
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

630 | P a g e

www.ijacsa.thesai.org

A Gray Box-based Approach to Automatic

Requirements Specification for a Robot Patrol System

Soojin Park

Graduate School of Management of Technology

Sogang University, Seoul, Korea

Abstract—The black box-based requirements specification

models representative by the use case model focus on specifying

system behaviors exposed outside. While these models are

sufficiently effective in specifying requirements for business

applications behavior, they are limited in specifying

requirements for embedded systems with relatively very short

interaction sequences with users. To solve this problem, we have

proposed a gray box-based requirements specification method to

specify the inner logic of an embedded system, including a tool

for automatic generation of requirements specification from

some analysis models in our previous work. This study proves the

benefits of the proposed software requirements specification

method by applying it to a robot patrol system and showing the

possibility of general use of the proposed method in the

embedded system domain. Compared with our previous work,

we enhance the tool for automatic generation of requirements

specification, called SpecGen, and prove the benefit of the

proposed method from multiple aspects. The application result

on the robot patrol system case is quantitatively demonstrating

that our proposed requirements specification method improves

development productivity and enhances overall software product

quality, including code quality.

Keywords—Embedded system; automatic requirement

specifications generation; mobile robots; use case specification

I. INTRODUCTION

Embedded software refers to software embedded in
various electronic products, from small appliances, including
mobile phones, digital cameras, and MP3s to robotics systems
[1]. Scenario-based specification techniques widely used in
business applications are often used in the requirements
specification for embedded software. The primary purpose of
the scenario-based specification technique represented by the
use case model [2] is to describe the interaction between the
system and the environment in which the system is used.
Business applications are realizing real-world business as
services supported by software systems. Hence, most required
behaviors of a business application can be captured from the
statements for specifying interactions between the user and the
system. Although the service provided by the embedded
system results from each event generated by the user, it cannot
be observable from the outside of the system which internal
action the system performs until the service result is derived.
In other words, requirements extractable from visible
interactions between an embedded system and environmental
factors in which it is used are relatively limited [3, 4].

Thus, when the requirements for an embedded system are
specified using a use-case model, the amount of information

identified in the requirements specification is insufficient as a
specification for developers [5]. As is shown in Fig. 1, for an
example of a generic flow of events for "Power On" use case
of an embedded system is specified as: (1) A user pushes the
power-on button to start the system; (2) The system is invoked
and waits for the user's other request. Such use case
specification is insufficient to be used as a requirements
specification to guide the development team designs the
embedded system. To overcome this lack of information when
the use-case model is applied to the embedded system
requirements specification, most existing studies [6-9] pre-
populate various design diagrams such as state, sequence,
class, or data flow diagrams .etc.

Even if we select a suitable design diagram to specify the
inner mechanism of exposed system behavior, we should
decide the depth of each design diagram. The deeper the depth
of the diagram, the more sophisticated the system's behavior
can be included in the requirements specification. We usually
face a "what versus how" dilemma [10] in specifying
requirements, which means a "how" in the preceding step
means again the "what" in a subsequent step. Over-elaborated
design diagrams in the requirement stage could violate the
definition of a requirement in that it specifies solutions, not
problems [11]. Furthermore, it can cause a raising initial
system development cost. The requirements model, which
includes the requirements set for embedded software
developers, should provide the interaction requirements
between the system's internal components. As the developers
could refine the interaction between components by digging
the depth, guidelines for the appropriate elaboration depth are
needed to obtain the necessary information in the requirements
stage.

Our previous work [12] proposed an extended
requirements specification model from use case specification
to satisfy these needs. The use case specification guides us to
maintain a view of the target system as a single black box [13]
when we specify requirements. In contrast, we named the
proposed model a "gray-box" based requirements specification
in the sense that it is a model based on a perspective that
partially looks at the interaction between top-level
components among interactions inside the embedded system.
It suggests the trade-off between the elaboration depth and the
effort to design interactions among internal components of an
embedded system when utilized as a requirements
specification.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

631 | P a g e

www.ijacsa.thesai.org

Fig. 1. Different Aspects of a Black Box-based Requirements Specification and a Gray Box-based Requirements Specifications.

