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Abstract—This research introduces a novel self-supervised 

deep learning model for stress detection using an intelligent 

solution that detects the stress state using the physiological 

parameters. The first part of this research represents a concise 

review of different intelligent techniques for processing 

physiological data and the emotional states of humans. Also, for 

all covered methods, special attention is made to semi-supervised 

learning algorithms. In the second part of the paper, a novel 

semi-supervised deep learning model for predicting the stress 

state is proposed. It is the first attempt of using contrastive 

learning for the stress prediction tasks. The model is based on 

utilizing generative and contrastive features specially tailored for 

treating time-series data. A widely popular multimodal WESAD 

(Wearable Stress and Affect Detection) data set is exploited for 

experimental purposes. It consists of physiological and motion 

data recorded from the wrist and chest-worn devices. To provide 

an intelligent solution that will be widely applicable, only the 

wrist data recorded from smartwatches is exploited during the 

model's training. The proposed model in this research is tested 

on a single subject's data and predicts the stress and non-stress 

events. Keeping in mind that the initial data was unbalanced with 

only 11% of the stress data, data augmentation techniques are 

applied within the model to provide additional reliable training 

information. The model shows significant potential in clustering 

stress conditions, and it presents accuracy in the range with other 

state-of-the-art solutions. The most significant benefits of using 

this model are its prediction capabilities when dealing with 

unlabeled data and performances when undersized data cannot 

be processed optimally by traditional intelligent methods. 
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I. INTRODUCTION AND LITERATURE REVIEW 

The coronavirus pandemic has directly affected the health 
of millions of people and living conditions all over the planet. 
To reduce the impact of the infection, worldwide governments 
temporarily closed schools, malls, restaurants, sports and art 
facilities, and all other public and private institutions in which 
a large number of people are generally present. Like a domino 
effect, such situations have affected the loss of jobs of millions 
of people, almost the closure of some professions, the closure 
of small and large companies, and finally, significant 
disruptions in the world economic system. In addition to the 
negative effects that this situation is causing, so far, not much 
attention is paid to the health problem that will affect a much 
larger number of people than the virus itself did: stress. To 
contribute to the diagnosis of stress and the detection of stress 
in humans, this research addresses the development of an 

intelligent method for the early detection of stress and the 
timely prevention of more serious health problems. 

