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Abstract—Correlation between gene expression profiles 

across multiple samples and the identification of inter-gene 

interactions is a critical technique for Co-expression networking. 

Due to the highly intensive processing of calculating the 

Pearson’s Correlation Coefficient, PCC, matrix, it often takes too 

much processing time to accomplish it. Therefore, in this work, 

Big Data techniques including MapReduce and Spark have been 

employed in a cloud environment to calculate the PCC matrix to 

find the dependencies between genes measured in high 

throughput microarray. A comparison between the running time 

of each phase in both of MapReduce and Spark approaches has 

been held. Both these techniques can dramatically speed up the 

computation allowing users to work with highly intensive 

processing. However, Spark has yielded a better performance 

than the MapReduce as it performs the processing in the main 

memory of the worker nodes and avoids the unnecessary I/O 

operations with the disks. Spark has yielded 80 times speed up 

for calculating the PCC of 22777 genes, however the MapReduce 

attained barely 8 times speed up. 

Keywords—Pearson's correlation; Hadoop; MapReduce; spark; 

gene co-expression networks; GCN; Affymetrix microarrays 

I. INTRODUCTION 

Gene co-expression networks (GCN) [1] are gaining 
attention nowadays as useful representations of biologically 
interesting interactions among genes. Finding the interactions 
with significant genes [2] can help in understanding their 
molecular pathways. Constructing the similarity matrix 
between genes in GCN is the most complex part as the 
complexity rises quadratically. So, the most computationally 
demanding all pairwise combinations must be analyzed. 

The analysis of correlated genes can help in finding other 
gene functions or relationships. The correlation between genes 
can be estimated based on their expression values and can be 
visualized via networks that reveal the interactions between co-
expressed genes. Utilizing such gene expression values is 
currently effortless using the public accessible genomics data 
banks for RNA-seq, and high throughput microarrays. 
However, the genomics data is public and available, still the 
analysis of such data needs powerful platforms and algorithms 
for its processing. The parallel computing technology plays an 
essential role in processing and analyzing such huge amount of 
data. Even though, there are many paradigms and platforms 
from the parallel computing technology have been intensively 
reviewed and compared in previous studies[3],[4], [5],[6], there 
still an open question in utilizing the big data techniques in the 

processing of the gene expression profiles and finding their 
relationships. 

High throughput technologies such as the Affymetrix 
microarrays have turned molecular biology into a data-
intensive discipline that requires the usage of high-performance 
computing resources[7]. Flexible framework is needed to cover 
the resources which are required in highly intensive processing, 
and to help in data storage and processing. This requires a huge 
investment in both money and manpower. This problem can be 
overcome by cloud computing which has emerged as an 
additional technology offering virtualized environments[8], [9]. 

High throughput microarrays contain a huge number of 
genes. Determining the relationships between all these gene 
experiments proved to be very useful in biological 
analyses[10]. It has helped in understanding the molecular 
basis of complex disease traits as well as the prediction of 
treatment responses of individual subjects. Several methods 
existed to construct correlation or similarity matrix, i.e., a two-
dimensional triangular matrix, where each value is the 
similarity coefficient of one gene pair. Some examples of those 
methods are Pearson’s[11],Spearman[12],Theil-Sen[13] and 
Kendall[14] correlations. 

Computation between gene expression profiles across 
multiple samples and the identification of inter-gene 
interactions is a critical technique for Co-expression 
networking, which usually relies on all-pairs correlation (or a 
similar measure). In this respect, Pearson’s Correlation 
Coefficient (PCC) is one of the techniques that have been 
widely used for gene co-expression network construction. All 
pairs PCC computation has recently been widely used in 
Bioinformatics; yet, it is computationally demanding large 
numbers of gene expression profile. In the present work, it is 
important to calculate the PCC matrix to find the dependencies 
between all huge numbers of genes measured in our high 
throughput microarray. It requires an enormous amount of 
computation, resulting in slow data processing and takes more 
days to finish the calculation because it is considered very 
highly intensive processing. So, new approaches are needed to 
calculate and accelerate such a complicated process. 

