
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

330 | P a g e

www.ijacsa.thesai.org

Comparing MapReduce and Spark in Computing the

PCC Matrix in Gene Co-expression Networks

Nagwan Abdel Samee
1
, Nada Hassan Osman

2
, Rania Ahmed Abdel Azeem Abul Seoud

3

Information Technology Department, College of Computer & Information Sciences
1

Princess Nourah bint Abdulrahman University, Riyadh, 11461 Saudi Arabia
1

Computer Engineering Department, Misr University for Science and Technology, Giza, 12511 Egypt
1

Department of Communication &Electronics Engineering, Fayoum University, Egypt
2, 3

Abstract—Correlation between gene expression profiles

across multiple samples and the identification of inter-gene

interactions is a critical technique for Co-expression networking.

Due to the highly intensive processing of calculating the

Pearson’s Correlation Coefficient, PCC, matrix, it often takes too

much processing time to accomplish it. Therefore, in this work,

Big Data techniques including MapReduce and Spark have been

employed in a cloud environment to calculate the PCC matrix to

find the dependencies between genes measured in high

throughput microarray. A comparison between the running time

of each phase in both of MapReduce and Spark approaches has

been held. Both these techniques can dramatically speed up the

computation allowing users to work with highly intensive

processing. However, Spark has yielded a better performance

than the MapReduce as it performs the processing in the main

memory of the worker nodes and avoids the unnecessary I/O

operations with the disks. Spark has yielded 80 times speed up

for calculating the PCC of 22777 genes, however the MapReduce

attained barely 8 times speed up.

Keywords—Pearson's correlation; Hadoop; MapReduce; spark;

gene co-expression networks; GCN; Affymetrix microarrays

I. INTRODUCTION

Gene co-expression networks (GCN) [1] are gaining
attention nowadays as useful representations of biologically
interesting interactions among genes. Finding the interactions
with significant genes [2] can help in understanding their
molecular pathways. Constructing the similarity matrix
between genes in GCN is the most complex part as the
complexity rises quadratically. So, the most computationally
demanding all pairwise combinations must be analyzed.

The analysis of correlated genes can help in finding other
gene functions or relationships. The correlation between genes
can be estimated based on their expression values and can be
visualized via networks that reveal the interactions between co-
expressed genes. Utilizing such gene expression values is
currently effortless using the public accessible genomics data
banks for RNA-seq, and high throughput microarrays.
However, the genomics data is public and available, still the
analysis of such data needs powerful platforms and algorithms
for its processing. The parallel computing technology plays an
essential role in processing and analyzing such huge amount of
data. Even though, there are many paradigms and platforms
from the parallel computing technology have been intensively
reviewed and compared in previous studies[3],[4], [5],[6], there
still an open question in utilizing the big data techniques in the

processing of the gene expression profiles and finding their
relationships.

High throughput technologies such as the Affymetrix
microarrays have turned molecular biology into a data-
intensive discipline that requires the usage of high-performance
computing resources[7]. Flexible framework is needed to cover
the resources which are required in highly intensive processing,
and to help in data storage and processing. This requires a huge
investment in both money and manpower. This problem can be
overcome by cloud computing which has emerged as an
additional technology offering virtualized environments[8], [9].

High throughput microarrays contain a huge number of
genes. Determining the relationships between all these gene
experiments proved to be very useful in biological
analyses[10]. It has helped in understanding the molecular
basis of complex disease traits as well as the prediction of
treatment responses of individual subjects. Several methods
existed to construct correlation or similarity matrix, i.e., a two-
dimensional triangular matrix, where each value is the
similarity coefficient of one gene pair. Some examples of those
methods are Pearson’s[11],Spearman[12],Theil-Sen[13] and
Kendall[14] correlations.

Computation between gene expression profiles across
multiple samples and the identification of inter-gene
interactions is a critical technique for Co-expression
networking, which usually relies on all-pairs correlation (or a
similar measure). In this respect, Pearson’s Correlation
Coefficient (PCC) is one of the techniques that have been
widely used for gene co-expression network construction. All
pairs PCC computation has recently been widely used in
Bioinformatics; yet, it is computationally demanding large
numbers of gene expression profile. In the present work, it is
important to calculate the PCC matrix to find the dependencies
between all huge numbers of genes measured in our high
throughput microarray. It requires an enormous amount of
computation, resulting in slow data processing and takes more
days to finish the calculation because it is considered very
highly intensive processing. So, new approaches are needed to
calculate and accelerate such a complicated process.