The work reported here extends our previous work [12] in
the following aspect:

 To show the extensibility of the proposed model
through the application case of the more complex
embedded system. While the scope of the case study
was limited to a module of a mobile phone in [12], in
this study, we extend the applicable domain area of the
proposed model to the whole of a robot patrol system
that is a different domain from the previous work. To
prove the extensibility of the applicable area of the
model is to prove that the proposed gray box-based
requirements specification model can be a general
method to specify requirements of embedded systems,
not for only a specific system or domain.

 To prove the benefit of the proposed model using more
various aspects. The author in [12] explains the benefit
by showing that each elapsed time for the software
development phases following the requirements phase
is decreased when the proposed model is provided to
the developers. Besides the enhancement of the
productivity of developers, in this study, we show the
software product quality and the code quality are also
enhanced from using the proposed model through the
more sophisticatedly designed experiment.

 To update the automatic generation of the gray box-
based requirements specifications, which is renamed

SpecGen. We re-developed the tool for utilizing a more
prevalently used and better supported UML authoring
tool when developers make an analysis model that is the
source of the gray box-based requirements
specifications. This work could be valuable in helping
more developers use the proposed model and the
supporting tool.

The rest of the paper is organized as follows: Section 2
investigates the trend of existing studies. Section 3 gives an
overview of the gray box-based requirements specification
method. Section 4 explains an automatic transition from a
design diagram in UML to Microsoft Word typed tabular
specifications implemented in SpecGen. Section 5 shows each
step of requirements specification for a robot patrol system
and some fragments of the state diagram and automatically
generated specifications by SpecGen. Section 6 explains how
we designed an experiment for showing the effectiveness
using the proposed requirements specification model for the
robot patrol system and discusses the results of the
accomplished experiment. The conclusion of the paper is
discussed in Section 7.

II. RELATED WORK

A. Model-driven Development based Approaches

In embedded software development, model-driven
development (MDD) based approaches are now widely used.
MDD has the merit that developers can find the software's

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

632 | P a g e

www.ijacsa.thesai.org

essential features, thanks to information on the complicated
system structure as an abstracted model [14]. The most typical
MDD methods are the COMET method by H. Gamaa [15],
which integrates object-oriented and concurrent processing
concepts. The OCTOPUS method [16] models the system
using a structural, functional, and dynamic model.

The research that addresses the requirements specification
problems based on the model created by applying an MDD
based approach can be found in [17-19]. Lattemann and
Lehmann [17] define controller, actuator, and sensor as three
main components that comprise the embedded system and
suggest that the controller that controls the entire system
should be intensively specified among the three roles. Lavi
and Kudish [18] classify the model to be analyzed into the E-
level representing the external structure and behavior of the
system and the S-level representing the conceptual model of
the system inside. They suggest an automatic documentation
method for requirements specifications based on activity
diagrams and state diagrams for specification and analysis of
E-Level processes. Glinz [19] utilizes hierarchical activity
diagrams after the relation between system state and objects
that comprise the system with a source for the specification of
requirements in an embedded system is identified.

Existing works only refer to the necessity that the entire
system should be divided into lower systems. Each modeling
phase should be recursively applied for the requirement
specification of the embedded system. But there is no
guideline for stopping the recursion for the elaboration depth
of the model to be built. To solve this problem, we have
started this study from the work that defines the elaboration
depth of the analysis model for requirements specification,
which was ignored in the previous studies while preserving
their advantages.

B. Requirements Pattern-based Approaches

Another notable approach for requirements specification
for embedded systems is requirements pattern-based one.
Denger et al. [20] propose a natural language pattern to
specify requirements in the embedded systems, including 1)
meta models for the description of requirements and 2) meta-
models for events and responses that we use to verify the
completeness of the pattern language. The proposed patterns
seem slightly less common compared to commercial phrase
requirements. Matsuo et al. [21] use natural language
controlled for requirements, limiting how they can combine
simple sentences into more complex sentences. They proposed
three different types of frames: noun frame, case frame, and
feature frame, and they use the frames to parse requirement
specifications, and organize them according to different
perspectives, and verify requirement completeness. However,
there exists a limit that the frame-based approaches seem to be
more difficult for non-specialists to understand and apply.
Konrad and Cheng [22] define formal specification pattern
systems for embedded systems. These patterns are used to
describe system properties mapped to linear time logic.
Patterns are classified into qualitative (occurrence or order)
and real-time (period, periodic, or real-time) patterns. There is
a limit that we should specify the supporting model in a UML
12 variant. Postet al. [23] provide the successful application

case of this system to automotive requirements. However, the
application coverage is not complete.

