the ResNet 
block. 

 

Fig. 1. CNN Model with ResNet base Architecture. Only 64 Features are 

Shown for Simplicity. 

It is assumed that each CNN layer consists of an f-number 
of     sized high-level convolutional filters. Each input 

image  (   )
  is padded to preserve the size of the original 

image. Then the padded image is passed into the convolution 
layer to get an output image as, 

 (   )
  =   (       )

 
 ∗   (   )            (1) 

In (1),  (       )
 

 does zero-padding form a padded image 

to an input image  (   )
  with pad size, p. Rectifier Linear Unit 

(ReLU) is used as an activation function for both layers. Max 
pooling is applied to this successive output after padding. A 
detailed procedure for extracting features through the CNN 
model is given in a pseudo-code described by algorithm 1. 

Using Algorithm 1, CNN features are extracted. The 
transformed dataset contains both the reference image and its 
transformed versions. Training is done by applying an 8:2 
train-test cross-validation split on the dataset. The details of 
data collection and creation are described in section 3. The 

features are extracted from the reference image      first and 

then from its transformed versions:       = (  
   

   
   

   
   

). 
These features represent the points of interest from each 
image. Training starts with transfer weights from trained 
ResNet model. Training is done to minimize the average loss 

function given by (2).   
      

 are the ground truth feature 

vectors and these are computed using the known 
transformation parameters.   

      are the features extracted 

from the CNN (Fig. 1(a)). Weights W of the network is 
adjusted during each epoch to minimize       using (2). 

      =  
∑     ‖  

      
   

     ‖      

|      |
           (2) 
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After training the network, it is evaluated on the rest of the 
test images. The working of the first algorithm is as follows. 
Initially, images were extracted from a lunar video to generate 
a raw image dataset     . Then, the following affine 
transformations were applied to produce a transformed image 
dataset       . 

      = [

𝑠 0 0

0 𝑠 0

0 0 1

] 

          = [

1 0 𝑡 

0 1 𝑡 

0 0 1

] 

       = [

cos 𝜃 −sin 𝜃 0

sin 𝜃 cos 𝜃 0

0 0 1

]           (3) 

A translation factor of (𝑡  𝑡 ) pixels, a rotational angle of 

𝜃 and a scale factor of (𝑠  𝑠 ) were used as described by (3). 

Each image from this new dataset is fed to CNN. Image 
dimensions are  40  3 0. Each image is padded to preserve 
the dimensions and then convolved with   filters of size 3  3. 
Rectifier Linear Unit (ReLU) is the nonlinear activation 
function applied to the convolved output. It generates feature 
maps of size  40  3 0    . It is downsampled by using a 
max-pooling operation. The process is repeated for each next 
layer with 2 ∗   filters of size 3  3 till the last layer. In the 
end, the 3-dimensional feature maps are converted into a 1-
dimensional tensor using a flatten layer. These flattened 
feature maps were used as feature vectors of the CNN model. 

Algorithm 2 is implemented to track similar feature points 
from the reference image and transformed image for 
evaluating the feature similarity. Initially, for each image in 
the dataset, the features are extracted from all four known 
techniques, SIFT, SURF, ORB, and CNN, to extract feature 

vectors   
   

       
     . Then these feature vectors are 

passed on to the similarity matching using the nearest 
neighbor algorithm. Scores of matchings between the two 
image features are used to evaluate different techniques under 
consideration. 

 

IV. EXPERIMENTAL SETUP AND DATASET GENERATION  

The CNN model was implemented on a 2.4 GHz Intel 
Core i7 processor with 16 GB DDR4 RAM. Code scripts were 
written in Python 3.7 with tensor flow framework as backend. 

For this research, a python script was written for 
generating images from a spacecraft landing video. The video 
is publicly available on the website, https://svs.gsfc.nasa.gov/. 
This video is an animated view of the landing site of Apollo 
17 - Lee Lincoln scarp. The sources created this visualization 
from Lunar Reconnaissance Orbiter (LRO) photographs and 
elevation mapping. The video's frame rate is found to be 25 
fps, and hence each 25th image frame was captured and stored 
as an image. In all, 915 grayscale images were generated, 
which forms the raw image dataset. In the raw image dataset, 
200 images were selected at random, and geometric 

𝐼(𝑀 𝑝 𝑁 𝑝)
𝑝

∶= 𝑃𝑎𝑑𝑑𝑖𝑛𝑔 𝐼(𝑀 𝑁)
𝑖   

𝐼𝑗(𝑀 𝑁)
𝑜 ∶=  𝐼(𝑀 𝑝 𝑁 𝑝)