There are technologies that show great promise in 
bioinformatics, such as MapReduce[15], Hadoop[16] and 
Spark[17] which can contribute to solving the intensive 
computations. MapReduce and Spark are widely used high 
performance parallel frameworks that can solve the problem of 
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the Pearson's Correlation Coefficient matrix[18]. Apache Spark 
is an open source designed to enhance the computational speed 
in highly intensive processing. MapReduce works on the file 
system commonly known as Hadoop Distributed File System 
(HDFS), whereas Spark works in memory data processing 
engine. Whenever any operation is performed, Hadoop reads 
the data from the disk and uses the MapReduce to perform the 
task. While Spark keeps the data in memory and performs 
operation at a faster speed than Hadoop. However, the main 
drawback of MapReduce lies in its relatively high runtime for 
input datasets consisting of thousands of genes. This prevents 
the wide adoption of this method by the scientific community 
especially in intensive processing computation. 

The present work focuses on holding a comparison between 
two Big Data techniques: MapReduce and Spark, which are 
considered parallel tools that accelerate the construction of 
intensive processing of pairwise correlation matrix between 
genes. Multithreading Programming Model [19] in both 
techniques are employed in this study to achieve efficient 
performance. The rest of the paper is organized as follows: 
Section II presents previous works related to the parallelization 
of the algorithm to calculate the Pearson’s Correlation for 
intensive processing data to find the dependencies between all 
the huge numbers of genes. Section III describes the parallel 
implementation in MapReduce and Spark. Section IV provides 
the experimental evaluation regarding runtime efficiency. 
Section V presents the results and discussion. Finally, the 
conclusion is presented in Section VI. 

II. LITERATURE REVIEW 

This section shows recent work for determining the PCC 
matrix in Bioinformatics[20],[21] and Non-bioinformatics 
[22][23]applications. In[20], a parallel approach has been 
introduced to analyze the correlation between genes. In [24], a 
parallel implementation of transcription networks via GPUs, 
Graphical Processing Units, has been developed. In [25] and 
[26] a Message Passing Interface (MPI) implementation for the 
parallel construction of similarity matrices on multicore cluster 
processing have been provided. They have used MI (Mutual 
Information) instead of Pearson’s Correlation for inferring the 
interactions between genes. Although the MI can detect non-
linear connections better than Pearson’s Correlation, some 
experiments have shown that it is not relevant in the case of 
gene co-expression networks. In [27], a parallel tool for the 
construction of GCN using GPUs was introduced. In [28], a 
distributed approach for computing the PCC matrix on Intel 
Xeon cluster has been proposed. A hybrid approach of MPI 
and OpenMP to compute the PCC matrix has been provided in 
[29]. A parallel approach on a multicore cluster using MPI, 
MPIGeneNet, has been introduced in [30] which uses GSL 
(GNU Scientific Library) and MKL (Math Kernel Library) 
libraries to perform mathematical functions. These libraries are 
in continuous evolution, so MPIGeneNet will benefit from 
future library updates without requiring any modification in its 
code. In [31], an algorithm for constructing the GCN using 
MapReduce in a cloud environment has been developed. In 
that algorithm, an approach from the information theory, 

ARACNE [21], has been employed. In [22] a parallel 
implementation of the Support Vector Machine, SVM, 
algorithm using the OpenMP for the Multicore platform has 
been developed. In [32], a parallel approach using GPU to 
compute the Pcc matrix in a Magnetic Resonance Imaging, 
MRI, images to estimate the functional interactions in human’s 
brain. Another work for calculate the PCC matrix using a 
hybrid approach of the MPI, and the Compute Unified Device 
Architecture, CUDA has been developed in [33]. And in [23], a 
model for estimating the scalability of the parallel algorithms 
in the Cluster platform has been presented. Recently, in [34], a 
Parallel MapReduce (PMR) framework was proposed to 
compute bioinformatics applications and reduce the 
computation cost. 

