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Abstract—The classification and tracking of vehicles is a 

crucial component of modern transportation infrastructure. 

Transport authorities make significant investments in it since it is 

one of the most critical transportation facilities for collecting and 

analyzing traffic data to optimize route utilization, increase 

transportation safety, and build future transportation plans. 

Numerous novel traffic evaluation and monitoring systems have 

been developed as a result of recent improvements in fast 

computing technologies. However, still the camera-based systems 

lag in accuracy as mostly the systems are constructed using 

limited traffic datasets that do not adequately account for 

weather conditions, camera viewpoints, and highway layouts, 

forcing the system to make trade-offs in terms of the number of 

actual detections. This research offers a categorical vehicle 

classification and tracking system based on deep neural networks 

to overcome these difficulties. The capabilities of generative 

adversarial networks framework to compensate for weather 

variability, Gaussian models to look for roadway configurations, 

single shot multibox detector for categorical vehicle detections 

with high precision and boosted efficient binary local image 

descriptor for tracking multiple vehicle objects are all 

incorporated into the research. The study also includes the 

publication of a high-quality traffic dataset with four different 

perspectives in various environments. The proposed approach 

has been applied on the published dataset and the performance 

has been evaluated. The results verify that using the proposed 

flow of approach one can attain higher detection and tracking 

accuracy. 

Keywords—Vehicle classification; generative adversarial 

networks; single shot multibox detector; vehicle tracking; deep 
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I. INTRODUCTION 

With a rising count of vehicles on road, and those in a huge 
variety, resulting in traffic congestion and a slew of related 
difficulties, it is necessary to address these issues [1]. It 
motivates us to consider an intelligent and smart traffic 
monitoring system that could assist traffic agencies in 
addressing issues such as routing traffic based on the density of 
vehicle movement on the road, collecting traffic data like count 
of vehicles, vehicle type, and vehicle motion parameters, and 
managing roadside assistance in the event of an accident or 
other anomalous incident. It conducts traffic analysis using the 
acquired data to optimize the use of highway networks, 
forecast future transportation demands, and enhance 
transportation safety [2]. The primary functions of an 
intelligent and intelligent traffic monitoring system are vehicle 
categorization and tracking on a category basis. Due to the 
substantial technological problems associated with the same, 

several research topics have been studied, resulting in the 
creation of numerous vehicle categorization, and tracking 
systems. Classifying vehicles and maintaining their trajectories 
properly in a variety of environmental circumstances is critical 
for efficient traffic operation and transportation planning. 

The scientific advancements have resulted in the 
development of several novel vehicle categorization systems. 
Three types of categorical vehicle classification systems may 
be found in use today: in-road, over-road, and side-road. Each 
category of vehicle classification is further divided into 
subcategories depending on the sensors utilized, the techniques 
used to utilize the sensors, and the processes used to classify 
cars [3]. While both in-road and side-road approaches are 
capable of accurate categorical vehicle classification, they 
differ significantly in terms of sensor types, hardware 
configurations, configuration process, parameterization, 
operational requirements, and even expenses, making it even 
more difficult to determine the most suitable solution for a 
given vehicle in the first instance. These techniques have 
limitations when more than one vehicle is in the same location 
at the same time [4]. So, these techniques can’t be utilized for 
tracking the vehicles. 

To circumvent the restrictions, over-the-road-based 
methods for category vehicle classification and tracking are 
used. Camera-based systems are the most popular technology 
for over-road-based systems [5] [6]. The cameras are mounted 
at a height sufficient to cover the road's wide field of vision 
and can span several lanes. There are two primary obstacles to 
attaining our aim that are linked with camera-based systems. 
To begin, their performance is significantly impacted by 
weather and lighting conditions, resulting in blurred, hazy, and 
rainy observations in collected pictures. The same findings are 
made in captured pictures when automobiles are travelling at 
high speeds on the road. Second, a higher viewing angle allows 
for consideration of more distant road surfaces, however, the 
vehicle's object size changes significantly, and the accuracy of 
detection of tiny objects located distant from the road suffers 
because of the shift. We focus on above two difficulties in this 
work to provide a feasible solution, and we demonstrate how to 
adapt the category vehicle recognition findings to multiple 
object tracking. 

II. RELATED WORK 

A. Image Restoration 

Images restoration problems such as image deblurring, 
dehazing and deraining being all focused at creating an 
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accurate representation of a clear final picture out of an 
insufficiently clear input image. Numerous studies have been 
conducted in this area. A multi-layer perceptron technique for 
deblurring that eliminates noise and artefacts [7]. To cope with 
outliers, a CNN based on the single value dissemination is used 
[8]. Certain techniques [9], [10] begin by estimating blur 
kernels with convolutional neural networks and subsequently 
deblur images using traditional restoration methods. Many 
edge adaptive neural networks have been developed for the 
purpose of recovering clear images instantly [11], [12]. Recent 
deep learning-based approaches for image dehazing [13], [14] 
estimate transmission maps first and subsequently restore clear 
images using conventional methodologies [15]. Typically, 
traditional methods for image deraining are created using the 
statistical characteristics of rainy streaks [16-19]. The author in 
[20] built neural network for removing rain and/or dirt from 
pictures. Having been developed with the aid of the ResNet 
[21], [22] built deep network for image deraining. The author 
in [23] introduced Generative Adversarial Network (GAN) 
architecture for generating realistic pictures from random 
noise. Numerous techniques for visual tasks have been 
developed because of this framework [24–27]. The authors in 
[28-31] have also utilized the GAN framework to low-level 
vision issues. We chose to apply the capabilities of the GAN 
framework physics model [32] for picture restoration jobs due 
to the positive findings. 