𝑝
 ∗  𝑓(𝑚 𝑛)

𝑗
 

𝐼𝑗(𝑀 𝑁)
𝑅 ∶= 𝑅𝑒𝐿𝑈 𝐼𝑗(𝑀 𝑁)

𝑜   

𝐼𝑗(𝑀 𝑝 𝑁 𝑝)
𝑃𝑅 ∶= 𝑃𝑎𝑑𝑑𝑖𝑛𝑔 𝐼𝑗(𝑀 𝑁)

𝑅   

 𝑉(𝑀𝑥𝑁𝑥𝑓 1)
𝑖 ∶= 𝐹𝑙𝑎𝑡𝑡𝑒𝑛  𝐼𝑗(𝑀 𝑁)

𝑃𝑜𝑜𝑙   

𝐾(256 1)
𝑖 ∶= 𝐹𝐶  𝑉(𝑀𝑀𝑥𝑁𝑥𝑓 1)

𝑖   

Algorithm 1: Procedure for extracting features through a CNN 

Model.  

START 

INPUT: Video V  

OUTPUT: Features K (1024 x 1) 

PROGRAM CNNModel 

1. 𝐷𝑟𝑎𝑤 := Call: Function VideoToImage to generate 

images from video 

2. Apply geometric transformations on raw images to 

generate transformed image dataset, 

 𝐷𝑡𝑟𝑎𝑛𝑠 ∶=  𝑇rotate(𝐷𝑟𝑎𝑤) ∪ 𝑇scale(𝐷𝑟𝑎𝑤) ∪ 𝑇translate(𝐷𝑟𝑎𝑤)  

 

3. For each image 𝐼(𝑀 𝑁)
𝑖  in 𝐷𝑡𝑟𝑎𝑛𝑠 REPEAT: 

For all filters in a Layer REPEAT: 

 

  

 

   𝐼𝑗(𝑀 𝑁)
𝑃𝑜𝑜𝑙 ∶= 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 𝐼𝑗(𝑀 𝑝 𝑁 𝑝)

𝑃𝑅   

  END REPEAT 

1. REPEAT step 3 for next CNN Layer 

2. Flatten each image into a single-dimensional vector, 

3. Pass this vector through FC layer, 

END REPEAT 

END 

𝐾𝑝
𝑚𝑎𝑡𝑐 𝑒𝑑 ∶= 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝐾𝑝

𝑟𝑒𝑓
 𝐾𝑝

𝑡𝑟𝑎𝑛𝑠  

Algorithm 2: Extracting Similar Feature Points from Reference 
Image and Transformed Image 

START 

INPUT: Images: Reference 𝐼𝑟𝑒𝑓  and transformed image 𝐼𝑡𝑟𝑎𝑛𝑠 

OUTPUT: Matched keypoints 𝐾𝑝
𝑚𝑎𝑡𝑐 𝑒𝑑  

PROGRAM TRACKeypoints 

For each image pair (𝐼𝑟𝑒𝑓 𝐼𝑡𝑟𝑎𝑛𝑠) in 𝐷𝑡𝑟𝑎𝑛𝑠 DO: 

1. Apply any of the feature detectors like SIFT, SURF, 
ORB, and CNNModel to get extract keypoints 𝐾𝑝

𝑟𝑒𝑓
 

and 𝐾𝑝
𝑡𝑟𝑎𝑛𝑠 

2. Apply image matching technique to find matched key 
points,  

3. Pass vector 𝐾𝑝𝑚𝑎𝑡𝑐 𝑒𝑑 to further compute repeatability 
and matching scores between two images. 

END 

https://svs.gsfc.nasa.gov/
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transformations are applied to create the transformed image 
dataset containing 800 images. The size of each image in the 
dataset is 640x360 pixels. Out of the whole dataset, 640 
images were used for training, and the remaining 160 are used 
for testing. Sample images from the dataset are shown in 
Fig. 2. The complete procedure for dataset generation and 
description can be found in our prior work [22]. 

 

Fig. 2. Montage of Sample Images from the Raw Image Dataset. 

The performance of the implemented CNN is evaluated 
using the metrics repeatability score and matching score [3], 
[6], [27]–[29], which are widely used for the evaluation of 
feature detectors. For validating the results of CNN, known 
feature detectors like SIFT, SURF, and ORB are implemented 
in the python and Opencv environments. SIFT Lowe's 
implementation [10] was directly used with few modifications. 
The ORB algorithm is implemented with two different 
variations corresponding to the number of feature points 
extracted equally to 1000 and 500. 