Until now, stress and emotions, in general, have been 
examined in numerous researches. In [1] an emotion 
recognition system was presented that is applicable when 
limited data resources are available. The system identified 
emotions with a 65% success rate and with the confidence of 
57%. Further, in [2] the system that discovers classroom 
emotions and moods of students was introduced. Wristband 
sensors from Empatica E4 and smart-phones were used to 
detect all emotions using physical activities, event tags data, 
and various physiological parameters. The results were 
exploited for finding associations and correlations between 
students' data and extracting meaningful insights. In another 
research [3], a deep learning approach for the classification of 
emotions was presented. This approach was based on 
processing data acquired from three sensor modalities: 
locations into the global model, environmental and on-body. It 
was also proven that deep learning algorithms can be very 
effective in classifying human emotions, especially when many 
sensors are utilized. The average accuracy of the proposed 
model was 73%. Next, the importance of emotions in user-
modeling and multimodal computer interaction was presented 
in [4]. Additionally, in this paper, the results of different 
supervised learning algorithms for categorizing physiological 
signals from the autonomous nervous system were shown. The 
multimodal system for recognizing users’ emotions and 
generating responses to recognized emotions was presented in 
[5]. The experiment is thoroughly explained, and the mapping 
principles of physiological signals to certain emotions were 
introduced. The utilization of positive and negative emotional 
electroencephalogram (EEG) signals was described in [6] to 
research emotions. The support vector machine algorithm was 
exploited for data analysis, and an accuracy of 58.3% was 
achieved. Besides using EEG signals, an important role in 
emotion recognition is the electrocardiogram (ECG) signal. In 
[7] wearable ECG device was used to follow four kinds of 
emotional states recorded while involved participants watched 
prepared movie clips. Features from different analysis domains 
(time, frequency, static analysis) were sensed and recorded, 
and the most relevant features for evaluating human’s emotions 
were highlighted. An interesting approach to establishing 
emotional connections between SMART TVs and the audience 
was presented in [8]. EEG signals of involving participants 
were recorded and analyzed, and three emotional states were 
registered: relaxation, neutral, and horror. These signals were 
classified by using the support vector machine with an 
accuracy of 92% for all subjects. 
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Keeping in mind that the paper's novel research is based on 
using smartwatch data to detect emotions, it is beneficial to 
highlight the paper of [9]. The paper examined if smartwatches 
or wrist bands can be useful in collecting valuable information 
to recognize emotions. The primary limitations, potential 
problems, and crucial research steps in this domain were 
successfully found. Further, in [10], an automatic emotion 
recognition system was proposed. The system is based on 
using a wearable wristband, human emotions were evoked 
artificially, and multimodal physiological signals were 
collected by exploiting three different sensors. Finally, support 
vector machines were used once again for classifying 
emotions, achieving an accuracy of 76%. The usage of 
wearable sensors was also verified in [11], where they were 
used within Ambient Intelligence systems to provide affect-
based adaptations. Wearable sensors were also utilized in [12], 
where a real-time mobile biosystem "iAware" was proposed. 
The system was efficient in depicting five basic emotional 
states and emotional feedback information was provided to 
users. A smartwatch application that integrates heart rate, 
motion, and light data to sense mental health was used in [13], 
and the PRISM-Passive platform was proposed. Both 
supervised and unsupervised learning algorithms were applied, 
and it is proven that smartwatch data could be useful in 
evaluating and predicting mental health. Finally, the usage of 
the pervasive wearable devices within the "emotional IoT" 
concept for recognizing emotions was presented in [14]. This 
paper presented the end-to-end real-time solution based on 
smartwatch and smartphone devices that showed great 
applicability potential in consumers' everyday lives. 

In the following papers, the research cover techniques to 
estimate physiological signals, their processing, and signal 
quality improvements. In [15] psychophysiological signal 
quality estimators were proposed that were utilized to affect 
recognition systems. Further, in [16] findings in the domain of 
estimations of affective states of users' optimal experiences 
were presented. Estimated signals through end-to-end 
intelligent architecture possessed 67.5% accuracy in 
recognizing different affective states, including stress. The 
difference in emotion recognition accuracy between laboratory 
and wearable sensors was examined in [17]. The results 
showed a similar level of accuracy between the two 
approaches, which implies that wearable sensors' usage is 
reliable enough for serious considerations and accurate 
collection of physiological information of a user outside of a 
laboratory. Another research [18] covered a framework for 
signal processing pertaining to clarifying patterns of humans' 
physiological changes. An urban environment was taken as a 
scientific background, and the framework included signal 
unification, filtering, quantification, and the usage of 
techniques for data labeling. Finally, one interesting research of 
transformation of emotional signals is presented in [19], where 
the biosensing prototype for transforming emotions into music 
was proposed. Four emotional states were covered within the 
research (neutral, anger, sadness, and happiness). The 
appropriate EEG signals were recorded, and Audiolize 
Emotion was used to transform collected data into audio files. 
In the cases when it is difficult to assign labels to training input 
data consistently, Multiple Instance Learning from [20] 
allowed the training of classifiers from not precisely defined 

labeled data. A potential guideline for increasing the accuracy 
of labels was presented in [21]. However, in the cases when the 
labels cannot be completely provided, a self-supervised 
approach from [22] can be applied. The approach was designed 
in a way to learn valuable representations from unlabeled 
sensor inputs as blood volume pulse, electroencephalography, 
accelerometer, etc. The proposed methodology showed 
performances in the range with fully-supervised networks and 
improved generalization capabilities in semi-supervised 
settings. 