B. Detection of Vehicles 

Now, vehicle detection can be accomplished using both 
standard machine vision techniques and sophisticated deep 
learning techniques. Traditionally, machine vision techniques 
employ a vehicle's motion to distinguish it from a fixed 
backdrop picture. This approach may be classified into three 
categories [33] as background subtraction [34], frame 
subtraction on a continual basis [35], and optical flow [36]. 
Variance is determined by applying the frame subtraction 
technique, which compares pixel data of two or three 
successive frames. Additionally, threshold separates the 
shifting foreground region [35]. By employing this technique 
and reducing noise, the vehicle's halt may also be recognized 
[37]. When the video's backdrop picture being stationary, 
background data is used to build the model [37]. Following 
that, it is possible to segment the moving object as well as the 
frame pictures by comparing each frame image to the backdrop 
model. Optical flow approach being exploited to detect a 
motion area in frames. The resulting optical flow field encodes 
the direction of motion and speed of each pixel [36]. While the 
classic machine vision approach detects the vehicle more 
quickly, it does not perform well in case the image brightness 
varies, there being a continuous motion in backdrop, or there 
are vehicles moving with low speed or some complicated 
sceneries. Vehicle identification using deep convolutional 
neural networks [52] may be classified into two broad groups. 
The two-stage technique begins by generating a candidate box 
for the item using multiple methods and then classifying it 
using a CNN. Second, a single-stage technique could not 
produce candidate box but instead turns object bounding box 
placement problem straight transform it into a regression 
problem that can be processed. Region-CNN (R-CNN) [38] 
employs a two-stage technique that utilizes selective search of 
region [39] in image. CNN image input must be fixed size, and 

the network's deeper structure needs a lengthy training period 
and uses a significant amount of storage capacity. SPP NET 
[40], which is based on concept of spatial pyramid matching, 
enables the network to accept pictures of varying sizes and 
provide fixed outputs. Among the one-stage techniques, the 
Single Shot Multibox Detector (SSMD) [41] and You Only 
Look Once (YOLO) [42] frameworks are most important. For 
many categories, SSD for single shot detectors (YOLO) that is 
significantly faster than the preceding state-of-the-art and as 
accurate as slower techniques that undertake explicit area 
recommendations and pooling, such as the Faster R-CNN [43]. 
SSMD's central idea is to forecast category scores and box 
offsets for a specific set of default bounding boxes by applying 
tiny convolutional filters on feature maps. We chose to use the 
SSD framework [43] for categorical vehicle identification and 
classification tasks due to the positive findings. 

C. Tracking of Vehicles 

Aspects of the functioning of an intelligent traffic system 
that need advanced vehicle object identification applications, 
such as multiple object tracking, are also crucial [44]. DBT 
(Detection-Based Tracking) and Detection-Free Tracking 
(DFT) are the two most common methods of initializing 
objects in multi-object tracking systems (DFT). To detect 
moving objects in video frames, the DBT method first uses 
background modelling to detect them before tracking them. 
However, the DFT technique is only capable of initializing the 
tracking object and cannot deal with the addition of new 
objects or the removal of current ones. Multi-object tracking 
algorithms must consider the similarity of items inside a frame, 
as well the associated problem of objects across frames, when 
developing their algorithms. The normalized cross-correlation 
function may be used to determine the similarity of objects 
inside a frame. As shown in [45], the Bhattacharyya distance is 
being used to calculate the distance between two objects based 
on the colour histograms of their respective images. When 
connecting inter-frame items, it is critical to specify that each 
item may appear on no more than one track at a time and that 
each track may include no more than one object. It is now 
possible to fix this issue by using either detection-level 
exclusion or trajectory-level exclusion. SIFT and ORB feature 
points were used for object tracking to overcome the 
difficulties caused by size and illumination changes in moving 
objects in [46] and [47], however this approach is slow and 
requires many feature points. The feature point detection 
technique Boosted Efficient Binary Local Image Descriptor 
(BEBLID) is proposed for use in this study [48]. BEBLID is 
considerably faster than SIFT and ORB in extracting feature 
points. 

D. Our Contributions Comprise the following Items 

 On the foundation of this work, a large-scale dataset of 
vehicle movement on roads has been developed, which 
may offer many distinct category vehicle objects that 
have been thoroughly annotated under diverse 
situations taken by high-mounted cameras. It is 
possible to utilize the dataset to test the performance of 
a variety of vehicle detection methods. 

 For recovering blurred, hazy, or rainy images recorded 
in road scenes, a method based on the GAN framework 
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for image restoration has been developed. This 
approach is utilized to increase the accuracy of vehicle 
detection in road scenes. 