The following procedure is followed for computing these 
metrics to perform an unbiased evaluation of studied feature 
detectors. Initially, features are extracted from the reference 
image and then from its transformed version. The descriptors 
of both images were passed to a Fast Library for Approximate 
Nearest Neighbours (FLANN) matching algorithm to find a 
matched point from a transformed image similar to the 
reference image. This algorithm tends to see the overlapped 
region from both the images and then returns all the points 
that match the points in the reference image using a known 
homography. All the key points in this common region are 
called correspondences between the two images. After 
computing the maximum correspondences, the algorithm tries 
to find the correct matches using some threshold. These 
interim computations help to calculate the scores of 
performance parameters. 

V. PERFORMANCE METRICS 

For evaluating and comparing the performances of the 
feature detectors, performance metrics, namely repeatability, 
matching score, and time taken for feature extraction, are 
employed. 

Image correspondences are key points in common regions 
between two images using known homography. Repeatability 
is the measure of the robustness of a feature detector to the 
external image transformations. The repeatability score is 
calculated by using (4). 

Repeatability =  
  

    
             (4) 

In (4),    is maximum image correspondences,      is the 

number of features of the reference image. 

A matching score measures accuracy while matching the 
descriptors of logically the same key points from two different 
images. The matching score is calculated by the formula given 
by (5). 

  𝑡𝑐ℎ𝑖 𝑔 𝑆𝑐𝑜𝑟𝑒 =  
     ∗

    
            (5) 

As in (4),  ∗ is a number of correct matches. 

VI. RESULTS AND DISCUSSION 

A. Performance Evaluation using Repeatability 

The automated feature extraction process results using 
CNN are compared with conventional methods like SIFT, 
SURF, and ORB. The distribution of repeatability scores on a 
percentage scale for all the studied algorithms is shown in 
Fig. 3. Both versions of SIFT are having almost similar 
distributions of repeatability ranging between an interval 
[40,100]. SURF values are found to lie within a range of 
[55,100], while the range for ORB is [40,100]. ORB features 
seem to be more minor variants to the transformations, while 
SIFT & SURF features are highly variant to the input 
transformations. Graphs show that the CNN model for all the 
test samples has retained the constant repeatability score of 
100%. It means that CNN features are more efficient in 
finding repeated regions of interest. In the transformations like 
rotation and scaling, most image regions are repeated. But 
during a translational shift, few new image regions are added 
while few regions are subtracted from the original image. An 
ideal feature detector must take such changes into account. 
But CNN has neglected the translational shift. The extracted 
descriptors for a common region of the transformed image 
always find a proper match for reference descriptors with 
minimum losses. Most of the features are matched between 
the two images. As the same procedure is followed for finding 
key point matches between the two images, it can be 
concluded that the CNN features are more robust to external 
transformations than the other classic methods. As it shows no 
variation in the repeatability scores, it is one of the stable 
feature detectors. When tuned to generate a more significant 
number of features (ORB1000), it results in more variations in 
repeatability than ORB500 and hence can generalize better. 

Fig. 4 shows the average repeatability score obtained by all 
the studied techniques. The score is high for ORB-500 and 
CNN64. For ORB-1000 also is comparable. But for SURF and 
SIFT, it is less than 90%. Overall, ORB and CNN are found 
more robust and hence showed stable performance in terms of 
repeatability of features. SIFT and SURF are quite unstable as 
far as this dataset is concerned. CNN features that showed the 
highest average repeatability show that it is invariant to the 
external factors such as camera position, angle, motion while 
extracting the image features. Such transformations are 
widespread in real-time captured data and hence need a stable 
feature detector. Thus, CNN model can generalize better if 
tuned for a more significant number of output features and 
trained on more data samples. 
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Fig. 3. Distribution of Repeatability Score obtained from Studied 

Techniques. 

 

Fig. 4. Average Repeatability Score obtained from Various Algorithms. 

B. Performance Evaluation using Matching Score 

In addition to repeatability, a matching score is yet another 
evaluation parameter employed to quantify the performance of 
the studied techniques. Fig. 5 shows a box plot for matching 
scores from the features obtained through CNN and 
conventional algorithms. SIFT and ORB-generated features 
show skewness in the results, which does not seem stable and 
reliable data for image recognition or classification tasks. The 
skewness in the data might bias the model for the following 
tasks. SURF seems reasonably reliable but has introduced 
greater variance to changing inputs. CNN boxplot is 
concentrated near the mean value, and it does not show any 
skewness in the results. Hence CNN based model seems 
unbiased, and hence more stable. 