There are technologies that show great promise in
bioinformatics, such as MapReduce[15], Hadoop[16] and
Spark[17] which can contribute to solving the intensive
computations. MapReduce and Spark are widely used high
performance parallel frameworks that can solve the problem of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

331 | P a g e

www.ijacsa.thesai.org

the Pearson's Correlation Coefficient matrix[18]. Apache Spark
is an open source designed to enhance the computational speed
in highly intensive processing. MapReduce works on the file
system commonly known as Hadoop Distributed File System
(HDFS), whereas Spark works in memory data processing
engine. Whenever any operation is performed, Hadoop reads
the data from the disk and uses the MapReduce to perform the
task. While Spark keeps the data in memory and performs
operation at a faster speed than Hadoop. However, the main
drawback of MapReduce lies in its relatively high runtime for
input datasets consisting of thousands of genes. This prevents
the wide adoption of this method by the scientific community
especially in intensive processing computation.

The present work focuses on holding a comparison between
two Big Data techniques: MapReduce and Spark, which are
considered parallel tools that accelerate the construction of
intensive processing of pairwise correlation matrix between
genes. Multithreading Programming Model [19] in both
techniques are employed in this study to achieve efficient
performance. The rest of the paper is organized as follows:
Section II presents previous works related to the parallelization
of the algorithm to calculate the Pearson’s Correlation for
intensive processing data to find the dependencies between all
the huge numbers of genes. Section III describes the parallel
implementation in MapReduce and Spark. Section IV provides
the experimental evaluation regarding runtime efficiency.
Section V presents the results and discussion. Finally, the
conclusion is presented in Section VI.

II. LITERATURE REVIEW

This section shows recent work for determining the PCC
matrix in Bioinformatics[20],[21] and Non-bioinformatics
[22][23]applications. In[20], a parallel approach has been
introduced to analyze the correlation between genes. In [24], a
parallel implementation of transcription networks via GPUs,
Graphical Processing Units, has been developed. In [25] and
[26] a Message Passing Interface (MPI) implementation for the
parallel construction of similarity matrices on multicore cluster
processing have been provided. They have used MI (Mutual
Information) instead of Pearson’s Correlation for inferring the
interactions between genes. Although the MI can detect non-
linear connections better than Pearson’s Correlation, some
experiments have shown that it is not relevant in the case of
gene co-expression networks. In [27], a parallel tool for the
construction of GCN using GPUs was introduced. In [28], a
distributed approach for computing the PCC matrix on Intel
Xeon cluster has been proposed. A hybrid approach of MPI
and OpenMP to compute the PCC matrix has been provided in
[29]. A parallel approach on a multicore cluster using MPI,
MPIGeneNet, has been introduced in [30] which uses GSL
(GNU Scientific Library) and MKL (Math Kernel Library)
libraries to perform mathematical functions. These libraries are
in continuous evolution, so MPIGeneNet will benefit from
future library updates without requiring any modification in its
code. In [31], an algorithm for constructing the GCN using
MapReduce in a cloud environment has been developed. In
that algorithm, an approach from the information theory,

ARACNE [21], has been employed. In [22] a parallel
implementation of the Support Vector Machine, SVM,
algorithm using the OpenMP for the Multicore platform has
been developed. In [32], a parallel approach using GPU to
compute the Pcc matrix in a Magnetic Resonance Imaging,
MRI, images to estimate the functional interactions in human’s
brain. Another work for calculate the PCC matrix using a
hybrid approach of the MPI, and the Compute Unified Device
Architecture, CUDA has been developed in [33]. And in [23], a
model for estimating the scalability of the parallel algorithms
in the Cluster platform has been presented. Recently, in [34], a
Parallel MapReduce (PMR) framework was proposed to
compute bioinformatics applications and reduce the
computation cost.

Each of the afore-mentioned frameworks provides a
different paradigm of parallel programming and has their own
strong and weak points. However, the performance of the Big
Data techniques in the construction of similarity matrix in
GCN still needs more examination. In this research, a
comparison is held between the MapReduce, and Spark to
compute the PCC matrix in real data of time series microarrays
of Hepatocellular Carcinoma, HCC, containing a massive
number of genes. The comparison has been done in a cloud
environment which is more inexpensive, and flexible than the
on-premises computing resources [31]. Cloud computing
model has achieved an incredible performance for many
applications in bioinformatics [35],[36].

III. METHODS

The Pearson correlation coefficient is one of the most
popular approaches in measuring the intensity of a linear
association between two genes in a Gene Co-expression
Network; hence, it has been applied here as a measure of
dependencies between interacting genes. Let(X&Y) considered
as a pair of gene expression profiles & (n) is the number of
pairs in a gene expression data then the PCC can be calculated
as shown in (1).