 A technique based on convolutional neural networks, 
i.e., SSMD, is implemented for category vehicle 
detection. 

 A system for tracking and analyzing several vehicles is 
presented for road situations. The BEBLID method 
extracts and matches the detected object's feature 
points. 

Findings of this investigation will be discussed in further 
detail in the following sections. Section 3 introduces the 
vehicle dataset that will be utilized in this work. During 
Section 4, you'll learn about the general procedure of the 
suggested system. Section 5 shows the results of the 
experiments as well as the relevant analyses. Section 6 
provides a comprehensive summary of the complete method. 

III. VEHICLE DATASET 

Because of concerns about copyright, privacy, and security, 
traffic dataset is rarely made public owing to the widespread 
use of traffic surveillance cameras on highways across the 
world. With images of highway sceneries and typical road 
scenes, the KITTI benchmark dataset [31] aids in the solution 
of issues such as 3D object identification and tracking, which 
are commonly encountered in automated vehicle driving 
applications. The Tsinghua-Tencent Traffic-Sign Dataset [32] 
contains pictures captured by automobile cameras in a variety 
of lighting and weather situations, however there are no cars 
identified. The Stanford Car Dataset [33] and the 
Comprehensive Cars Dataset [34] are vehicle datasets captured 
by non-monitoring cameras and featuring a bright car look; 
they are used in research and development. The datasets are 
captured by security cameras; one such dataset is BV Dataset 
[35], which is an example. Even though this dataset categorizes 
vehicles into 6 categories, shooting angle being positive, and 

the vehicle object is too tiny for each image, making the 
generalization impossible for CNN training. A dataset called 
Traffic and Congestions [36] comprises photos of cars on roads 
collected by security cameras, however most of the images 
have some degree of occlusion in them. This dataset has a 
small number of images and contains no information on the 
vehicle's classification, making it less helpful. As a result, only 
a few datasets have pertinent annotations, and there are only a 
few images of traffic scenes available. This section provides an 
overview of the vehicle dataset from the standpoint of road 
surveillance footage that we created. Dataset available on link: 
https://drive.google.com/drive/folders/1vYwLPkZZ2OX1cIIP
QZA4SgB3dum7vPwV?usp=sharing. The video in the dataset 
is taken from the DND road in Delhi, India as shown in Fig. 1. 
The road monitoring camera was put on the side of the road 
and built at a height of 10 meters with a fixed angle of view. 
The photos taken from this vantage point span a large portion 
of the road in the distance and include cars of all types. The 
pictures in the dataset were taken from four surveillance 
cameras at different times of day and under varied lighting 
situations to provide a diverse range of photographs. The 
vehicles in this dataset are divided into three categories: two-
wheelers, Light Motor Vehicles (LMV), which include three-
wheelers, automobiles, minivans, and other similar vehicles, 
and Heavy Motor Vehicles (HMV), which include buses, 
trucks, and other similar vehicles (Fig. 2). The Table I details 
out the information about the dataset published. 

An initial training set and a second test set are included in 
this dataset, which is separated into two sections. Two-
wheelers accounted for 28.45 percent of all vehicles in our 
dataset, while light motor vehicles (LMV) accounted for 61.34 
percent and heavy motor vehicles (HMV) accounted for 10.21 
percent. On average, each image has 3.64 instances of 
annotated instances. Comparing our dataset to the current 
vehicle datasets, ours has a greater number of categorized 
vehicle pictures, adequate lighting conditions, and 
comprehensive annotations. 

    
(a) View 1   (b) View 2   (c)View 3   (d) View 4 

Fig. 1. Different views of the Dataset Collected. 

 

Fig. 2. Dataset with Three Categories of Vehicles. (a) Two-Wheeler, (b) LMV and (c) HMV. 
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TABLE I. VEHICLE DATASET DETAIL 

Image 

format 
Size 

Total 

number of 

images 

Total number 

of annotated 

instances 

Average 

annotated 

instances per 

image$ 

RGB 1280X720 10502 38228 3.64 

$Total number of instances/Total number of images 

IV. METHODOLOGY 

The technique of the categorical vehicle classification and 
tracking system is described in detail in this section. First, the 
video data from the road traffic scenario is imported into the 
system. Second, the GAN framework is used to recover the 
pictures that have been captured. After that, the road area is 
excavated. The SSMD deep learning object detection technique 
is being used to recognize presence of vehicles belonging to 
three different categories in a road traffic environment. Finally, 
BEBLID feature extraction is carried out on the identified 
vehicle box to complete the tracking of numerous vehicle 
objects. In the proposed technique, the essential components of 
picture restoration, vehicle detection, propagating object states 
into future frames, linking current detections with existing 
objects, and controlling the lifespan of tracked objects are all 
discussed in detail. Diagram of the methodology’s building 
blocks is depicted in Fig. 3. 

A. Image Restoration 

As previously stated, weather and lighting circumstances 
have a significant impact on the performance of camera-based 
systems, resulting in blurring, hazing, and precipitation 
observations in the captured pictures. High-speed vehicle 
movement on the road is observed in captured images, and the 
same or similar observations can be deduced from those 
images. The former scenario is caused by environmental 
changes and is thus less likely to occur, but the latter situation 
occurs almost without fail, necessitating the need for 
restoration. To achieve precise vehicle detection, it is necessary 
to repair the images to eliminate the issues that have arisen. 
Following a study of the literature on picture restoration 
approaches, we were encouraged by the positive results to 
apply the capabilities of the GAN framework physics model 
[32] to image restoration problems in our own research. 

