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Abstract—Misclassifying parts in the small-medium 

manufacturing enterprise can lead to serious consequences. 

Manual inspection, as currently practiced, allows for 

compromises in product traceability. Due to this condition, 

inspection of the part’s number is not digitally visible. Due to a 

lack of modern traceability, customers receive incorrect parts, 

and the same incidents continue to occur. It is essential to 

transform manual inspections into digital and automated ones. 

AI-based technologies have recently been employed to enable a 

smart and intelligent recognition system for industrial machining 

parts. Convolutional Neural Networks (CNN) are widely used for 

image recognition tasks and are gaining popularity as deep 

learning algorithms. In this paper, a CNN model is used to 

perform binary recognition on two similar industrial machining 

parts. The model has been trained to recognise two classes of 

machining parts: Parts A and B. The dataset used to train the 

model includes both original and augmented images, with a total 

of 2447 images for both classes. The performance metrics have 

been measured during the training process, and 10 experiments 

have been conducted to evaluate the performance of the model. 

The test results reveal that the CNN model achieves 98% mean 

accuracy, 97.1% precision for Part A, 99% precision for part B 

and 0.982 AUC value. The results demonstrate the effectiveness 

of the CNN-based recognition of parts. It offers an effective 

alternative and is a compelling method for quality assurance in 

small-medium manufacturing enterprises. 

Keywords—Convolutional neural networks; binary recognition; 

machining parts; deep learning 

I. INTRODUCTION 

Computer vision and automation are now being used by 
modern industrial firms to achieve higher quality and more 
accurate inspection of parts. Deep learning, for example, is an 
AI-based technology that assists the industry regarding 
automation with minimal human intervention. The 
convolutional neural network (CNN) is one of the most 
important deep-learning-based computer vision methods. CNN 
has a wide range of applications. One of the most popular uses 
of CNN is image classification and defect detection in 
industrial products. Zhang et al. [1] used CNN to study defects 
detection for aluminium alloy in robotic arc welding. In this 
study, data augmentation and noise addition have been applied 
to boost the CNN dataset. It was found that the CNN model 
was able to attain a 99.38% accuracy. Westphal et al. [2] 

employed CNN to detect irregularities in selective laser 
sintering (SLS). Two transfer learning CNN models were used 
with pre-trained weights to classify good and defective images 
during the manufacturing of parts. The VGG16 transfer 
learning CNN model achieved the best results with 95.8% 
accuracy. Furthermore, a study on weldment classification 
using a vision system by Bacioiu et al. [3] had reported that the 
CNN model can achieve the highest accuracies of 71%, 89% 
and 95% for 6-class, 4-class and 2-class, respectively. A 
similar study utilising the SS304 TIG welding process had 
summarised that CNN is capable of learning powerful 
representations of welding defects [4]. Approximately 89.5% 
of accuracy was reported in classifying good vs defective 
welds with the use of CNN. 

The application of CNN for the inspection of metal additive 
manufacturing parts has been examined by Cui et al. [5]. In this 
study, the regularisation and dropout layers were added to the 
CNN architecture in order to avoid overfitting problems. With 
the help of data augmentation, about 92.1% of accuracy was 
obtained for the CNN model. A similar study was also 
conducted by Xiaoming et al. [6] where CNN was utilised to 
detect defects in metallic surfaces. Data augmentation was 
further applied to enrich the training data. The study also 
contributed to the new dataset, called GC10-DET, for metallic 
surface defect detection. By using this dataset and the CNN 
model, the proposed method successfully met the accuracy 
requirements for the detection of metallic defects. The 
application of CNN to metal manufacturing parts was also 
conducted by Ma et al. [7]. Four CNN models were utilised in 
this study to detect the weld defects of galvanised steel sheets. 
The study had found that the VGG16 transfer learning CNN 
model combined with the data augmentation method made the 
best model to achieve a state-of-the-art performance in 
detecting weld defects. 

Due to high classification abilities, CNN is gaining 
attention in various industrial fields, particularly in metal and 
welding defect detection. CNN has proven to be effective in 
performing recognition and classification tasks [8-11]. CNN 
was also used in casting applications to detect and investigate 
the defects of casting products. A study conducted by Mery et 
al. [12] had used synthetic defects in order to improve the 
performance of the CNN model. This study proposed a CNN 
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architecture called Xnet-II which has 30 layers and more than 
1,350,000 parameters. Another study conducted by Jiang et al. 
[13] employed X-ray images of casting products as inputs to 
the CNN model. The test accuracy achieved was reported to 
reach up to 95.5%. Various defects in the casting product, such 
as blowholes, chipping, cracks and wash automatically, were 
investigated by Nguyen et al. [14]. The study used 6000 

images with 768  768 px resolution as input to the CNN 
model. The training model was reported to attain an 
experimental accuracy of more than 98%. 