∑

∑
 ∑

√ ∑
(∑

)

√ ∑

(∑
)

 (1)

The computation of the Pearson's Correlation Coefficient
between genes expressed in a gene expression matrix has a
quadratic complexity. Therefore, we are suggesting here a
parallel algorithm that will break the entire calculation of PCC
matrix into components. Each component represents an
independent computation. Fig. 1 and Fig. 2 depict a flowchart
for calculating the PCC matrix using the MapReduce and
Spark.

Each technique receives an input matrix comprising the
gene expression values for each gene in different conditions,
samples. These expression data are saved in a numeric matrix,
with n columns, the number of genes, and m rows, the number
of samples.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

332 | P a g e

www.ijacsa.thesai.org

Fig. 1. Flowchart for Calculating the PCC Matrix between Genes Expressed in a Gene Expression Matrix using MapReduce.

Fig. 2. Flowchart for Calculating the PCC Matrix between Genes Expressed in a Gene Expression Matrix using Spark.

MapReduce consists of mappers which perform a large
portion of work and reducers which perform a relatively small
amount of computation which achieves the best performance.
In the implementation of the Multithreaded Mapper
implementation, threads from a thread pool invoke a queue of
key value pairs in parallel. Multiple threads running a map task
can help to speed up the tasks, based on availability of cores in
the system. The map and shuffle task only receive a key-value
pair input <k1, V1> and get outputs with other key-value pair
in parallel. However, the reduce task receives the input from
shuffle<K2, List<V2>>, which is a key and a list of values

associated with that key. It gets all this pairs of values
associated with the i-th and j-th columns/variables and
compute Pearson correlation. The output of the Reduce phase
is (K3,V3) as the PCC between a pair of genes, the i-th and j-th
genes.

Spark integrates the whole functionality in one program.
This makes the tool easier to work with the users having only
to launch the application once and avoid writing/reading from
disks because it is based on memory which makes it is faster
than MapReduce. Spark uses a hybrid approach that combines

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

333 | P a g e

www.ijacsa.thesai.org

MPI processes and threads. Each MPI process launches
multiple threads to efficiently exploit the cores available on
each node and to reduce the memory requirements. Regarding
the workload distribution, as the PCC must be calculated for all
gene pairs, the workload of this step can be represented with a
2D matrix, where both axes x and y include all genes. Further
improvement in the performance of the proposed algorithm has
been done by dividing the data into multiple partitions based
on the number of threads and execute on available cores on
multiple nodes and also only half of the matrix must be
calculated Concretely sum (i, i=1 to N) = N * (N + 1) / 2 which
called triangular numbers (Since cor(A,B)=cor(B,A)) which
adding more time for saving. So, every pair of genes has been
handled as a compute job, key them with a unique index, send
to any compute unit available, and put them back into the result
matrix using their key.

The detailed algorithm to construct the PCC matrix using
the Map Reduce and Spark are shown below.

Algorithm: PCC using MapReduce

Require:Input data matrix A[m,n] where n length of A and split the

matrix into n column ci where I {1,2,…..n} . (i,j) are two cloumn

indicies. N as the number of values in array V -> N = length of array

V.

Function Map(Array A)

for each thread

 for i = 0....A.length

 for j = i....A.length

 Let k = pair(i, j)

 Let v = pair(A[i], A[j])

 Send the key (k) and the value pair (v)

Function Reduce(key k, value pairs V)

 Let X = 0

 Let Y = 0

 Let XX = 0

 Let YY = 0

 Let XY = 0

 for i=1 to N

 Let X = X + V[i][1]

 Let Y = Y + V[i][2]

 Let XX = XX + (V[i][1])^2

 Let YY = YY + (V[i][2])^2

 Let XY = XY + V[i][1] * V[i][2]

 Let P = (XY - (X * Y / N)) / sqrt((XX - (X^2 / N)) * (YY - (Y^2 / N))

Compute P

end for

Algorithm: PCC using Spark

Require: Input data matrix A[m,n] where n length of A ,Number of

threads=8, Obtain indices -> I[i], where i=1 to n.