1) Image Restoration with GAN: An image restoration 

task is to predict a clear picture x from an input image y that 

as been provided. Fundamentally, the estimated x should be 

compatible with the input y under the picture creation 

paradigm, which is as follows: 

                    (1) 

The operator H is used to transfer the unknown outcome x 
to the seen picture y. Depending on the situation, the blur, 
haze, or rain operation may be used. It is required to apply 
extra constraints on x to regularize it since the estimation of x 
from y is not well-posed. In the maximum a posteriori (MAP) 
paradigm, one frequently used method is predicated on the 
assumption that x may be solved by, 

          
 

   |          
 

   |                (2) 

In the above equation,    |   and      are probability 
density functions, which are referred to as the likelihood term 
and image prior in the scientific literature, respectively. The 
mapping functions between x and y are directly learned using 
mathematical approaches, 

                     (3) 

G is the mapping function in this case. In the case of the 
function G, it can be considered an inverse operator of H. If the 
mapping function can be predicted accurately, G(y) should be 
near to the ground truth, theoretically speaking. 

The adversarial learning method used by the GAN 
algorithm is used to learn a generative model. It trains a 
generative network and a discriminative network at the same 
time by optimizing, among other things. 

                                            

 (    )                (4) 

in which z represents random noise, x represents a genuine 
picture, and D represents a discriminative network are used. 
For the sake of convenience, we will also refer to a generative 
network as G. As part of the training process, the generator 
generates samples (G(z)) that may be used to deceive the 
discriminator, while the discriminator learns to discriminate 
between actual data and samples generated by the generator. A 
binary classifier is used as the discriminator. If the observed 
image y serves as the input to the generator, then the 
adversarial loss is, 

                                           (    )   (5) 

The value of (5) is near to zero if the distribution of the 
produced picture G(y) differs considerably from the 
distribution of the clear image, and it is greater if the 
distribution differs significantly from the clear image. It is 
possible to address the image restoration difficulty by doing the 
negative log procedure, 

          
 

                       (6) 

 

Fig. 3. Block Diagram of the Proposed System Methodology. 
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If we consider the data term to ensure that the recovered 
image x and the input image y are consistent under the 
appropriate image degradation model, then we get       . The 
regularisation of the recovered image x is denoted by      and 
models the characteristics of the recovered image, respectively. 
In vision tasks, the function      functions as a discriminator, 
with the value of the function being considerably smaller if x is 
clear and much bigger otherwise. In other words, maximizing 
the goal function as Eq. 3 will result in a decrease in the value 
of x. As a result, the predicted intermediate picture will be 
significantly more detailed. Accordingly, in order to regularize 
the solution space of picture restoration, adversarial loss can be 
employed as a precursor to the restoration. Fig. 4 depicts the 
major components of the GAN method, which include two 
discriminative networks, one generative network, and one 
picture degradation model [32], as well as their interactions. 

Let xi and yi indicate the clear and blurred images, 
respectively. The generative network derives the mapping 
function G from the input yi and creates the intermediate 
restored image G(yi). The physics model for regenerating the 
image   ̃  for various operations is as follows: for image 
deblurring,  

  ̃                        (7) 

where    being the kernel for blur, and   represents 
convolution operator. For image dehazing and deraining, 

  ̃                               (8) 

where    representing an atmospheric factor and    being 
the transmission map. The discriminative network Dg is used to 
determine if the distributions of the generator G outputs are 
comparable to those of the ground truth images. It is required 
to categorize using the discriminative network Dh whether the 
regenerated result   ̃ is consistent with the observed image   . 
All the networks are taught in a collaborative manner from 
beginning to end. 

During training, we rely on an Adam optimizer, which 
starts with a learning rate of 0.0002, with the method outlined 
in [24] being used. To get our results, we choose a batch size of 
one and a slope of 0.2 for the Leaky-ReLU. We use the same 
weight initialization strategy [24] uses. We must first get the 
generator G to create G(  ) and   . We may utilise the relevant 
physics model parameters to employ the generator, as we know 
the training data as well as the physics model parameters   ̃. 
The discriminators Dg and Dh accept input data sets {  , G(  )} 
and {  ,  ̃} respectively. We update the discriminators using a 
history of produced pictures (rather than the most recent 
generative networks' images) according to the methods 

discussed in [24]. The generator and the discriminators have a 
one-to-one update ratio set between them. 