As one more interesting topic for proposing the novel 
research in this paper, deep learning techniques for processing 
physiological and emotional parameters should also be 
presented. In [23] deep learning techniques for real-time stress 
and affect detection was examined. New models based on 
Multiple Instance Learning were proposed and applied, 
showing the performances 10% better in terms of accuracy. 
Further, the hyperparameter optimization framework of long 
short-term memory networks in the context of emotion 
classification was presented in [24]. It was shown that the 
framework provided an improved recognition rate accuracy of 
more than 10% compared to other state-of-the-art optimization 
methods. One more classification model built with deep neural 
networks was presented in [25]. A fully convolutional network 
was proposed and achieved performances were in the range or 
better than other state-of-the-art time series classification 
algorithms. A convolutional neural network architecture was 
also used in [26] to classify the biosignals, achieving the 
precision across all the classes equal to 97.65%. Finally, in [27, 
28] novel techniques for optimizing network architectures to 
improve their processing power were presented. Specifically, 
in [27] rectifying neurons as improved models of biological 
neurons were presented. The structures based on these neurons 
are suitable for sparse data, they do not require unsupervised 
pre-trainings, and deep rectifier networks were very efficient in 
environments where there was a lack of labeled data. 
Additionally, classification models can be improved by making 
a normalization process an integral part of a model architecture 
[28]. This method performed the normalization process for 
each training batch, provided the same accuracy with 10-15 
times fewer training iterations than some traditional network 
structures. Two more successful approaches of utilizing deep 
learning techniques for prediction purposes were given in [29, 
30]. 

In this novel research, a novel self-supervised learning 
(SSL) algorithm is proposed and utilized for processing a 
widely popular WESAD data set. The goal is to accurately 
detect stress by using smartwatch sensor data. To describe the 
research methodology and proposed framework, the mentioned 
dataset must first be introduced properly. In general, WESAD 
is a multimodal dataset for wearable stress and affect detection 
[31]. The set includes information recorded both from chest 
and wrist measurements of sensors. It was based on three 
different affective states: neutral, amusement, and stress. 
Fifteen subjects participated in the experiment, 12 males and 
three females. The average age of participants was 27.5. The 
stress condition occurred as a response from public speaking 
exercises, and no other types of stress environments were 
included. Linear Discriminant Analysis (LDA) model was used 
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in [31] as a stress classification model, which achieved 93% 
accuracy. The next important paper is [32], in which the 
WESAD data were classified into four classes: neutral, 
amusement, and stress as in the previous paper, and meditation 
was an additional class. In comparison to [31], [32] only used 
the wrist sensor data for classification purposes. A machine 
learning model was trained for each subject separately (logistic 
regression, decision tree, and random forest models). The best 
performances were achieved using random forest models: 
accuracy between 88% and 99% depending on the examined 
subject. Whether it was possible to perform stress detection 
using only a smartwatch sensor data from the WESAD data set 
was examined in [33]. Three different models were used: LDA, 
Quadratic Discriminant Analysis (QDA), and Random Forest 
(RF). The best performances were achieved with LDA in 
combination with the next sensors’ data: heart rate (HR), blood 
volume pulse (BVP), and skin temperature (ST). The next 
paper [34] relied on using deep learning techniques for 
processing the WESAD data. The primary model processed 
inputs of different sampling rates by utilizing four different 
sub-models as classifiers that individually process per one 
different sampling rate. The final model was based on the RF 
algorithm and generated the final classifications following the 
fusion mechanism in [35]. Finally, the research in [36] used a 
self-supervised methodology and deep learning for processing 
only the ECG signal from four data sets (including WESAD). 
The methodology was developed using data augmentation 
techniques, including stacked convolutional network layers and 
a final “SoftMax” dense classification layer. By examining 
previously presented WESAD research papers, a major issue 
that significantly influences the dataset's classification results 
was identified: a lack of data diversity. An attempt to solve this 
problem will be made in the research by introducing a novel 
SSL methodology. In the next section, the research background 
is presented, and fundamental SSL concepts are introduced. 