Broadcast matrix to all thread workers

for each thread

Let I be an array of size n

for i = 1....I.size

 I[i] = i

Le let C be an array of pairs, where each element of C is holds an

element of the cac cartesian product of the elments of I -> C[i], where

i =1 to n2

Let F be an empty array

Let j = 0

for i = 1....C.size

 if C[i][1] is more than or equal C[i][2]

 F[j] = C[i]

 Let j = j + 1

Let P be an array of C.size

For i = 1....F.size -> where (i=1 to n*(n + 1)/2)

 Compute the Pearson correlation M[:, P[i][1]] and M[:,

P[i][2]]

end for

IV. EXPERIMENTAL SETUP

A. Material

The data employed in this research is a non-benchmarking
dataset for Liver cancer, Hepatocellular Carcinoma (HCC). It
is a real data downloaded from GEO, Gene Expression
Omnibus data bank [37] and contains thirty-five Microarray
samples of HCC that have been downloaded from. These
samples have been collected using the Affymetrix HG-U133A
2.0 platform. HCC is a complication of HCV (Hepatitis C
virus) cirrhosis. The raw data has been preprocessed by the
Affy package which is provided by the Bioconductor [38].

B. Platform

A cloud platform from IBM, IBM Analytics Engine,
IAE[39] has been utilized in this research. The IAE offers a
parallel infrastructure for MapReduce and Spark on the IBM
cloud. It permits users to upload their data in a layer called the
IBM Cloud Object Storage and provides clusters of computing
nodes to work on the uploaded data. The separation of the
computing and storage layers helps in having more scalability
and flexibility in analyzing. Analytics libraries and open-source
packages has been employed. More details about the hardware
and software employed in each technique are listed in Table I.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

334 | P a g e

www.ijacsa.thesai.org

TABLE I. CHARACTERISTICS OF THE CLOUD PLATFORM USED IN THE

EXPERIMENTAL EVALUATION

Specification Hadoop Spark

Software package AE 1.2 (Analytic Engine IBM)

Version Hadoop 3.1.1 Apache Spark 2.3.2

Nodes 2

Cores 32

Memory 128GB

Driver Memory 50GB

Executor Memory 20GB

Spark driver max Result size Should be more than or equal 25GB

Thread 8

V. RESULTS AND DISCUSSION

The performance of the employed techniques has been
evaluated by calculating the whole running time on different
chunks of data including 400, 1000, 4000, 8000, 12000, 16000,
and 22777genes. Multithreading for each technique splits tasks
into threads to execute them at the same time in parallel.The
retrieved running time using the proposed MapReduce, and
Spark algorithms is shown in Fig. 3, and Fig. 4
correspondingly. As illustrated in Fig. 3, the running time for
finding the correlation between 4000 genes was an hour and
twenty minutes and it increases exponentially until it reaches
four hours and fifty minutes for the whole number of genes,
22777. The exponential increase in the running time reveals a
high time complexity in using the MapReduce approach. That
complexity is due to storing the whole dataset to HDFS after
running each job. In addition, the dataset is replicated three
times in HDFS by default. Thus, the time complexity of Map
task in intrinsic operations (sorting, shuffling, sending data,
etc.) is O(n^2) operations per line and O(n) in the Reduce task.

As noticed from Fig. 3, a long processing time has been
retrieved using the MapReduce. Such long processing time can
be clarified as follows:

 The size of the whole dataset employed in this work is
small (3.7 MB) which is less than the minimum block
size 64 MB of HDFS. This means that if a block size of
HDFS is 64 MB with 3 replication and we have 1 MB
file, we do not lose (63 MB * 3) 189 MB. Since
physically just three 1 MB files are stored with the
standard block size of the underlying file systems and
Hadoop will typically try to spawn a mapper per block.
So, if we have 40 blocks with10 KB files, then Hadoop
may end up spawning 40 mappers eventually per block
even if the size of file is small.

 The number of mappers and reducer tasks are directly
proportional to the input splits, which depend on DFS
block size (no. split= no. Map =input size/block size)
which helps in working all tasks in parallel well. In our
present work, we had one Map task, and one reduce. So,
using HDFS in intensive parallel processing with small
dataset was not helpful in MapReduce. This is a real
wastage overhead time when using MapReduce.

On the other side, as illustrated in Fig. 4, the running time
for the Spark algorithm is less than the time consumed using
the MapReduce algorithm. The consumed time for retrieving
the correlation between 4000 genes was just five minutes and
fifty-four seconds and it increases exponentially until it reaches
twenty-nine minutes for the whole number of genes, 22777.

Fig. 3. The Running Time of MapReduce Algorithm on different Chunks of

Data on IBM Analytic Engine.

Fig. 4. The Running Time of Spark Algorithm on different Chunks of Data

on IBM Analytic Engine.