B. Excavation of the Road Area 

The next section covers the procedure for removing the 
road surface. We developed it using an image processing 
approach called the Gaussian mixture model, which results in 
superior vehicle detection results when combined with the deep 
learning object detection method, as shown in Fig. 2. The video 
picture of traffic on the road has a wide field of vision. In this 
investigation, the cars are the primary centre of attention, and 
the road area is the zone of interest in the resulting image. 
Meanwhile, depending on the camera's view angle, road area 
being focused for certain range of the image's horizontal and 
vertical planes. We were able to extract the road segments from 
the video using this function. In a traffic scenario, a perfect 
background is not always accessible and may always be 
modified in crucial circumstances by the introduction or 
removal of items from the picture, as well as the presence of 
objects that are either slow moving or immobile. The Gaussian 
mixture model (GMM) was used to account for all these 
factors correctly. According to the method, background is 
visible more frequently than foreground and model variance is 
small [49]. 

The recent history of the intensity values of each pixel X1, 
..., Xt is modeled by a mixture of K Gaussian distribution. The 
probability of observing the current pixel value is given by the 
formula: 

      ∑       
                             (9) 

where K gives the number of Gaussian distributions,      is 

the weight of the k
th
 Gaussian in the mixture at time t having 

mean      and covariance matrix      and η is a Gaussian 

probability density function which is given by 

          
 

    
 
 | |

 
 

    
 

 
                

         (10) 

where n is the dimension of the colour space and is the 
number of colours in the colour space. As soon as the 
parameters have been initialized, the K Gaussians are sorted in 
the order of the ratio 1/(k). Due to the fact that backgrounds are 
more prevalent in scenes than moving objects, as well as the 
fact that their values are almost constant, it follows that a 
backdrop pixel equates to a high weight with low variation. 
The first B Gaussian distributions that surpass a specific 
threshold T1 are kept for use as a background distribution. For 
example, 

          (∑      
 
   )          (11) 

 

Fig. 4. Major Components of the GAN Framework. 
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(a) View 1   (b) View 2   (c) View 3   (d) View 4 

Fig. 5. Road Area Extracted for all Four Views. 

Distributed data that is part of the foreground represents 
other distributions. Until a match is found, the process repeats 
as the system computes and compares every new Xt value to 
the K Gaussian distributions. A pixel's value follows a 
Gaussian distribution if it is 2.5 standard deviations away from 
that distribution's mean. The background image is smoothed 
using a Gaussian filter once the road section has been extracted 
as the background picture. The MeanShift method smoothes 
the input image's colour. The final step is to finish filling the 
holes and carrying out morphological procedures in order to 
get most of the road surface. To extract the road regions, we 
made use of a variety of landscapes and have the results in 
Fig. 5. 

C. Categorical Vehicle Detection using SSMD 

Here is a description of the object detection approach that 
was employed in this study. The SSMD network was utilised 
in the development of the categorical vehicle detection 
framework and its deployment. The SSD approach's final 
detections are created by feeding bounding-boxes and scores of 
object class occurrences into a fixed-size feed-forward 
convolutional network followed by a non-maximum 
suppression phase. Addition of an auxiliary structure to the 
base network, such as the VGG-16, results in detections that 
have the following important characteristics: 

1) Maps of multi-scale feature for identifying anomalies: 

At end of the truncated base network, convolutional feature 

layers are added to complete the network. These layers get 

smaller and smaller as time goes on, and they allow for 

predictions of detections at various sizes. 

2) Convolutional neural network prediction techniques: A 

sequence of convolutional filters is associated with each 

feature layer, and it creates a discrete set of detection results. 

The three-dimensional tiny kernels provide either a score for 

each category or an offset in the shape relative to the default 

box coordinates and are the essential element used for the 

prediction of parameters in a feature layer of size mxn with 

channels. For each kernel location, it generates a number as an 

output. When it comes to figuring out the bounding box offset 

output values, it is crucial to first understand the differences 

between measurements made on various feature maps. 

3) Box and aspect ratio defaults: In the design of feature 

map cells, each is equipped with default bounding boxes, even 

if many feature maps are employed above the cell. Due to the 

tiling of the feature map's boxes, with the position of each box 

in relation to its associated cell fixed, the boxes' arrangements 

in the feature map are fixed. We predict the offsets, class 

scores, and the box shapes for each feature map cell. From 

there, we calculate the class scores and four offsets to get the 

final bounding box, as seen in the illustration. The (c + 4)k 

filters being applied around each spot in the feature map 

amount to (c + 4)kmn outputs for a m x n feature map. 

a) Training: For SSD training to be effective, the 

ground truth information must be allotted to certain detector 

outputs in the fixed set of detector outputs. Once a decision 

has been made on this assignment, it is applied completely to 

the loss function and back propagation. Additionally, you 

must pick the set of default boxes and scales that you will use 

for the data augmentation and the hard negative mining and 

methods. 

i) Training method for matching: For training, we need to 

discover the ground truth boxes and train the network 

according to that discovery. For each ground truth box we 

create, we are using a preset box that is predefined with a 

variety of attributes, such as box size, box aspect ratio, and 

box placement. For every ground truth box, we compare it to 

the best-overlapping default box. Any boxes that meet the 

requirements are then matched to ground truth in which the 

jaccard overlap is over a certain level (0.5). By contrast, the 

learning challenge is made easier since the network may make 

predictions about a large number of default boxes that overlap, 

instead of needing to select one single box as the biggest 

overlapper. 