II. RESEARCH BACKGROUND 

For this research application purposes, the future model's 
output labels are two physiological states: "stress" and 
"neutral". The labels represent the outputs of a model for 
corresponding input data points. To determine when these two 
labels occur, it is required to know whether a subject of 
examination is stressed or not stressed. This can only be 
accurately determined in an experimental environment by 
making long-term observations by expert knowledge from the 
field. If a supervised learning algorithm is selected for 
processing the data, it is required to provide output labels for 
all the input data. For the situations when complex and time-
consuming experimental procedures should be performed (as in 
this case of the stress prediction), much effort should be made 
and costs covered to collect the complete database of labels. 
One possible way to optimize this process is to use an SSL 
approach for the training process and reduce the need for the 
number of prepared labels. Unlike supervised learning that 
relies on using pre-prepared input/output pairs of data, SSL 
techniques create their output labels from available input 
information. These techniques reduce the dependency on labels 
by constructing meaningful and invariant representations that 
capture the original data's high-level information. SSL 
techniques are based on two essential concepts: the pretext task 

and making appropriate representations. The key to the pretext 
task is to use information about the input data to construct 
pretext labels. On the other hand, a representation is a way to 
simplify the data while keeping relevant information. For 
sensor data that is processed within this research, a useful 
representation preserves emotional and physical state 
information and discards redundant information like noise. 
Additionally, the previous SSL applications show that 
representations with significant invariance are often more 
robust and provide better quality than other types of 
representations. 

A review of SSL methods for treating images, text files, 
and graph data was presented in [37]. The comparisons 
between supervised and unsupervised learning algorithms were 
made, and three main categories of SSL were explained: 
Generative, Contrastive, and Adversarial SSL. One efficient 
approach of contrastive learning in the form of a simple 
framework called SimCLR was proposed in [38]. The 
approach was based on utilizing the data augmentation 
techniques and using two different networks within the 
architecture: the first one to create representations of different 
inputs and the second one for comparison of representations 
and preserving important information. Examined research 
showed that data augmentation could be a key tool to build 
accurate SSL models. Augmentation techniques apply input 
data transformations to create new relevant samples from the 
existing ones and increase the size of data sets when needed. 
One example of using data augmentation for creating the 
models with significant accuracy was presented in [39]. In this 
paper, a popular contrastive method called Dimensionality 
Reduction by Learning an Invariant Mapping (DrLIM) was 
proposed. The method is efficient in creating relevant features 
out of complex data, and it was commonly applied in previous 
years for solving a variety of practical problems. Further, the 
effectiveness of data augmentation techniques can be observed 
within [36], where six different augmentation techniques were 
applied, and the accuracy of the SSL algorithm on the WESAD 
data was more than 95%. 

In this research, two related SSL approaches within a novel 
algorithm will be used: the first one based on temporal 
classification and the second one on contrastive learning. It can 
be considered that the temporal classification is a pre-step 
toward contrastive learning. Generally speaking, temporal 
classification [40] is an SSL methodology specially tailored for 
time series data. The methodology's basic principle is that the 
data features vary slowly compared to the sampling time of 
recorded measurements. The methodology does not require 
labels because the classification is performed using time 
intervals (seconds, minutes) generated via a random data 
preparation procedure. Another advantage of temporal 
classification is that it transforms complex unsupervised 
features into simpler classifying segments. 