Each of the afore-mentioned frameworks provides a 
different paradigm of parallel programming and has their own 
strong and weak points. However, the performance of the Big 
Data techniques in the construction of similarity matrix in 
GCN still needs more examination. In this research, a 
comparison is held between the MapReduce, and Spark to 
compute the PCC matrix in real data of time series microarrays 
of Hepatocellular Carcinoma, HCC, containing a massive 
number of genes. The comparison has been done in a cloud 
environment which is more inexpensive, and flexible than the 
on-premises computing resources [31]. Cloud computing 
model has achieved an incredible performance for many 
applications in bioinformatics [35],[36]. 

III. METHODS 

The Pearson correlation coefficient is one of the most 
popular approaches in measuring the intensity of a linear 
association between two genes in a Gene Co-expression 
Network; hence, it has been applied here as a measure of 
dependencies between interacting genes. Let(X&Y) considered 
as a pair of gene expression profiles & (n) is the number of 
pairs in a gene expression data then the PCC can be calculated 
as shown in (1). 
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The computation of the Pearson's Correlation Coefficient 
between genes expressed in a gene expression matrix has a 
quadratic complexity. Therefore, we are suggesting here a 
parallel algorithm that will break the entire calculation of PCC 
matrix into components. Each component represents an 
independent computation. Fig. 1 and Fig. 2 depict a flowchart 
for calculating the PCC matrix using the MapReduce and 
Spark. 

Each technique receives an input matrix comprising the 
gene expression values for each gene in different conditions, 
samples. These expression data are saved in a numeric matrix, 
with n columns, the number of genes, and m rows, the number 
of samples. 
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Fig. 1. Flowchart for Calculating the PCC Matrix between Genes Expressed in a Gene Expression Matrix using MapReduce. 

 

Fig. 2. Flowchart for Calculating the PCC Matrix between Genes Expressed in a Gene Expression Matrix using Spark.

MapReduce consists of mappers which perform a large 
portion of work and reducers which perform a relatively small 
amount of computation which achieves the best performance. 
In the implementation of the Multithreaded Mapper 
implementation, threads from a thread pool invoke a queue of 
key value pairs in parallel. Multiple threads running a map task 
can help to speed up the tasks, based on availability of cores in 
the system. The map and shuffle task only receive a key-value 
pair input <k1, V1> and get outputs with other key-value pair 
in parallel. However, the reduce task receives the input from 
shuffle<K2, List<V2>>, which is a key and a list of values 

associated with that key. It gets all this pairs of values 
associated with the i-th and j-th columns/variables and 
compute Pearson correlation. The output of the Reduce phase 
is (K3,V3) as the PCC between a pair of genes, the i-th and j-th 
genes. 

Spark integrates the whole functionality in one program. 
This makes the tool easier to work with the users having only 
to launch the application once and avoid writing/reading from 
disks because it is based on memory which makes it is faster 
than MapReduce. Spark uses a hybrid approach that combines 
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MPI processes and threads. Each MPI process launches 
multiple threads to efficiently exploit the cores available on 
each node and to reduce the memory requirements. Regarding 
the workload distribution, as the PCC must be calculated for all 
gene pairs, the workload of this step can be represented with a 
2D matrix, where both axes x and y include all genes. Further 
improvement in the performance of the proposed algorithm has 
been done by dividing the data into multiple partitions based 
on the number of threads and execute on available cores on 
multiple nodes and also only half of the matrix must be 
calculated Concretely sum (i, i=1 to N) = N * (N + 1) / 2 which 
called triangular numbers (Since cor(A,B)=cor(B,A)) which  
adding  more time for  saving. So, every pair of genes has been 
handled as a compute job, key them with a unique index, send 
to any compute unit available, and put them back into the result 
matrix using their key. 

The detailed algorithm to construct the PCC matrix using 
the Map Reduce and Spark are shown below. 

Algorithm: PCC using MapReduce  

Require:Input data matrix A[m,n] where n length of A and split the 

matrix into n column ci where I {1,2,…..n} . (i,j) are two cloumn 

indicies. N as the number of values in array V -> N = length of array 

V. 