ii) Loss function: The training aim is to be able to deal 

with a variety of vehicle types. We'll define an indication of 

matching a box in the i-th category to a box in the j-th 

category as    
 

      . ∑    
 

    holds under the matching 

strategy shown above. The weighted sum of the localization 

loss (loc) and the confidence loss (conf) are the overall 

objective loss function: 

           
 

 
                                 (12) 

where N is the number of matching default boxes, and the 
weight term has been adjusted to one via cross validation. If N 
equals 0, the loss is set to zero. In a localization test, the 
localization loss is the difference between the expected box (l) 
parameters and the ground truth box (g) values. 

iii) Scales and aspect ratios for default boxes: To manage 

diverse object scales, feature maps from many distinct layers 

in a single network are used for prediction, with parameters 

shared across all object scales. This allows the network to 

handle several object scales at the same time. In addition, it 

has been depicted that feature maps from the lower layers 

could help to enhance the quality of semantic segmentation 

since the lower layers capture finer features of the input 
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objects. For detection, we make use of both the bottom and 

higher feature maps. With the tiling of default boxes, we may 

train individual feature maps to be sensitive to objects of 

different sizes and shapes over time. Assume that we wish to 

make predictions using m feature maps. The following 

formula is used to determine scale of default boxes for every 

feature map: 

        
         

   
                      (13) 

Where      equals 0.2 and      equals 0.9, the lowest 
layer has a scale of 0.2, the topmost layer has a scale of 0.9, 
and all levels in between are evenly spaced. We impose various 
aspect ratios on the default boxes, denoted by the variables 
                  . We can determine the width   

  

      and height   
        of each default box. The centre 

of each default box is set to (
     

|  |
 
     

|  |
), where |  | denotes 

the size of the k-th square feature map,        |  | . 

iv) Hard negative mining: we rank the default boxes 

according to their largest confidence loss and choose just 

those at the top of the list, ensuring that the ratio of negatives 

to positives is no more than 3:1. This resulted in a speedier 

optimization process and more uniform training. 

v) Enhancement of data: To make the model more robust 

to a broad range of input object sizes and shapes, each training 

image is randomly chosen using one of the following 

methods: 

 Utilize the whole original input image. 

 Sample a patch with values of 0.1, 0.3, 0.5, 0.7, or 0.9 
to obtain the least feasible jaccard overlap with the 
objects. 

 Take a sample of a patch at random. 

Each sampled patch is between [0.1 and 1] of the original 
image's size, with an aspect ratio of between 1/2 and 2. 
Following the preceding sampling step, each sampled patch is 
given a fixed size, and the patches are then horizontally flipped 
with a probability of 50%. 

D. Multiple Vehicle Object Tracking 

This section describes how numerous vehicle objects are 
tracked using the object box discovered in the preceding 
section. During this stage, the BEBLID algorithm was 
employed to extract vehicle characteristics, and good results 
were achieved. The BEBLID method surpasses the competition 
by a considerable margin in terms of computing performance 
and matching costs. This algorithm is a superior alternative to 
other image description algorithms that have been previously 
described in the literature. Feature computations for the 
BEBLID algorithm are based on differences in grey values 
between a pair of box image regions, with the integral image 
serving as a basis for computations for the BEBLID algorithm 
features based on differences in grey values between a pair of 
box image regions. The technique takes use of AdaBoost to 
train a descriptor on an imbalanced data set to handle the 
challenge of highly asymmetric image matching. Binarization 
in a descriptor is achieved by minimizing the amount of new 

similarity loss in which all weak learners share a common 
weight. The coordinate system must be established by 
assuming the feature point to be at the centre of a circle and 
using the centroid of the point region to represent the 
coordinate system's x-axis. Thus, when the image is rotated, 
the coordinate system may be adjusted to match the image's 
rotation, resulting in rotation consistency in the feature point 
descriptor. When viewed from a different angle, a consistent 
point can be made. After getting the binarization, the feature 
points are matched using the XOR operation, which improves 
the overall efficiency of the matching process. 

 

Fig. 6. Multiple Vehicle Object Tracking Method. 

Fig. 6 illustrates the tracking method. When the number of 
matching points collected reaches a predefined threshold, the 
point is regarded successfully matched, and the object's 
matching box is painted around it. The following information 
relates to the source of the prediction box: Purification of 
feature points is performed using the Maximum Likelihood 
Estimator Sample Consensus (MLESAC) algorithm, which can 
exclude incorrect noise points caused by matching errors, and 
estimation of the homography matrix is performed using the 
MLESAC algorithm, which is capable of excluding incorrect 
noise points caused by matching errors. The estimated 
homography matrix and the location of the original object 
detection box are transformed into a perspective to get a 
matching prediction box for the original object detection box. 
Both the prediction box in the first frame and the detection box 
in the second frame must fulfil the centre point's criterion for 
the smallest distance between them to match the same item 
effectively. To be more specific, we define a threshold T equal 
to the greatest pixel change between the observed centre point 
of the vehicle object box and the vehicle object box's centre 
point when it moves between two subsequent video frames. 
The difference between two successive frames of the same 
vehicle in terms of positional movement is less than the 
threshold T. When the centre point of the vehicle object box 
crosses T in two subsequent frames, the vehicles in those two 
frames become unrelated, and the data connection fails. The 
threshold T value is proportional to the size of the vehicle 
object box, taking scale shift into vehicle. The thresholds for 
each vehicle object box are set to a variety of values. This 
definition is sufficiently flexible to accommodate vehicle 
mobility and a variety of different video input sizes. When T = 
box height/0.25 is used, the height of the vehicle object box is 
utilized as the input parameter for the calculation. We discard 
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any trajectory that has not been updated in ten consecutive 
frames, which is suitable for a camera scene with a wide-angle 
image collection along the route under investigation. If the 
prediction box does not match the item in future frames, it is 
determined that the object is absent from the video scene and 
the prediction box is removed. The method outlined above 
results in the collection of global object identification and 
tracking trajectories from the viewpoint of the whole road 
surveillance video. 