In Spark, Resilient Distributed Datasets (RDD) is employed
to manage the data through partitions. RDD helps to distribute
the data processing with negligible network traffic for sending
data between executors in parallel. The best way to decide the
number of partitions into smaller chunks of data is to make the
number of partitions equal to the number of cores in the
cluster; so that all the partitions will process in parallel, and the
resources will be utilized in an optimal way.

We used 32 partitions like the number of Virtual cores and
8 threads in the cluster to achieve the best performance as we
can. Compared to MapReduce, Spark does not work the entire
dataset in the HDFS until completing each task as done in
MapReduce.

To sum up the comparison between the MapReduce and
Spark in calculating the correlation coefficient between genes
in a gene expression matrix, a bar chart for the retrieved
running times using them is depicted in Fig. 5.

0

50

100

150

200

250

300

350

22777 16000 12000 8000 4000 1000 400

R
u

n
n

in
g

Ti
m

e
in

 m
in

u
te

s

Number of Genes

Running time

0

5

10

15

20

25

30

35

22777 16000 12000 8000 4000 1000 400

R
u

n
n

in
g

Ti
m

e
 in

 M
in

u
te

s

Running Time

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

335 | P a g e

www.ijacsa.thesai.org

Fig. 5. A Comparison between the Retrieved Running Time in Calculating

the PCC Matrix on different Chunks of Genes in using MapReduce and

Spark.

A. Comparing the Performance

In this section, the performance between MapReduce and
Spark algorithms is compared to a single CPU processing of
the PCC. We have calculated the speedup for different data
sizes as listed in Table II. In Table II, N, and M represents the
number of genes and number of samples. It can be noticed that
the maximum speed up of Spark, 304.1x, is considerably
greater than the corresponding one on the MapReduce, 83.12x,
for a data size of 1000 genes represented in 15 samples.

In addition, we have performed more investigation to the
performance of the employed techniques, MapReduce, and
Spark, by analyzing the total running time. The running time in
the MapReduce technique is composed of three components
including the Mapping, Shuffle & Merge, and Reduce.
However, in the Spark, it is composed only of the Mapping,
and Reduce phases. As depicted in Table III, long time is
consumed in the Mapper phase compared to the Reduce phase.

Long time for the phases of the MapReduce technique can
be clarified as follows. Reading the data from the disk and then
running the mappers has consumed too much time, four hours.
The Generation of a lot of keys has taken a lot of time to sort
them. Storing the output of mappers back on disk also has
consumed around 6 minutes. Then the reading/storing of the
data from the disk in Shuffling phase has contributed to the
increased processing time, 3 minutes. Finally, the Reduce
phase has spent 36 minutes.

Six times the disk is accessed to complete one job in the
MapReduce which slowdown its processing. Thus, MapReduce
has a big drawback since it must operate with the entire set of
data in the HDFS on the completion of each task, which in turn
increases the time and the cost of processing data, so we found
that Spark is faster than MapReduce with 10.2613%.

Although, Spark has two phases including transformation
(Map) and reduce tasks as in the MapReduce approach. Spark
has spent only 23 minutes and the other is for action (reduce)
which spent only 2 minutes. An interpretation to the retrieved
performance of Spark can be given as follows:

 In Spark, a Directed a cyclic graph (DAG)[40] is
created when it starts executing a job.

 Looking at the DAG, remembering the steps in the
DAG. The Spark’s DAGs enable optimizations between
steps compared to Hadoop which does not have any
cyclical connection between MapReduce steps. That is,
at that level, no performance tuning can occur which
proven that Spark is much faster for applications.

 Having eight steps for transformations but does not
really go to disk to perform the transformations.

TABLE II. COMPARING THE PERFORMANCE BETWEEN MAPREDUCE & SPARK.

Spark

Time(s) / Speedup

MapReduce

Time(s) / Speedup

Serial PCC

Time(s) / Speedup
Matrix Size (N*M)

17.652/ 46.77x 25.98/ 31.79 x 826.05/ 1x 400*10

25.56198/ 304.1x 93.516/ 83.12 x 7,773.29/ 1x 1000*15

355.98/ 61.88x 4813.2/ 4.58 x 22034.14/ 1x 4000*20

360/ 184.45x 4830/ 13.75x 66402.9/ 1x 8000*25

1789.98/ 80.1x 17443.98/ 8.22x 143,382.74/ 1x 22277*35

TABLE III. A COMPARISON BETWEEN THE RUNNING TIME OF EACH PHASE IN BOTH OF MAPREDUCE AND SPARK APPROACHES IN CALCULATING THE