Function Map(Array A) 

for each thread 

 for i = 0....A.length 

  for j = i....A.length 

    Let k = pair(i, j) 

    Let v = pair(A[i], A[j]) 

    Send the key (k) and the value pair (v)  

Function Reduce(key k, value pairs V) 

 Let X = 0 

 Let Y = 0 

 Let XX = 0 

 Let YY = 0 

 Let XY = 0 

 for i=1 to N 

  Let X = X + V[i][1] 

  Let Y = Y + V[i][2] 

  Let XX = XX + (V[i][1])^2 

  Let YY = YY + (V[i][2])^2 

  Let XY = XY + V[i][1] * V[i][2] 

 Let P = (XY - (X * Y / N)) / sqrt((XX - (X^2 / N)) * (YY - (Y^2 / N)) 

Compute P 

end for  

Algorithm: PCC using Spark 

Require: Input data matrix A[m,n] where n length of A ,Number of 

threads=8, Obtain indices -> I[i], where i=1 to n.  

Broadcast matrix to all thread workers 

for each thread 

Let I be an array of size n 

for i = 1....I.size 

 I[i] = i 

Le let C be an array of pairs, where each element of C is holds an 

element of the cac cartesian product of the elments of I -> C[i], where 

i =1 to n2 

Let F be an empty array 

Let j = 0 

for i = 1....C.size  

 if C[i][1] is more than or equal C[i][2] 

  F[j] = C[i] 

  Let j = j + 1 

Let P be an array of C.size 

For i = 1....F.size -> where (i=1 to n*(n + 1)/2) 

 Compute the Pearson correlation M[:, P[i][1]] and M[:, 

P[i][2]] 

end for 

IV. EXPERIMENTAL SETUP 

A. Material 

The data employed in this research is a non-benchmarking 
dataset for Liver cancer, Hepatocellular Carcinoma (HCC). It 
is a real data downloaded from GEO, Gene Expression 
Omnibus data bank [37] and contains thirty-five Microarray 
samples of HCC that have been downloaded from. These 
samples have been collected using the Affymetrix HG-U133A 
2.0 platform. HCC is a complication of HCV (Hepatitis C 
virus) cirrhosis. The raw data has been preprocessed by the 
Affy package which is provided by the Bioconductor [38]. 

B. Platform 

A cloud platform from IBM, IBM Analytics Engine, 
IAE[39] has been utilized in this research. The IAE offers a 
parallel infrastructure for MapReduce and Spark on the IBM 
cloud. It permits users to upload their data in a layer called the 
IBM Cloud Object Storage and provides clusters of computing 
nodes to work on the uploaded data. The separation of the 
computing and storage layers helps in having more scalability 
and flexibility in analyzing. Analytics libraries and open-source 
packages has been employed. More details about the hardware 
and software employed in each technique are listed in Table I. 
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TABLE I. CHARACTERISTICS OF THE CLOUD PLATFORM USED IN THE 

EXPERIMENTAL EVALUATION 

Specification Hadoop Spark 

Software package AE 1.2 (Analytic Engine IBM) 

Version Hadoop 3.1.1 Apache Spark 2.3.2 

Nodes 2 

Cores 32 

Memory 128GB 

Driver Memory 50GB 

Executor Memory 20GB 

Spark driver max Result size Should be more than or equal 25GB 

Thread 8 

V. RESULTS AND DISCUSSION 

The performance of the employed techniques has been 
evaluated by calculating the whole running time on different 
chunks of data including 400, 1000, 4000, 8000, 12000, 16000, 
and 22777genes. Multithreading for each technique splits tasks 
into threads to execute them at the same time in parallel.The 
retrieved running time using the proposed MapReduce, and 
Spark algorithms is shown in Fig. 3, and Fig. 4 
correspondingly. As illustrated in Fig. 3, the running time for 
finding the correlation between 4000 genes was an hour and 
twenty minutes and it increases exponentially until it reaches 
four hours and fifty minutes for the whole number of genes, 
22777. The exponential increase in the running time reveals a 
high time complexity in using the MapReduce approach. That 
complexity is due to storing the whole dataset to HDFS after 
running each job. In addition, the dataset is replicated three 
times in HDFS by default. Thus, the time complexity of Map 
task in intrinsic operations (sorting, shuffling, sending data, 
etc.) is O(n^2) operations per line and O(n) in the Reduce task. 