E. Analysis of Trajectories 

This section discusses both the analysis of moving objects' 
trajectories and the gathering of data on numerous items in a 
traffic flow. The majority of roadways are split into two lanes, 
separated by isolation barriers. We identify the vehicle's 
orientation in the world coordinate system based on its tracking 
trajectory and mark it as approaching or fleeing the camera. A 
straight line is drawn across the traffic scene image to serve as 
a detection line for the purpose of calculating vehicle 
classification data. The detection line must be centred on the 
1/2 point of the traffic image's high side. Concurrently, the 
road's traffic flow in both directions is counted. The object's 
memory is accessed when the object's trajectory crosses the 
detection line. The number of objects in different orientations 
and categories over a certain time may be calculated at the end 
of the operation. 

V. SIMULATION AND RESULTS 

Many measures have been developed in the past for 
evaluating the systems performance quantitatively. The proper 
one depends heavily on the application, and the search for a 
single, universal evaluation criterion is currently underway. On 
one side, it being ideal to condense results into a single number 
that can be compared directly. On the other side, one could not 
want to lose knowledge about the algorithms' specific faults 
and present a large number of performance estimations, which 
makes a clear voting impossible. So, we would be evaluating 
the performances with more than one parameter.  

A. For Image Restoration 

1) Peak signal to noise ratio(PSNR): Considering a 

reference image f and a test image g, which have a resolution 

of MxN, the PSNR score among f and g being calculated as: 

                                             (14) 

     ,          
 

  
∑ ∑          
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The PSNR score increases as the mean squared error 
(MSE) decreases; this indicates that a greater PSNR value 
results in a higher image quality. 

2) Structural similarity index (SSIM): The SSIM being a 

well-known quality statistic that is used to compare two 

images. It is thought to be connected to the human visual 

system's perception of quality. The SSIM score being 

calculated as: 

                                     (16) 
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l: luminance, c: contrast and s: structural comparison 
function Few results of GAN framework for image restoration 
are shown in Fig. 7. 

The images are randomly selected, and their performance is 
quantified in terms of PSNR and SSIM. The average of the two 
parameters' scores, is shown in Table II. 

Corrupt Image  Restored Image 

   

 

 
Deblurring 

 
   

 

 

Dehazing 

 
   

 

 

Deraining 

 
   

Fig. 7. Few Results of GAN Framework for Image Restoration. 

TABLE II. PERFORMANCE EVALUATION OF IMAGE RESTORATION 

METHOD 

Parameter [50] Input 
Average Scores 

Deblurring Dehazing Deraining 

PSNR 20.42 27.44 25.61 24.86 

SSIM 0.5691 0.8811 0.9187 0.8367 

B. For Vehicle Detection 

It was necessary to use the test set to compute the mean 
average precision (mAP); mAP is an acronym for Average 
Precision (AP), which is defined as calculating the area under 
the precision-recall curve for a given total number of object 
class instances [43]. The experiment is divided into three 
classes, which include two-wheelers, light motor vehicles, and 
heavy motor vehicles. The mean of 11 points for each potential 
threshold in the category's precision/recall curve is described 
for each category by AP. We utilized a series of criteria [0, 0.1, 
0.2,..., 1] to measure our results. For recall values larger than 
each threshold (in this experiment, the barrier is 0.25), there 
will be a matching maximum precision value, denoted by 
pmax(recall). The precisions listed above are computed, and 
AP is the average of these 11 maximum precisions (recall). 
This number was used to describe the overall quality of our 
model. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 9, 2021 

572 | P a g e  

www.ijacsa.thesai.org 

   
 

  
∑                                 

             (20) 

    
∑  

            
           (21) 

The calculation of precision, recall and IoU (Intersection 
over union) is as follows: 
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in which TP, FN, and FP denote the number of true 
positives, false negatives, and false positives, respectively We 
used the following formulas to compute the parameter scores 
for both categories: 

1) When the dataset was sent directly into the object 

detection algorithm, that is, when no image restoration 

procedure was used to restore the image. 

2) When a picture is restored using the GAN framework, 

a dataset is fed into the object detection algorithm. 

Tables III and IV provide the results of the parameters for 
each of the two categories. There is a 13.7 percent difference in 
the two-category results for the metric mAP when comparing 
them. This improvement figure clearly demonstrates that 
restoring the pictures has a significant influence on the quality 
of object identification and, indirectly, on the accuracy of 
tracking while tracking objects. 