 

Fig. 5. Statistical Analysis of Matching Score for different Algorithms. 

Table I shows the values of computed statistics. The 
average matching score obtained through ORB is the least of 
all. The highest score is obtained through CNN. Although the 
average matching score obtained through SIFT is not far less 
than that obtained through CNN, SIFT generated score shows 
the more significant variance in computation. Ideally, the 
matching score should be on a higher side with minor variance 
as the images are part of a shorter duration video, mainly 
capturing the same ground scene. 

TABLE I. PRIMARY STATISTICS OF MATCHING SCORE OBTAINED FROM 

DIFFERENT ALGORITHMS 

Algorith

ms/Stats 
SIFT-cv 

SIFT-

Lowe 
SURF 

ORB-

1000 

ORB-

500 
CNN 

Mean 0.6917 0.6893 0.5495 0.2655 0.2696 0.7107 

Median 0.8090 0.8101 0.6079 0.1713 0.1826 0.7187 

Variance 0.0367 0.0369 0.0716 0.0290 0.0294 0.0037 

On the other hand, SURF and ORB have shown 
significantly lesser matching scores than the CNN model. 
ORB shows consistency in the matching score computation 
with minor variation compared to SIFT and SURF, but it is 
more significant than CNN. Once again, the CNN model has 
shown invariance against the transformations. Overall, 
concerning matching scores, the CNN features have shown 
better performance than others. 

To measure consistent and robust performance, we run a 
one-way Analysis of Variance (ANOVA) test to prove our 
hypothesis for matching scores computed through the 
application of all the algorithms. For testing the hypothesis, 
we selected 100 random samples out of the whole dataset with 
replacement. We run the ANOVA test for 10 such samples. 
We assumed that a stable and robust detector would always 
show negligible between-group variance, and hence its sample 
means are more equivalent to the grand mean of the 
population. We rigorously tested each sample mean against its 
grand mean for each algorithm listed in Table I. We run the 
test with a 95% of a confidence interval. For CNN, we found 
our assumption held throughout all samples. The assumption 
did not hold in the case of other algorithms. Few sample 
means were far away from the grand mean as in Table I. It 
proved the robustness and consistent behavior of the CNN 
compared to other feature detectors. 
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C. Performance Evaluation using Computational Time 

The most critical evaluation parameter that needs to take 
care of for real-time data is the computation time required to 
detect and extract points of interest. Fig. 6 shows the joint bar 
graph, which describes the time needed for processing each 
image by the proposed CNN model and its companion 
algorithms. The red bar indicates the number of descriptors 
detected by an algorithm, and the blue bar shows the time 
required to perform that task. 

 

Fig. 6. Algorithmic Analysis of Average (Per Image) Processing Time. 

The bar graph of Fig. 6 shows the number of descriptors 
extracted by each algorithm along with computation time. 
CNN shows the shortest average processing time amongst all. 
Both ORB versions show the following smallest time 
requirement. Then comes SURF, SIFT(cv), and at last 
SIFT(Lowe). SIFT Lowe's version consumes the highest time 
compared to others because it processes 2-dimensional data 
without pre-processing it to any time-efficient form. SIFT and 
SURF attempt to extract all possible key points from an image 
and lag in time performance. During tensor flow 
implementation of CNN, each image is converted into the 
most efficient tensor representation and then processed 
further; hence the time required for feature extraction gets 
drastically reduced. Overall, the evaluation of the CNN is 
better than the listed algorithms for generated lunar image 
data. 

VII. CONCLUSION 

In this paper, state-of-the-art algorithms for feature 
extraction are implemented and analyzed on lunar descent 
image data in detail. A similar process is followed for 
unbiased evaluation, and known metrics of repeatability, 
matching score accuracy, and extraction time are used to 
compare implemented algorithms. 

From the detailed analysis of results, it is observed that the 
CNN model has outperformed the studied conventional 
algorithms based on suggested performance metrics. The CNN 
model is capable of handling real-time data with less time 
requirement. Once a few network parameters are decided, 
CNN does its job automatically using the input data. No hand-
crafted tasks such as image pre-processing, image localization, 
segmentation are needed as in conventional algorithms. 

In effect, the overall performance of the CNN architecture, 
when compared to existing algorithms, showed much better 
computational efficiency and stability. The analysis shows that 
CNN's more profound architecture with transfer learning can 

be used to meet the real-time demands of space research. But, 
vigorous training and validation using extensive data are 
necessary to generalize the model to a greater extent. 
Extension to work is validating the model by using generated 
features for object detection tasks. 
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