CORRELATION MATRIX BETWEEN GENES IN A HIGH THROUGHPUT MICROARRAY

Technique Phase Phase Time

MapReduce

Mapping phase 4 hours + 6 minutes+53 seconds

Shuffle & merge phase 3 minutes + 48 seconds

Reduce Phase 36 minutes+ 46 seconds

Spark
Mapping phase 23 minutes

Reduce phase 2 minutes

0

50

100

150

200

250

300

350

22777 16000 12000 8000 4000 1000 400

R
u

n
n

in
g
 T

im
e

in
 M

in
u

te
s

Number of Genes

Hadoop

Spark

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

336 | P a g e

www.ijacsa.thesai.org

At this point, a Spark job goes to disk, performs the first
transformation, keeps the result of transformation in memory,
performs the second transformation, keeps the result in
memory and so on until all the steps are completed; so only
two accesses to disk to write the output of the job which makes
Spark faster than MapReduce to access the disk. The higher
efficiency on Spark can be explained as follows. In Spark, each
MPI process launches multiple threads to efficiently exploit the
available cores on each node and to reduce the memory
requirement. The launched threads have a shared memory
space on the cluster cores and allowing parallel execution with
up to 32 working processes. This approach can be implemented
easily with Spark which makes it faster than MapReduce.

VI. CONCLUSION

In the present paper, we have introduced a parallel
implementation for an algorithm for computing the PCC matrix
in GCN using Spark and MapReduce approaches. Spark has
yielded a better performance than the MapReduce as it
performs the processing in the main memory of the worker
nodes and prevents the unnecessary I/O operations with the
disks. So, the memory in the Spark cluster should be at least as
large as the amount of data needed to process. However, Spark
is more expensive when setting up the cluster because it
requires more RAM compared to MapReduce. MapReduce is
highly fault-tolerant because it was designed to replicate data
across many nodes but in Spark, data is replicated across
executor nodes, and can generally be corrupted if the node or
phase between executors and drivers fails.

As a future work for this study, we are recommending the
implementation of PCC matrix using GPUs and comparing its
performance to the results retrieved in this research.

ACKNOWLEDGMENT AND FUNDING

This research was funded by the Deanship of Scientific
Research at Princess Nourah bint Abdulrahman University
through the Fast-track Research Funding Program.

REFERENCES

[1] N. M. A. Samee, N. H. Solouma, and Y. M. Kadah, ―K4. Gene network
construction and pathways analysis for high throughput microarrays,‖
Natl. Radio Sci. Conf. NRSC, Proc., no. April, pp. 649–658, 2012, doi:
10.1109/NRSC.2012.6208578.

[2] N. M. Abdel Samee, N. H. Solouma, and Y. M. Kadah, ―Detection of
biomarkers for Hepatocellular Carcinoma using a hybrid univariate gene
selection methods,‖ Theor. Biol. Med. Model., vol. 9, no. 1, p. 1, 2012,
doi: 10.1186/1742-4682-9-34.

[3] A. O, K. AR, and A. A, ―Parallel Algorithms for Inferring Gene
Regulatory Networks: A Review,‖ Curr. Genomics, vol. 19, no. 7, pp.
603–614, Jun. 2018, doi: 10.2174/1389202919666180601081718.

[4] H. Shi, B. Schmidt, W. Liu, and W. Müller-Wittig, ―Parallel mutual
information estimation for inferring gene regulatory networks on GPUs,‖
BMC Res. Notes, vol. 4, p. 189, 2011, doi: 10.1186/1756-0500-4-189.

[5] F. F. Borelli, R. Y. de Camargo, D. C. Martins, Jr, and L. C. Rozante,
―Gene regulatory networks inference using a multi-GPU exhaustive
search algorithm,‖ BMC Bioinformatics, vol. 14, no. Suppl 18, p. S5,
2013, doi: 10.1186/1471-2105-14-S18-S5.

[6] W.-P. Lee, Y.-T. Hsiao, and W.-C. Hwang, ―Designing a parallel
evolutionary algorithm for inferring gene networks on thecloud
computing environment,‖ BMC Syst. Biol., vol. 8, no. 1, p. 5, Jan. 2014,
doi: 10.1186/1752-0509-8-5.

[7] O. Spjuth et al., ―Experiences with workflows for automating data-
intensive bioinformatics,‖ Biol. Direct, vol. 10, no. 1, pp. 1–12, 2015, doi:
10.1186/s13062-015-0071-8.

[8] M. C. Schatz, B. Langmead, and S. L. Salzberg, ―Cloud computing and
the DNA data race,‖ Nat. Biotechnol., vol. 28, no. 7, pp. 691–693, 2010,
doi: 10.1038/nbt0710-691.