Although previous researchers have made significant 
efforts in detecting defects in industrial products using the 
CNN model [15-20], little attention has been paid to recognise 
similar industrial machining parts. The issue that the human 
operator faces on the manufacturing floor is not only related to 
defects, but also to misclassification of machining components. 
This problem arises due to the similarity of two machining 
parts, and when handled by a human operator, it leaves room 
for human error. Misclassification of machining parts is a real 
issue that occurs on the manufacturing floor. Due to lack of 
modern traceability, incorrect parts have been delivered to 
customers and the same incident is repeatedly occurring. The 
company's image becomes tarnished, decreasing its reputation 
in the eyes of existing and potential customers and vendors. It 
is an urgent matter to transform manual inspections into digital 
and automated ones. Therefore, the current work proposes a 
CNN model to recognise and classify two similar machining 
parts. The proposed CNN model can be integrated into a 
machine-vision system and perform automatic recognition 
tasks. 

II. METHODOLOGY 

The dataset used for training the model and testing the 
results is described in this section. Subsequently, the process of 
data augmentation is discussed in order to enhance the 
performance of the CNN model. The CNN model used in this 
work is also presented and discussed. 

A. Data Structure 

The original images of the machining parts dataset were 
captured by using an android-based smartphone, with a 

resolution of 750  1000 px. A total of 160 images were taken 
for both Parts A and B, with each part consisting of 80 images. 

These images are then resized to 224  224 px before being fed 
into the CNN model as input. Fig. 1 presents a sample of the 
resized original images taken with an android-based 
smartphone for both Parts A and B. It can be seen that these 
two parts are similar. There is a high possibility that these two 
parts will be misidentified by a human operator. 

The original images were then used to generate an 
augmented dataset in order to improve the CNN model's 
performance. By performing various augmentation processes 
such as rotation, translation, zoom and brightness adjustment, a 
total of 2317 augmented images were generated. The original 
and augmented images have been combined to produce a total 
of 2477 images, 1234 of which belongs to Part A and 1243 to 
Part B. Among 1234 images from Part A, 980 images were 
used to create the training dataset and the remaining 254 were 
used to create the test dataset. As for Part B, 987 images were 

used to create the training dataset, while 256 images were used 
to create the test dataset. A balanced dataset was used to train 
the CNN model, with nearly equal numbers of images for 
training and testing of both classes. The data structure applied 
in the current work is presented in Fig. 2. 

B. Data Augmentation 

Image data augmentation is an alternative method to 
expand a training dataset by creating new versions of images. It 
can improve the performance of deep learning models by 
creating variations of the images they learn. Data augmentation 
is a regulatory mechanism designed to prevent model 
overfitting. This procedure works by performing the following 
operations, as shown in Table I. 

The augmented dataset is generated by randomly selecting 
images from the original dataset. The process shown in Table I 
is then applied to generate a total of 2317 augmented images. 
In order to create the augmented dataset, four processes were 
applied to the original images. These processes have been 
selected based on the common scenario encountered on the 
manufacturing floor when performing the recognition task. The 
images can be arbitrarily placed under the camera before 
performing the recognition task; therefore, the rotation and 
translation processes are applied to generate a series of 
augmented images with random placement. Furthermore, the 
camera's zoom and brightness can be adjusted. As a result, the 
augmented dataset with different zoom and brightness settings 
is essential for training the model. 

 

Fig. 1. Sample of Original Images. 

 

Fig. 2. Data Structure Employed in the Current Work. 

TABLE I. PROCESS APPLIED IN DATA AUGMENTATION 

Process Description 

Rotation Randomly rotate image in the range of 00 to 450 

Translation 
Randomly shift image horizontally and vertically in the range 

of 0 to 0.1 (as a fraction of total width and height) 

Zoom Randomly zoom the image in the range of 0 to 0.2 

Brightness Randomly adjust image brightness in the range of 0.1 to 1.0 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 9, 2021 

405 | P a g e  

www.ijacsa.thesai.org 

C. Convolutional Neural Network 

A convolutional neural network (CNN) is a deep learning 
algorithm that is widely utilised in the area of image 
recognition. CNN can be regarded as a special type of feed-
forward neural network in AI technology. CNN's main 
advantage over its predecessors is that it automatically detects 
significant features without the need for human intervention, 
making it the most widely used [21, 22]. As in a standard 
multi-layer neural network, a CNN has at least one 
convolutional layer followed by at least one fully connected 
layer. The CNN architecture applied in this paper consists of 
three convolutional layers and two fully connected layers. 