As noticed from Fig. 3, a long processing time has been 
retrieved using the MapReduce. Such long processing time can 
be clarified as follows: 

 The size of the whole dataset employed in this work is 
small (3.7 MB) which is less than the minimum block 
size 64 MB of HDFS. This means that if a block size of 
HDFS is 64 MB with 3 replication and we have 1 MB 
file, we do not lose (63 MB * 3) 189 MB. Since 
physically just three 1 MB files are stored with the 
standard block size of the underlying file systems and 
Hadoop will typically try to spawn a mapper per block. 
So, if we have 40 blocks with10 KB files, then Hadoop 
may end up spawning 40 mappers eventually per block 
even if the size of file is small. 

 The number of mappers and reducer tasks are directly 
proportional to the input splits, which depend on DFS 
block size (no. split= no. Map =input size/block size) 
which helps in working all tasks in parallel well. In our 
present work, we had one Map task, and one reduce. So, 
using HDFS in intensive parallel processing with small 
dataset was not helpful in MapReduce. This is a real 
wastage overhead time when using MapReduce. 

On the other side, as illustrated in Fig. 4, the running time 
for the Spark algorithm is less than the time consumed using 
the MapReduce algorithm. The consumed time for retrieving 
the correlation between 4000 genes was just five minutes and 
fifty-four seconds and it increases exponentially until it reaches 
twenty-nine minutes for the whole number of genes, 22777. 

 

Fig. 3. The Running Time of MapReduce Algorithm on different Chunks of 

Data on IBM Analytic Engine. 

 

Fig. 4. The Running Time of Spark Algorithm on different Chunks of Data 

on IBM Analytic Engine. 

In Spark, Resilient Distributed Datasets (RDD) is employed 
to manage the data through partitions. RDD helps to distribute 
the data processing with negligible network traffic for sending 
data between executors in parallel. The best way to decide the 
number of partitions into smaller chunks of data is to make the 
number of partitions equal to the number of cores in the 
cluster; so that all the partitions will process in parallel, and the 
resources will be utilized in an optimal way. 

We used 32 partitions like the number of Virtual cores and 
8 threads in the cluster to achieve the best performance as we 
can. Compared to MapReduce, Spark does not work the entire 
dataset in the HDFS until completing each task as done in 
MapReduce. 

To sum up the comparison between the MapReduce and 
Spark in calculating the correlation coefficient between genes 
in a gene expression matrix, a bar chart for the retrieved 
running times using them is depicted in Fig. 5. 
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Fig. 5. A Comparison between the Retrieved Running Time in Calculating 

the PCC Matrix on different Chunks of Genes in using MapReduce and 

Spark. 

A. Comparing the Performance 

In this section, the performance between MapReduce and 
Spark algorithms is compared to a single CPU processing of 
the PCC. We have calculated the speedup for different data 
sizes as listed in Table II. In Table II, N, and M represents the 
number of genes and number of samples. It can be noticed that 
the maximum speed up of Spark, 304.1x, is considerably 
greater than the corresponding one on the MapReduce, 83.12x, 
for a data size of 1000 genes represented in 15 samples. 

In addition, we have performed more investigation to the 
performance of the employed techniques, MapReduce, and 
Spark, by analyzing the total running time. The running time in 
the MapReduce technique is composed of three components 
including the Mapping, Shuffle & Merge, and Reduce. 
However, in the Spark, it is composed only of the Mapping, 
and Reduce phases. As depicted in Table III, long time is 
consumed in the Mapper phase compared to the Reduce phase. 

Long time for the phases of the MapReduce technique can 
be clarified as follows. Reading the data from the disk and then 
running the mappers has consumed too much time, four hours. 
The Generation of a lot of keys has taken a lot of time to sort 
them. Storing the output of mappers back on disk also has 
consumed around 6 minutes. Then the reading/storing of the 
data from the disk in Shuffling phase has contributed to the 
increased processing time, 3 minutes. Finally, the Reduce 
phase has spent 36 minutes. 