[9] L. D. Stein, ―The case for cloud computing in genome informatics,‖
Genome Biol., vol. 11, no. 5, 2010, doi: 10.1186/gb-2010-11-5-207.

[10] P. Minguez and J. Dopazo, ―Assessing the biological significance of gene
expression signatures and co-expression modules by studying their
network properties,‖ PLoS One, vol. 6, no. 3, 2011, doi:
10.1371/journal.pone.0017474.

[11] A. Gobbi and G. Jurman, ―A null model for pearson coexpression
networks,‖ PLoS One, vol. 10, no. 6, 2015, doi:
10.1371/journal.pone.0128115.

[12] J. Nie et al., ―TF-Cluster: A pipeline for identifying functionally
coordinated transcription factors via network decomposition of the shared
coexpression connectivity matrix (SCCM),‖ BMC Syst. Biol., vol. 5,
2011, doi: 10.1186/1752-0509-5-53.

[13] H. Peng, S. Wang, and X. Wang, ―Consistency and asymptotic
distribution of the Theil-Sen estimator,‖ J. Stat. Plan. Inference, vol. 138,
no. 6, pp. 1836–1850, 2008, doi: 10.1016/j.jspi.2007.06.036.

[14] F. Gómez-Vela, C. D. Barranco, and N. Díaz-Díaz, ―Incorporating
biological knowledge for construction of fuzzy networks of gene
associations,‖ Appl. Soft Comput. J., vol. 42, pp. 144–155, 2016, doi:
10.1016/j.asoc.2016.01.014.

[15] J. Dean and S. Ghemawat, ―MapReduce: Simplified data processing on
large clusters,‖ Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008, doi:
10.1145/1327452.1327492.

[16] Tom White, ―Hadoop: The Definitive Guide [Book],‖ O’Reilly Media,
Inc. https://www.oreilly.com/library/view/hadoop-the-
definitive/9780596521974/ (accessed Jul. 20, 2020).

[17] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
―Spark: Cluster computing with working sets,‖ 2nd USENIX Work. Hot
Top. Cloud Comput. HotCloud 2010, 2010.

[18] S. Wang et al., ―Optimising parallel R correlation matrix calculations on
gene expression data using MapReduce,‖ BMC Bioinformatics, vol. 15,
no. 1, pp. 1–9, 2014, doi: 10.1186/s12859-014-0351-9.

[19] K. Kavi, ―Multithreading Implementations The University of Texas at
Arlington,‖ no. September 1998, 2013.

[20] M. M. Zhu and Q. Wu, ―Transcription network construction for large-
scale microarray datasets using a high-performance computing
approach,‖ BMC Genomics, vol. 9, no. SUPPL. 1, pp. 1–10, 2008, doi:
10.1186/1471-2164-9-S1-S5.

[21] P. Zoppoli, S. Morganella, and M. Ceccarelli, ―An information theoretic
approach to reverse engineering of regulatory gene networks from time-
course data,‖ Lect. Notes Comput. Sci. (including Subser. Lect. Notes
Artif. Intell. Lect. Notes Bioinformatics), vol. 6160 LNBI, pp. 97–111,
2010, doi: 10.1007/978-3-642-14571-1_8.

[22] H. Zhu, P. Li, P. Zhang, and Z. Luo, ―A high performance parallel
ranking SVM with OpenCL on multicore and many-core platforms,‖ Int.
J. Grid High Perform. Comput., vol. 11, no. 1, pp. 17–28, 2019, doi:
10.4018/IJGHPC.2019010102.

[23] L. B. Sokolinsky, ―BSF: A parallel computation model for scalability
estimation of iterative numerical algorithms on cluster computing
systems,‖ J. Parallel Distrib. Comput., vol. 149, no. May, pp. 193–206,
2021, doi: 10.1016/j.jpdc.2020.12.009.

[24] J. Ingram and M. Zhu, ―GPU accelerated microarray data analysis using
random matrix theory,‖ Proc.- 2011 IEEE Int. Conf. HPCC 2011 - 2011
IEEE Int. Work. FTDCS 2011 -Workshops 2011 Int. Conf. UIC 2011-
Work. 2011 Int. Conf. ATC 2011, pp. 839–844, 2011, doi:
10.1109/HPCC.2011.119.

[25] J. Zola, M. Aluru, A. Sarje, and S. Aluru, ―Parallel information-theory-
based construction of genome-wide gene regulatory networks,‖ IEEE
Trans. Parallel Distrib. Syst., vol. 21, no. 12, pp. 1721–1733, 2010, doi:
10.1109/TPDS.2010.59.