The proposed CNN architecture is based on the LeCun 
model [23]. The model consists of three convolutional layers 
followed by fully connected layers, as illustrated in Fig. 3. The 

machining parts image was captured with a resolution of 750  
1000 px. Before feeding the original and augmented images 

into the CNN model, they were resized to 224  224 px. These 
images were then transformed into grey-scale and with the 

dimension of 224  224  1. The grey-scale images were then 
passed through a block of convolution layers with a kernel size 

of 3  3 and a stride of 1 px. 

In the convolutional layers, the number of output filters was 
set to 8, 16 and 32, respectively. Following the convolutional 

layers, three max-pooling layers with window sizes of 2  2 
and strides of 2 px were added to compress the spatial 
representation of the input data [24]. Furthermore, the Rectified 
Linear Unit (ReLU) function was used as the activation 
function in the convolutional layer. 

The fully connected layer is the primary building block of 
traditional artificial neural networks. It converts the high-level 
filtered machining parts image into votes. This layer's primary 
goal is to perform classification using the features extracted by 
the convolutional layers. Because the current work's class is 
binary, the model must only choose between two classes, Parts 
A and B. Due to the flattening process, the input is treated as a 

single list. The flattened layer is 1  25088 in size. The 
flattened output is then fed to a feed-forward neural network. 
The backpropagation algorithm is applied to every iteration of 

training in the dense layer. In the last layer of the CNN model, 
the sigmoid activation function was used to estimate the 
probability of the sample belonging to each class. 

D. Experimental Procedure 

A series of numerical experiments were conducted 
following the procedure depicted in Fig. 4. The first step in the 
process is to collect true label data, which was accomplished 
by taking 160 images of Parts A and B with an android-based 
smartphone. The original images were then randomly selected 
to generate an augmented dataset. This process yields a 
database of machining part images, which are saved for later 
use to train the CNN model. Having a sufficient dataset, a 
CNN model can then be developed. The architecture of the 
CNN model is shown in Fig. 3. 

The model is trained by using the augmented and original 
dataset until the accuracy achieves a value of more than 95%. 
Subsequently, a series of numerical experiments are performed. 
The model was run 10 times and its performance was 
measured. The loss and accuracy values per epoch during the 
training and testing were also measured. A confusion matrix 
was further computed for each numerical experiment in order 
to measure the performance of the CNN model. The model was 
then applied to perform recognition and prediction tasks using 
a random image from the test dataset. Finally, the model was 
saved, and the experiment was successfully completed. 

The training and recognition tasks were repeated ten times. 
The performance of the CNN model was measured and 
visualised in the form of a confusion matrix for each training 
process. The accuracy, precision, sensitivity and specificity of 
the model can be calculated from this matrix using the 
following equations [25]: 

Accuracy=(TN+TP)/(TN+FP+TP+FN)           (1) 

PPV=TP/(TP+FP)             (2) 

NPV= TN/(TN+FN)             (3) 

Sensitivity=TP/(TP+FN)             (4) 

Specificity=TN/(TN+FP)             (5) 

 

Fig. 3. Architecture of the CNN Model. 
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Fig. 4. Flow Chart of the Experimental Procedure. 

where TP, TN, FP and FN are true positive, true negative, 
false positive and false negative, respectively. The TP value in 
the confusion matrix represents the number in which the CNN 
model has predicted as Part A and the true label is actually Part 
A. The TN value represents the number in which the CNN 
model has predicted as Part B and the true label is actually Part 
B. The FP value means the number in which the CNN model 
has predicted as Part B, but the true label is actually Part A. 
Lastly, the FN value means the number in which the CNN 
model has predicted as Part A, but the true label is actually Part 
B. 