This scientific approach represents one of the first 
implementation attempts of contrastive learning to stress 
classification. Contrastive learning is an SSL technique that 
provides a model's training without requirements for output 
labels [41], and it is based on learning a similarity metric 
between data samples. Using a similar technique, SimCLR 
from [38] reached state-of-the-art accuracy and even matched 
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some supervised models' performances. In [42], the 
representation learning method with contrastive predictive 
coding that applies to different data modalities was presented. 
The method's predictive coding component relies on training 
the model to predict the representation in time instance t+1 by 
using the history of the specific representation until time t. In 
other words, the model must understand what activity the 
subject is currently doing to generate future predictions 
accurately. The efficient methodology from [42] was 
successfully used to improve a speech recognition algorithm 
based on SSL representations in [43]. The methodology was 
utilized on high-frequency sensor data and represented an 
excellent example for the novel research in this work from the 
perspective of the existence of similar research environments in 
both cases. The research from [43] was based on using an 
encoder network that produces representations that are further 
mixed by the context network to create a context vector. The 
vector was finally used to predict the next representation. 
Another way of solving speech recognition tasks was presented 
in [44] when an unsupervised learning algorithm was used. It is 
another proof that these complex kinds of tasks can be 
successfully solved without supervised learning algorithms. 
Significant results within [43] and other related papers 
represented the motivation for the authors of this new research 
to implement contrastive learning on the WESAD data. 
However, besides all the advantages of contrastive learning 
that have been proven experimentally through introduced 
papers, its implementation remains a challenge because of the 
potential difficulties with creating the pairs, evaluating the 
model performance, and implementing and evaluating a proper 
loss function [45]. In the following sections of this paper, the 
research attempts to prevent all these difficulties and proposes 
a novel intelligent SSL solution. 

III. DATA PREPARATION AND RESEARCH METHODOLOGY 

The initial step of almost every intelligent approach is data 
exploration and pre-processing. As previously explained, in 
this research, the WESAD data set was exploited. It was 
created and maintained by the University of California Irvine 
and stored within their open-source machine learning 
repository. WESAD is the multimodal dataset that consists of 
motion and physiological data recorded from the chest and 
wrist-worn devices. For this novel research, only the wrist data 
coming from smartwatch sensors were used. Complete data 
were collected by recording vital parameters of 15 involved 
subjects during the study (labeled with S1 to S15, accordingly). 

Besides measured parameters, three affective states were 
also registered during the experiment: neutral, stress, and 
amusement. The primary deficiencies of the WESAD dataset 
that should be mentioned are the lack of examined subjects 
(only 15 participated in the experiment) and a single type of 
evaluated stress activity. Collecting new stress labels would be 
expensive from the perspectives of the required time for new 
laboratory experiments, and the costs of assigning new 
participants required the recreation of the WESAD experiment 
and increase the database. Application of SSL techniques can 
solve this problem and give optimal performances from already 
available data and provide maximum possible accuracy in 
stress prediction. Besides described approaches of classifying 
emotions by recording physiological parameters, an interesting 

language-independent acoustic emotion classification was 
presented in [46]. 

Initial data preparation work in this novel research was 
based on putting all the sensors on the same timeline (700Hz) 
and merging all the subject data. The data set was split into 
train, validation, and test set by following standard machine 
learning procedures. Further, the data exploration process was 
performed on the training data composed of subjects S2 to S15. 
Within 40 million rows within the training data, only 11% 
(around 4 hours) was collected from the stress state. Such a 
small percentage of the stress information made this set 
imbalanced and presented a real challenge to make an accurate 
system for detection and prediction of it. One possible 
approach for treating imbalanced data was given in [47], where 
an intelligent algorithm based on utilizing a genetic algorithm 
was proposed. Finally, 3% of data was considered invalid. 

Keeping in mind the main research task to detect and 
predict a subject's stress status, it was essential to determine 
which sensors were the most correlated with stress. After 
performing a basic correlation analysis, it was concluded that 
acceleration and electrodermal activities were the most 
correlated with stress. The next effort was made in data pre-
processing, where the outliers were removed and the signals 
denoised. For the outlier removal process, each sensor was 
assigned to a valid range of values. The values outside of the 
specified ranges were deleted and replaced by the closest valid 
values. Finally, for dealing with the noise components, a low-
pass filter was utilized to remove undesirable frequencies. For 
each sensor value, a cutoff frequency (the highest frequency 
that is meaningful for a specific sensor) was specified. A 
Butterworth low-pass filter of the second order was then used 
with the corresponding cutoff to process the signal. 