A pattern is a set of solutions that are commonly
applicable to recurring problems. Therefore, the pattern-based
approach has an inherent limitation in the scope of its
application. This study is different from the pattern-based
approach in that it aims to develop a specification method
generally applicable to the embedded systems.

III. OVERVIEW OF GRAY BOX-BASED SOFTWARE

REQUIREMENTS SPECIFICATION MODEL

The proposed gray box-based software requirements
specification for embedded systems leverages partially
cultivated analysis artifacts. However, designing all aspects of
an embedded system is not proper in the requirements
specification phase, considering that software requirements
should focus on what services should be provided in the
future. Thus, we have limited the design area to the following
two diagrams to which the collaboration behavior between the
inner components is to be extracted:

A. Top-level State Diagram of a Controller

A state diagram that shows state changes in the system
corresponding to events occurring inside and outside the
system is a typical diagram used to design dynamic views of
the embedded system. Therefore, we selected it as the diagram
to specify the internal behavior of the system corresponding to
the event specified in the use case specification. After
choosing to use state diagrams as the source of the
requirements specification, another remaining issue was
identifying which component could represent the state
transition of a whole embedded system. A state of an entire
system is a specific situation where specific values are
assigned to all attributes of components comprising the
system. Therefore, the question, which component should
have the ownership of the state of a whole system is a
controversial issue. Referencing Broy and Stauner [24], we
have classified the roles of the main components in an
embedded system into controller, actuator, or sensor. Among
the three stereotypes of components, we defined the controller
coordinating behaviors of other actuators and sensors as the
component possessing the states of a whole system.

B. Sequence Diagrams Specifying Interactions of all Top

Leveled Components - Controllers, Sensors, and Actuators

The proposed model specifies events exchanged among
external subjects in a time sequence. As a flow of events in a
use case is reflected in a sequence diagram, each internal
interaction invoked by external stimuli from an actor is also
designed using a sequence diagram to keep the same context.
The owners of the events on the sequence diagram created in
this step are actors, controllers, and sensors/actuators (that
execute the controller's commands). The states in the top-
leveled state diagram of the controller are added as
annotations on the lifeline of the controller object in the
sequence diagram, as depicted in Fig. 2. In the next step, the
sequence diagram added state transitions of a whole embedded
system is the source of the automatically generated
requirements specification.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

633 | P a g e

www.ijacsa.thesai.org

Fig. 2. The Relationship of Information Specified in (a) A State Diagram of a Controller and (b) A Sequence Diagram for showing Interactions.

Fig. 3. The Coverage of Three different Requirements Specifications of the Proposed Gray Box-based Requirements Specification Model.

As shown in Fig. 3, once the two kinds of design diagrams
are completed by developers, the following three different
software requirements specifications can be automatically
generated.

 External Interaction Scenario Specification: specifies
the interaction between a system and an actor
corresponding to the system's external environment.
The information included in this specification is
equivalent to the information contained in the use case
diagram.

 Component Collaboration Specification: specifies the
state changes of a controller due to inter-component
interaction. The information included in this
specification contains state-related information included

in the state diagram for the component of the controller
that controls the actuator and sensor of the embedded
system. In addition, the information recorded in the
sequence diagram, which is the result of designing the
sequence of commands that the controller receives
external stimuli and sends commands to other actuators
and sensors, is extracted as this specification.

 Unit Component Specification: specifies the behaviors
to be implemented by a specific component. This
specification is written by classifying all operation calls
in the previously extracted component collaboration
specification by corresponding to the receiver and
binding them. These unit component specifications are
APIs for each class or component in the development
stage, in other words.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

634 | P a g e

www.ijacsa.thesai.org

Fig. 4. The Process to Build the Proposed Gray Box-based Software

Requirements Model.