Few results of SSMD approach for categorical vehicle 
detection id depicted in Fig. 8. 

C. Multiple Vehicle Object Tracking 

The performance evaluation for multiple vehicle object 
tracking is done through following parameters [51]: 

1) Multiple Object Tracking Accuracy (MOTA): This 

parameter takes into account three different types of errors: 

false positives, missed targets, and identity changes. For 

improved tracking accuracy, a high MOTA value is preferred. 

It is calculated as: 

       
∑                 

∑     
          (25) 

The frame index is t, and the count of ground truth objects 
is GT. MOTA could be negative if count of mistakes produced 
by tracker is more than total object count in the scene. MOTA 
score being solid indicator of tracking system's overall 
performance. 

2) Multiple Object Tracking Precision (MOTP): Refers to 

average difference between all true positives and their ground 

truth objectives. For improved tracking, a high MOTP value is 

preferred. Average dissimilarity among all true positives and 

their matching ground truth targets is Multiple Object 

Tracking Precision. This being calculated as, for bounding box 

overlap: 

     
∑        

∑    
            (26) 

dt,i is the bounding box overlap of target i with its assigned 
ground truth object, and ct is count of matches in frame t. 
Average overlap among all properly matched hypotheses and 
their corresponding objects being given by MOTP, which 
spans among td: 50% and 100%. 

3) False Alarms per Frame (FAF): It reflects per-frame 

amount of false alarms. A lower value of FAF is desirable for 

better tracking. 

4) Mostly Tracked (MT): It indicates the number of paths 

that have been mainly tracked. i.e. the target has had the same 

label for at least 80% of its existence. A high value of MT 

parameter is desirable for better tracking. 

5) Mostly Lost (ML): It indicates the amount of 

trajectories that have been lost for the most part. i.e. the target 

being not monitored for at least 20% of the time it is alive. A 

lower value of ML parameter is desirable for better tracking. 

6) False Positive (FP): It reflects number of false 

detections. A lower value of FP parameter is desirable for 

better tracking. 

7) False Negative (FN): It reflects number of missed 

detections. A lower value of FN parameter is desirable for 

better tracking. 

8) IDsw: The amount of times an ID changes to a 

formerly tracked object. A lower value of IDsw parameter is 

desirable for better tracking. 

9) Frag: The amount of times a track is fragmented due to 

a miss detection. A lower value of Frag parameter is desirable 

for better tracking. 

TABLE III. PERFORMANCE EVALUATION OF VEHICLE DETECTION METHOD
1 

Para-meter 
AP(%) 

Precision Recall Average IoU (%) mAP (%) 
Two-wheeler LMV HMV 

Scores 68.4 72.6 71.1 0.66 0.71 62.41 70.7 

TABLE IV. PERFORMANCE EVALUATION OF VEHICLE DETECTION METHOD
2 

Para-meter 
AP(%) 

Precision Recall Average IoU (%) mAP (%) 
Two-wheeler LMV HMV 

Scores 84.7 87.5 87.1 0.86 0.88 73.64 84.4 
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(a) View 1   (b) View 2   (c)View 3   (d) View 4 

Fig. 8. Few Results of SSMD Approach for Categorical Vehicle Detection. 

TABLE V. PERFORMANCE EVALUATION OF MULTIPLE VEHICLE OBJECT TRACKING METHOD 

Parameter MOTA(↑) MOTP(↑) FAF(↓) MT(↑) ML(↓) FP(↓) FN(↓) IDsw(↓) Frag(↓) 

Scores 36.3 72.9 1.4% 13.4% 33.4% 140 304 35 28 

                  
(a) View 1   (b) View 2   (c)View 3   (d) View 4 

Fig. 9. Few Results of Trajectory Estimation for Multiple Vehicle Object Tracking. 

The score of the various tracking parameters is depicted in 
Table V. Trajectory estimation done on the dataset is depicted 
in Fig. 9. It summarizes the movement of vehicles with 
direction information and maps the future state predictions. 

VI. CONCLUSION 

 This research developed from the standpoint of 
surveillance cameras, a dataset of vehicle objects and presented 
a technique for image restoration, object detection, and 
tracking for road traffic video scenes. The use of the GAN 
framework for picture restoration, as well as the GMM for road 
area extraction, resulted in a more effective detection system. 
The annotated road vehicle object dataset was used to train the 
SSMD object identification algorithm, which resulted in the 
development of an end-to-end vehicle detection model. The 
location of the object in the image being evaluated by the 
BEBLID feature extraction method based on results of the 
object detection technique and image data. The trajectory of the 
vehicle might thus be determined by tracking the binary 
characteristics of many objects. Lastly, the vehicle trajectories 
were examined to obtain information on the road traffic scene, 
such as driving direction as well as vehicle category and traffic 
density. Testing findings confirmed that suggested vehicle 
identification and tracking approach for road traffic scene has 
good performance and is practicable, as demonstrated by the 
outcomes of the experiments. The method described in this 
paper being low in cost and high in stability when compared to 
the traditional method of monitoring vehicle traffic by 
hardware. It also requires no large-scale construction or 
installation work on existing monitoring equipment, which is a 
significant advantage over the traditional method. 
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