[26] S. Misra, K. Pamnany, and S. Aluru, ―of Genome-Scale Networks on the
Intel Ò Xeon Phi TM Coprocessor,‖ vol. 12, no. 5, pp. 1008–1020, 2015.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

337 | P a g e

www.ijacsa.thesai.org

[27] M. Liang, F. Zhang, G. Jin, and J. Zhu, ―FastGCN: A GPU accelerated
tool for fast gene co-expression networks,‖ PLoS One, vol. 10, no. 1, pp.
1–11, 2015, doi: 10.1371/journal.pone.0116776.

[28] Y. Liu, T. Pan, and S. Aluru, ―Parallel Pairwise Correlation Computation
on Intel Xeon Phi Clusters,‖ Proc. - Symp. Comput. Archit. High
Perform. Comput., pp. 141–149, 2016, doi: 10.1109/SBAC-
PAD.2016.26.

[29] J. González-Domínguez and M. J. Martín, ―Fast Parallel Construction of
Correlation Similarity Matrices for Gene Co-Expression Networks on
Multicore Clusters,‖ Procedia Comput. Sci., vol. 108, pp. 485–494, 2017,
doi: 10.1016/j.procs.2017.05.023.

[30] J. Gonzalez-Dominguez and M. J. Martin, ―MPIGeneNet: Parallel
calculation of gene co-expression networks on multicore clusters,‖
IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 15, no. 5, pp. 1732–
1737, 2018, doi: 10.1109/TCBB.2017.2761340.

[31] Y. Abduallah, T. Turki, K. Byron, Z. Du, M. Cervantes-Cervantes, and J.
T. L. Wang, ―MapReduce Algorithms for Inferring Gene Regulatory
Networks from Time-Series Microarray Data Using an Information-
Theoretic Approach,‖ Biomed Res. Int., vol. 2017, 2017, doi:
10.1155/2017/6261802.

[32] T. Eslami and F. Saeed, ―Fast-GPU-PCC: A GPU-based technique to
compute pairwise pearson’s correlation coefficients for time series data—
fMRI study,‖ High-Throughput, vol. 7, no. 2, 2018, doi:
10.3390/ht7020011.

[33] E. Kijsipongse, S. U-Ruekolan, C. Ngamphiw, and S. Tongsima,
―Efficient large Pearson correlation matrix computing using hybrid

MPI/CUDA,‖ Proc. 2011 8th Int. Jt. Conf. Comput. Sci. Softw. Eng.
JCSSE 2011, no. May, pp. 237–241, 2011, doi:
10.1109/JCSSE.2011.5930127.

[34] A. A. Al-Absi, N. A. Al-Sammarraie, W. M. S. Yafooz, and D. K. Kang,
―Parallel MapReduce: Maximizing cloud resource utilization and
performance improvement using parallel execution strategies,‖ Biomed
Res. Int., vol. 2018, 2018, doi: 10.1155/2018/7501042.

[35] T. Nguyen, W. Shi, and D. Ruden, ―CloudAligner: A fast and full-
featured MapReduce based tool for sequence mapping,‖ BMC Res.
Notes, vol. 4, 2011, doi: 10.1186/1756-0500-4-171.

[36] S. Zhao et al., ―Rainbow: A tool for large-scale whole-genome
sequencing data analysis using cloud computing,‖ BMC Genomics, vol.
14, no. 1, 2013, doi: 10.1186/1471-2164-14-425.

[37] R. Edgar, M. Domrachev, and A. E. Lash, ―Gene Expression Omnibus:
NCBI gene expression and hybridization array data repository,‖ Nucleic
Acids Res., vol. 30, no. 1, pp. 207–210, 2002, doi: 10.1093/nar/30.1.207.

[38] R. C. Gentleman et al., ―Bioconductor: open software development for
computational biology and bioinformatics.,‖ Genome Biol., vol. 5, no. 10,
2004, doi: 10.1186/gb-2004-5-10-r80.

[39] A. G. Bromley, ―Babbage’s Analytical Engine Plans 28 and 28a - The
Programmer’s Interface,‖ IEEE Ann. Hist. Comput., vol. 22, no. 4, pp. 5–
19, Oct. 2000, doi: 10.1109/85.887986.

[40] H. Wang, S. Li, X. Li, and H. Zhong, Microstructure and thermoelectric
properties of doped p-type CoSb3 under TGZM effect, vol. 466. 2017.