Our proposed method does not exclude the steps of the
existing black-box requirement specification but includes
them. Fig. 4 illustrates each step to construct those
specifications. A context diagram and a use case model are
specified due to steps 1~3 in Fig. 4. A context diagram
represented by UML (Unified Modeling Language) shows
which users or interfacing systems are engaged to provide a
service in the target system. Specifying the context diagram is
not included in the general guidelines of the use case model.
However, embedded systems are literally "embedded" in a
hardware system. Thus, clear identification of external objects
that an embedded system should interface with is critical. We
also marked interface systems outside as actors in the context

diagram for consistency with the use case model. A use case
diagram that specifies the system's services is the same as a
typical use case diagram. Steps 4~5 are for developing a
design artifact, including a top-level state diagram of a
controller and sequence diagrams for specifying collaboration
between the controller and other sensors/actuators to respond
to each stimulus outside of an embedded system. The
following steps 6~8 are to automatically extract the three
specifications explained above from the designed diagrams
through steps 4~5. We also developed an automatic tool,
SpecGen, to support these steps. The requirements
specifications generated by SpecGen define the internal
behaviors of an embedded system, which will be utilized as a
guideline set for embedded system developers in the following
development phases.

IV. SPECGEN: A TOOL FOR AUTOMATIC GENERATION OF

REQUIREMENTS SPECIFICATION FROM DESIGN DIAGRAMS

One of the originalities of our work is to provide a tool for
top-leveled design artifacts to be transformed to requirements
specifications automatically. This feature is important from

three perspectives:

 In writing the requirements specification as a
development guideline for developers, the information
included in the design diagram created by the developer
or designer is linked without loss.

 Since most developers refer to automatically generated
requirements specifications and development proceeds,
as a result, it does not matter if very few members with
design ability use various UML diagrams in the
development team.

 And, the support of automated tools can minimize the
effort required to write requirements specifications in
hand.

Our previous study [12] utilized ArgoUML [25] as the
authoring tool for designing diagrams. In this study, we
changed the authoring tool to StarUML 4.0 [26] as ArgoUML
has not been versioned up. Fig. 5 shows a fragment of the
transformation from a UML diagram in StarUML to a
requirements specification as a Microsoft Word file by
SpecGen. For using SpecGen, the first step is to extract
diagrams authored using StarUML to an XMI file. To extract
needed information from the XMI file, we should understand
the structure of each object in the XMI file representing the
UML model extracted from StarUML. Although we can catch
the owner object of the first lifeline is "User" intuitively from
the given sequence diagram, we can find it out after tracing
several lines in the exported XMIs, as depicted in Fig. 5. It
depicts the example with the shortest trace selected due to
space constraints, but in some cases, the desired information is
extracted through a traverse of more than ten lines of XML.
Similarly, we analyzed all relevant XMI structures and
compared the attributes in each requirements specification we
defined. We implemented the transformation rules identified
as such with SpecGen.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

635 | P a g e

www.ijacsa.thesai.org

Fig. 5. A Fragment of the Transformation from a UML Diagram to a Requirements Specification by SpecGen.

V. CASE STUDY: AUTOMATIC REQUIREMENTS

SPECIFICATION FOR A ROBOT PATROL SYSTEM

We selected a robot patrol system (RPS) as a target system
to which the proposed requirement specification method is
applied. RPS is a robot system that provides a service by
sending out an alarm when an intruder is detected as it patrols
the designated section. The reason to choose a robot system as
a target system is that it is one of the typical system domains
requiring the three components - controller, sensor, and
actuator - in an embedded system as defined by Broy and
Stauner [24]. Whereas an operation given for a robot patrol
system is simple as "Keep patrolling here," many inner-sided
interactions invisible to users are required to patrol within an
area. These features are consistent with the feature of the
target domain area to which we apply the proposed method.

The followings are the results and explanations of each
step in Fig. 4 of the proposed model applied to RPS.