After a brief introduction of the WESAD data and finishing 
basic pre-processing tasks, the next research phase was to 
utilize a novel SSL methodology to a small subset of the data 
and progressively increased the size of exploited information 
and the complexity of processing. Considering that WESAD 
was a representative of time series data, in [48] how an 
intelligent approach was utilized for treating and classifying 
time series data was researched. Following the progressive 
experimental approach, the research task was to train the model 
on a single subject of data, which corresponded to 1 hour and 
30-minute readings from sensors. The features used for 
processing purposes were wrist acceleration, blood volume 
pulse, and wrist temperature measurements. 

SSL techniques were already successfully applied to 
processing the WESAD data in [22, 36]. However, the novelty 
of the new research that will make the novel approach unique 
was that it was the first attempt to use contrastive learning for 
the stress prediction tasks. Further, the approach was wholly 
based on using commercial smartwatch data and making it 
available for a broad audience. In this research, two previously 
established SSL methods were implemented: the temporal 
classification approach from [40] and the contrastive learning 
from [38]. As in [40], it was important to mention that the 
features of interest for this novel research also varied slowly 
(every few minutes) compared to the sampling rates of 
including sensors (a few milliseconds). The research data was 
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split into one-minute segments, and the model was trained to 
classify these segments by their natural belongings. The model 
was based on three complementary techniques: contrastive 
learning, the utilization of slow-moving features, and data 
augmentation techniques. These techniques and the overall 
algorithm of the model are presented in Fig. 1. 

 

Fig. 1. The Algorithm of the New Model. 

IV. MODEL DESIGN 

To set up the temporal classification part of the algorithm, 
the initial process was divided into three steps: generating one-
minute segments, associating a corresponding label to each 
window, and training the deep learning model to predict the 
segment from offered windows. A similar methodology was 
applied in [43], where segments of 12,5 seconds were formed, 
and a linear classifier was used on top of the representations to 
predict which stimuli were experienced by a subject. One of 
the methodology's observed drawbacks was the requirement of 
creating the segments strictly before their usage within 
machine learning and deep learning models. It was not possible 
to add new data later if it was generated during an online 
learning process. Another deficiency was in terms of data size 
restrictions and the applied number of segments to prevent 
losing the speed of a model. The number of segments matched 
the output of the final layer of the model, implying that the 
number of segments was directly proportional to the model's 
size. 

To evaluate the initial setup from Fig. 1, a dataset 
consisting of a single subject’s data was processed. A simple 
neural network with a single hidden layer and 20 neurons were 
utilized as the supervised learning model (Fig. 2). The network 
was based on SoftMax activation functions, and its purpose 
was to classify the labeled data. Finally, the model was trained 
using stochastic gradient descent with the Adam optimizer, 
while the cross-entropy was used as the loss function. 

Next, Fully Convolutional Network from [25] is 
implemented as the embedding model from Fig. 1. The 
network algorithm is adjusted to this specific research case. 
Three layers within the network are proposed, and the 
graphical representation of its structure is presented in Fig. 3. 

 

Fig. 2. The Supervised Learning Model Algorithm. 

 

Fig. 3. Fully Convolutional Network (FCN) Architecture. 

The contrastive method's key was to create a local 
classification objective that does not depend on the whole 
dataset. The task is to classify pairs as similar and different 
following their temporal closeness. To create similar pairs, the 
following data preparation algorithm was used. First, the data 
was split into 5 seconds windows of five 700 Hz sensors. The 
splitting phase resulted in 17500 elements for each input time 
point. A pair was created for each window by associating it 
randomly with another window that occurred less than a 
minute before. Each such pair was called a positive pair 
because it was considered temporally close enough to be 
similar. Further, ten pairs were merged to form a batch of 20 
pairs of windows. If two windows belonged to the same 
positive pair, they were considered similar; otherwise, they 
were dissimilar. Initiated labels were local because they were 
created within each batch of data separately. 