Precision values for Parts A and B are also referred to as 
Positive Predictive Value (PPV) and Negative Predictive Value 
(NPV), respectively. The PPV value counts the number of 
observations that are predicted to be positive (Part A) and are, 
in fact, positive. Similarly, the NPV value indicates how many 
predictions are correct out of all negative predictions (Part B). 
Furthermore, the Receiver Operating Characteristics (ROC) 

curve and the Area Under the Curve (AUC) value are also 
measured during the training and testing processes. 

III. RESULTS AND DISCUSSION 

A. Binary Class Test 

The machining parts dataset contains original and 
augmented images. By using this combined dataset, the 
experiment was conducted, and the recognition task was 
performed for two classes of machining parts, i.e., Parts A and 
B. For each experiment, the training dataset was shuffled but 
the random seed parameter was kept constant to ensure all 
algorithms used the same samples as the testing and training 
data. The test dataset utilised in the current work was never 
used to train the model, therefore it represents new data for the 
trained model. After the training process, a recognition task 
was performed by randomly selecting the image from the test 
dataset for both classes. The recognition task was conducted 10 
times and the results are presented in Fig. 5. The true label and 
the prediction results are visualised on the images. From this 
figure, the CNN model correctly recognised all of the test 
images. These images are randomly rotated and translated to 
simulate the real-world situation in which a human operator 
attempts to perform a recognition task by placing machining 
parts under the sensor. As discussed in the data augmentation 
section, the brightness and zoom level of the test images were 
also randomly assigned within the prescribed range. 

B. Performance Measures 

The CNN model's performance metrics were measured 
using the Confusion Matrix. Equations (1–5) were used to 
calculate the Accuracy, Precision, Sensitivity and Specificity 
values from the Confusion Matrix. The results are displayed in 
Table I. The individual experiment has been considered. The 
first and second experiments achieved accuracy values of 0.992 
and 0.986, respectively. When compared to the first 
experiment, the precision values (PPV and NPV) in the second 
experiment are lower. Despite the fact that the accuracy values 
for both experiments are similar, the second experiment has a 
higher false negative value (4 Parts A are wrongly recognised 
as Part B). In consequence, the precision value of Part B 
(0.984) in the second experiment is lower than in the first. 

The third and fourth experiments have the same accuracy 
(0.984), but they are smaller in magnitude than the former 
experiments. The CNN model, in particular, was able to 
correctly recognise all the images in Part A in the fourth 
experiment. As a result, the precision value of Part B is 1. 
Although the CNN model performed well with the image of 
Part A, there are 8 images of Part B that were incorrectly 
identified as Part A. When compared to the third experiment, 
this condition leads to a lower precision value for Part A. The 
fifth through tenth experiments showed a fluctuation in the 
accuracy value. 

The CNN model achieved the lowest accuracy in the tenth 
experiment. In this experiment, 14 Parts B were incorrectly 
identified as Part A, while 6 Parts A were incorrectly identified 
as Part B. Although the instantaneous accuracy values 
fluctuated, the CNN model was able to achieve 0.980 mean 
accuracy across 10 experiments. 
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Fig. 5. Recognition Results of the CNN Model for 10 Experiments. 

Table II reveals an intriguing pattern: the number of images 
of Part B that were incorrectly classified as Part A is 
significantly higher than the other way around. In other words, 
the precision value for Part A is lower than the precision value 
for Part B. This condition indicates that the Part A training 
dataset should be improved. 

Enhancing the augmentation process, such as increasing the 
variation of image rotation and translation, can result to an 
improvement. Furthermore, the ROC curves and AUC values 
can be calculated using the sensitivity and specificity values 
shown in Table II. The ROC curve is a plot of the True 
Positive Rate (TPR) versus the False Positive Rate (FPR) for 
each possible prediction threshold. TPR is another name for 
sensitivity, and FPR can be calculated from 1 – specificity. The 
ROC curve illustrates the trade-off between correctly 
recognised positive samples (Part A) and misclassified 
negative samples (Part B). 

The instantaneous AUC value obtained was 0.982. A 
perfect CNN model has an AUC value equal to one, indicating 
that it has a high level of separability. This is illustrated by a 

solid line (perfect classifier) in Fig. 6. A poor CNN model has 
an AUC value close to zero, indicating that it has the worst 
measure of separability. When the AUC value is 0.5, the model 
has no class separation capacity at all (random classifier), as 
indicated by the linear dashed line in Fig. 6. Based on the 
computed AUC value, the current model is considered to 
perform well in recognising and classifying two similar 
machining parts. 