Six times the disk is accessed to complete one job in the 
MapReduce which slowdown its processing. Thus, MapReduce 
has a big drawback since it must operate with the entire set of 
data in the HDFS on the completion of each task, which in turn 
increases the time and the cost of processing data, so we found 
that Spark is faster than MapReduce with 10.2613%. 

Although, Spark has two phases including transformation 
(Map) and reduce tasks as in the MapReduce approach. Spark 
has spent only 23 minutes and the other is for action (reduce) 
which spent only 2 minutes. An interpretation to the retrieved 
performance of Spark can be given as follows: 

 In Spark, a Directed a cyclic graph (DAG)[40] is 
created when it starts executing a job. 

 Looking at the DAG, remembering the steps in the 
DAG. The Spark’s DAGs enable optimizations between 
steps compared to Hadoop which does not have any 
cyclical connection between MapReduce steps. That is, 
at that level, no performance tuning can occur which 
proven that Spark is much faster for applications. 

 Having eight steps for transformations but does not 
really go to disk to perform the transformations. 

TABLE II. COMPARING THE PERFORMANCE BETWEEN MAPREDUCE & SPARK. 

Spark 

Time(s) / Speedup 

MapReduce 

Time(s) / Speedup 

Serial PCC 

Time(s) / Speedup 
Matrix Size (N*M) 

17.652/ 46.77x 25.98/ 31.79 x 826.05/ 1x 400*10 

25.56198/ 304.1x 93.516/ 83.12 x 7,773.29/ 1x 1000*15 

355.98/ 61.88x 4813.2/ 4.58 x 22034.14/ 1x 4000*20 

360/ 184.45x 4830/ 13.75x 66402.9/ 1x 8000*25 

1789.98/ 80.1x 17443.98/ 8.22x 143,382.74/ 1x 22277*35 

TABLE III. A COMPARISON BETWEEN THE RUNNING TIME OF EACH PHASE IN BOTH OF MAPREDUCE AND SPARK APPROACHES IN CALCULATING THE 

CORRELATION MATRIX BETWEEN GENES IN A HIGH THROUGHPUT MICROARRAY 

Technique Phase Phase Time 

MapReduce 

Mapping phase 4 hours + 6 minutes+53 seconds 

Shuffle & merge phase 3 minutes + 48 seconds 

Reduce Phase 36 minutes+ 46 seconds 

Spark 
Mapping phase 23 minutes 

Reduce phase 2 minutes 
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At this point, a Spark job goes to disk, performs the first 
transformation, keeps the result of transformation in memory, 
performs the second transformation, keeps the result in 
memory and so on until all the steps are completed; so only 
two accesses to disk to write the output of the job which makes 
Spark faster than MapReduce to access the disk. The higher 
efficiency on Spark can be explained as follows. In Spark, each 
MPI process launches multiple threads to efficiently exploit the 
available cores on each node and to reduce the memory 
requirement. The launched threads have a shared memory 
space on the cluster cores and allowing parallel execution with 
up to 32 working processes. This approach can be implemented 
easily with Spark which makes it faster than MapReduce. 

VI. CONCLUSION 

In the present paper, we have introduced a parallel 
implementation for an algorithm for computing the PCC matrix 
in GCN using Spark and MapReduce approaches. Spark has 
yielded a better performance than the MapReduce as it 
performs the processing in the main memory of the worker 
nodes and prevents the unnecessary I/O operations with the 
disks. So, the memory in the Spark cluster should be at least as 
large as the amount of data needed to process. However, Spark 
is more expensive when setting up the cluster because it 
requires more RAM compared to MapReduce. MapReduce is 
highly fault-tolerant because it was designed to replicate data 
across many nodes but in Spark, data is replicated across 
executor nodes, and can generally be corrupted if the node or 
phase between executors and drivers fails. 

As a future work for this study, we are recommending the 
implementation of PCC matrix using GPUs and comparing its 
performance to the results retrieved in this research. 
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