Once the labels were created, a loss function from [38] was 
used to estimate how well the model classified the pairs. 
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TensorFlow 2, as one of the most famous Python libraries, was 
used for this purpose. The loss function called the Noise 
Contrastive Estimation loss (NCE loss), and was presented in 
the following form: 

       
               

  

∑                
     

            (1) 

Where    and    are the representations obtained from the 
model of the left and right samples of each pair. To accurately 
measure the loss, it was essential to evaluate the loss on small 
subsets of the data individually. When each small sample was 
selected, the binary cross-entropy was computed using only 
elements from this subset. Because of the small size of any 
subset, the cross-entropy computation was fast. To learn from 
the whole dataset, all subsets were processed one by one. 
Finally, to get the final loss, the losses from each pair were 
averaged. The model was trained to utilize this loss function 
within the gradient descent algorithm on the pairs of previously 
created batches. Additionally, Adam optimizer was used to 
update the weights at each pass. 

V. RESULTS 

The goal of this case study was to recognize stress and 
neutral states from the input representation data on a single 
subject’s data. The model was trained to learn two-dimensional 
representations to validate the ability to learn relevant features. 
The training time of a single model on the machine with Nvidia 
K80 GPU was 10 minutes approximately. The features that 
were generated after the training process are presented in Fig. 
4. The train set (left) and the test set (right) for Subject 15 is 
shown with the separation between the different reported 
activities. For the test set for Subject 15 the stress and 
meditation results are shown only because the data is split by 
time into train and test where the first 70% of this subject data 
goes to train and the rest goes to test. For this subject, the final 
30% of data only have these two activities which is a very 
interesting result considering only a very limited amount of 
data that been used for this training. Therefore, by using 
unlabeled data, the model is efficiently capable of clustering 
different activities as shown. 

It is observable from the previous figures that the model 
efficiently learned to cluster different activities. It learned to 
separate activities without knowing them in advance, which is 
the temporal classification paradigm's success. If Fig. 4 is 
presented from the perspective of only stress and no stress 
activities, Fig. 5 can be generated as well. It can be concluded 
from the figure that the model is efficient in separating stress 
from no stress data. It showed 85% accuracy demonstrating 
that generated representations can capture most of the relevant 
information in some simpler cases. 

In the final part of this research, the performances of the 
proposed model were compared to five similar researches by 
other authors. Table I present information about the advantages 
and limitations of developed models, as well as exploited types 
of data during the training processes. Finally, the results and 
achieved accuracies are shown as the evaluation measures for 
all the models. Final examination showed that the proposed 
model provides the accuracy in the range with other state-of-
the-art solutions, and an advantage in the term of processing 

unlabeled data and augmenting existing data. Through this 
conducted research and the previous one cited within this 
paper, it can be concluded that the contrastive methods could 
be very efficient in processing large data sets. It is even 
possible to parallelize the computations to train such sets, to 
provide online training, and add additional data within the 
training process. All these topics will be examined in detail in 
the future work of the authors. 

 

Fig. 4. Data Representations Learned by Contrastive Learning by Examining 

Subject 15. 

 

Fig. 5. Representations of Stress and no Stress Features of S15. 