Fig. 7 shows the evolution of loss and accuracy values 
during the training process. The instantaneous value of loss and 
accuracy were recorded for 30 epochs. Both loss and accuracy 
diagrams characterise the training process. They provide initial 
information regarding the effectiveness of the selected 
hyperparameters. The current work uses binary cross-entropy 
as a loss function since it is widely employed for binary 
classification tasks [26]. Furthermore, the Adaptive Moment 
Estimation (Adam) algorithm was applied for the optimisation 
process and the learning rate was set to 0.001. The number of 
epochs and the batch size of the CNN model were set to 30 and 
32 respectively. 

1st  2nd  3rd  4th  5th  

     

     
6th  7th  8th  9th  10th  
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TABLE II. PERFORMANCE METRICS OF CNN MODEL 

Experiment Confusion Matrix Accuracy 
Precision 

Sensitivity Specificity 
PPV NPV 

1st 253 1 0.992 0.988   0.996 0.988 

 3 253     0.996     

2nd 250 4 0.986 0.988   0.984 0.988 

 3 253     0.984     

3rd 252 2 0.984 0.977   0.992 0.977 

 6 250     0.992     

4th 254 0 0.984 0.969   1.000 0.969 

 8 248     1.000     

5th 253 1 0.990 0.984   0.996 0.984 

 4 252     0.996     

6th 251 3 0.978 0.969   0.988 0.969 

 8 248     0.988     

7th 250 4 0.973 0.962   0.984 0.961 

 10 246     0.984     

8th 253 1 0.980 0.966   0.996 0.965 

 9 247     0.996     

9th 251 3 0.973 0.958   0.988 0.957 

 11 245     0.988     

10th 248 6 0.961 0.947   0.976 0.945 

 14 242     0.976     

Mean   0.980 0.971 0.990 0.990 0.970 

 

Fig. 6. ROC Curve and AUC Values. 

From Fig. 7, it can be seen that there is a slight gap between 
training and test loss. This indicates an unrepresentative 
dataset, which means that the training dataset used to train the 
CNN model does not provide sufficient information to learn 
the recognition problem [27]. This situation is consistent with 
the condition of the precision value obtained in Table II. It can 
be observed that the precision of Part A is lower compared to 
Part B. This suggests that the training dataset of Part A is 
moderately unrepresentative. 

 

Fig. 7. Loss and Accuracy Evolution during Training. 

In Fig. 7, the accuracy has been recorded for one 
experiment and plotted over 30 epochs. The accuracy values 
for ten experiments are shown in Fig. 8, and the mean value 
has been calculated accordingly. The accuracy values ranged 
between 96% to 99%. The mean accuracy calculated from the 
instantaneous value was found to be 98%. This indicates that 
the CNN model has good recognition performance and can 
provide an alternative method for manual inspection of 
industrial machining parts. 
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Fig. 8. Instantaneous and mean Accuracy for 10 Experiments. 

IV. CONCLUSION 

In this paper, a CNN model was employed to perform 
binary classification tasks of two similar machining parts. The 
model consists of three convolutional layers and three max-
pooling layers for feature extraction, followed by two fully 
connected layers for recognition and classification. Two 
classes, Parts A and B, have been assigned for the recognition 
task. The dataset used to train the model consists of 160 
original images and 2317 augmented images. Four types of 
data augmentation processes were applied in order to improve 
the performance of the model. Rotation, translation, zooming 
and brightness adjustments were all part of the augmentation 
process. These images were then assigned to one of two 
classes: Part A (1234 images for training and 254 for testing) 
and Part B (1243 images for training and 256 for testing).  

The model was run 10 times, and the performance metrics 
in the form of loss and accuracy values were measured for each 
experiment. The confusion matrix was also recorded, as well as 
the model's accuracy, precision, sensitivity, specificity and 
AUC value. Experiment results show that the CNN model 
achieved a mean accuracy of 98%. The test outcomes also 
show that the mean precision values for Parts A and B are 
0.971 and 0.99, respectively. The instantaneous ROC curve 
and AUC value (0.982) indicate that the current CNN model 
performs well in recognising and classifying two similar 
machining parts. The results further demonstrate the 
effectiveness of part recognition based on CNN. It offers a 
compelling alternative to replace manual inspections currently 
practiced in small-medium manufacturing enterprises. In the 
future, the CNN model's results should be compared to those of 
other well-known CNN architectures, such as MobileNet, 
ResNet50, and VGG16, to investigate their performance in 
recognising two similar machining parts. 
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