TABLE I. COMPARISON OF SIX DIFFERENT APPROACHES FOR STRESS 

DETECTION 

Reference 

number 
Method Advantages Limitations 

Exploited 

data 

Results, 

accuracy 

[31] 
Feature-
based ML 

approach 

Speed, 

interpretability, 

low compute 
power 

Required 

expert 

knowledge of 
the features 

All the 

sensors 

93% 
(stress 

detection) 

[32] 

ML 

approach, 

per subject 

Same as [1] + 

tailored to a 

single subject 

Same as [1] 

+ need to be 
retrained for 

each subject 

All the 
sensors 

88-99% 

(per 

subject) 

[33] 
ML 
approach 

Same as [1] + 

applicable to 
commercial 

smartwatches 

Same as [1] 

Smartwatch 

compatible 

data: wrist 
only 

without 

EDA 

87% 
(stress 

detection, 

balanced 
accuracy) 

[34] 
DL 

approach 

High-accuracy, 
no expert 

knowledge 

High 

compute, 

complex 
model 

All sensors 
85%  

(3 classes) 

[36] 

DL, self-

supervised 

learning  

Very high 

accuracy, 
no expert 

knowledge 

High 

compute, 
complex 

method 

ECG only + 

additional 

data sets 

97%  
(4 classes) 

New 

research 

DL, self-

supervised 
learning  

Can leverage 

unlabeled data 

More 
complex than 

supervised 

learning 

WESAD 
smartwatch 

data (all 

wrist data 
without 

EDA as in 

[3]) 

85% 

(stress 
detection) 
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VI. CONCLUSION 

In this paper, the SSL concept of deep learning was 
presented and analyzed, and a novel SSL solution was 
proposed. As a popular case study nowadays, emotional states 
and stress detection were selected as test cases for this 
research. In the first section of the paper, a review of popular 
scientific papers dealing with intelligent techniques for 
processing emotions was made. It was proven that deep 
learning and machine learning approaches can threaten 
emotion data effectively and produce desirable results in the 
form of a prediction, label detection, classification, or 
clusterization. This paper's contribution was the utilization of 
only wrist sensor data (from smartwatches) in the processing 
phase, without the requirement for any additional data that 
should be collected by using any intrusive method. State-of-
the-art research papers concerning smartwatch sensor data 
applications were also provided, highlighting the smart 
approaches for treating such data. Special attention was made 
to deep learning techniques in the field of emotion recognition 
and solving similar tasks. It was shown that different 
supervised and unsupervised learning techniques could be 
effectively applied for processing physiological data and 
providing valuable insights. Finally, the WESAD data set, as a 
base for the case study in this paper, was presented, and the 
most important research papers were introduced and described. 
In the second section, a literature review concerning SSL 
techniques was provided, and the main features were exposed. 
Special attention was made to the introduction of generative 
and contrastive SSL algorithms, as they represented the basis 
for the future model. Additionally, temporal classification as a 
pre-step toward contrastive learning was also highlighted, as it 
was an efficient methodology specially tailored for time series 
data, as was the WESAD data set. In the third section, the 
nature and features of the data and applied pre-processing 
techniques were described. All outliers from the data were 
removed, and important correlations between the features were 
discovered. A small subset of optimized data (measurement 
information for a single subject) was finally used to train and 
test the proposed model in section IV. The model was based on 
using slow-moving features and data augmentation techniques 
to increase available data and create similar samples. Then, the 
contrastive learning framework was used to train the developed 
network by using the SSL approach. Finally, the embedding 
model outputs were used within the supervised learning 
algorithm to provide fine-tuning of the proposed stress 
detection model. 

The novelty of the proposed solution was in utilizing pairs 
of samples instead of state-of-the-art models that processed a 
single sample at a time. The SSL algorithm's potential was also 
shown by the developed ability to cluster human activities 
without knowing their specifics. The model was able to 
recognize features very efficiently and abstract concepts, such 
as meditation, stress, and amusement using only the raw sensor 
data. Finally, generated representations of the model were 
evaluated in two ways: the first one using the accuracy metric 
on pairs of batches and the second one utilizing a shallow 
supervised model on the top of the representations. In the next 
steps and future research work in this domain, new 
functionalities will be added and the updated algorithm utilized 
on the complete WESAD data set. Novel research should 

answer if SSL models are capable of processing a large 
quantity of data and providing accurate stress predictions when 
multiple subjects are treated at once. 
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