Step1: Identify the external interface of a system

Fig. 6(a) is the context diagram (level 0 data flow diagram)
to show the external interface of RPS. To keep the consistency
with the following use case diagram, we specify all external
entities as actors. The context diagram defines which entities

are the sources of data and which entities are the data
destinations. In RPS, whereas, User, SonarSensor, and
Encoder are the data sources, Speaker and WheelActuator are
the data destinations.

Step2: Identify functional requirements of the system

Fig. 6(b) is the use case diagram, which specifies
functional services be provided by the target system. The use
cases of RPS are: Patrol, Drive to a point, Notify location data,
Register the obstacle location, Set configuration. And, the
active actors that invoke a use case are the data source of the
context diagram. So, the active actors of RPS are User,
SonarSensor, and Encoder. The data sources of the context
diagram come to be passive actors being the systems to be
interfaced in the use case diagram. In RPS, Speaker and
WheelActuator are the passive actors.

Step 3: Specify use case descriptions

Table I shows the use case description of the "Patrol"
service. We select a tabular style, and most compartments of
the use case specification are specified, including pre-
conditions and post-conditions. There are one basic flow and
two alternative flows in the "Patrol" use case.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

636 | P a g e

www.ijacsa.thesai.org

(a) (b)

Fig. 6. Artifacts of Black Box-based Requirements Specification for Robot Patrol System: (a) Context Diagram and (b) Use Case Diagram.

TABLE I. ARTIFACTS OF BLACK BOX-BASED REQUIREMENTS SPECIFICATION FOR ROBOT PATROL SYSTEM: USE CASE SPECIFICATION FOR "PATROL"

Use Case Name Patrol

Actor User

Brief Description The robot patrols the area based on the range of user input.

Basic Flow
of Events

This use case begins when the user enters the destination range for patrol by GUI and gives the order to start.

[1] The robot patrolling system(RPS) saves the start and destination positions and switches direction to
 destination positions. And the RPS gives the start command to Wheel Actuator.

[2] The RPS reads the sensor values and identifies the intruder. If the intruder is detected, the flow goes to [A1].

[3] The RPS reads the current location and checks whether the RPS arrives at the destination.
 [3.1] If the robot arrives at the destination, give the stop command to Wheel Actuator, where the use case ends.

 [3.2] If the robot does not arrive at the destination, the flow goes to [2].

Alternative Flow 1

[A1] Intruder detection
[1] If the intruder is detected, the RPS gives a stop command to the Wheel Actuator.

[2] The RPS causes alarm bells through the speaker, at which point the use case ends.

Alternative Flow 2
[A2] User's stop command

If the user gives the order to stop at any time, the RPS gives a stop command to the Wheel Actuator, at which point the use case ends.

Exception Paths N/A

Extension Points N/A

Pre-conditions The RPS was initialized state. The robot's starting position is (0, 0). And the direction of the robot is assumed to be 90 degrees.

Post-conditions The RPS is the stationary state according to user instructions.

With the artifacts depicted in Fig. 6 and 7, we can see what
should be developed for the RPS. However, it does not
provide sufficient information to guide what should be
implemented because it defines only the interactions between
actors and the system. If only these artifacts are given to
developers, comparatively many decisions should be made by
individual developer's capability to realize the specified
requirements. If only these artifacts are provided to the
developer, the individual developers must make a relatively
large number of decisions, which could be a significant
burden. The burden to the developers comes from the lack of
details in requirements specification will be discussed in
Section 6 with experimental results.

Step 4: Analyze the state transitions of the controller

In an embedded system, various sensors and actuators are
equipped. However, only the controller has a meaningful state
in an embedded system during the system's execution as other

sensors or actuators are passive objects that receive
commanders from the controller. For this reason, the state
diagram of a controller should be created as a diagram
explaining the behaviors of a whole embedded system. Fig. 7
shows the top-level state diagram of PatrolSystemController,
which controls all other components in RPS. There are five
meaningful states while the PatrolSystemController runs: Idle,
Initialized, Patrolling, StoppedAtTheDestination,
StoppedByIntrution.

Step 5: Identify collaboration between inter-components

After analyzing the state transitions of the controller, the
next step is to identify collaboration between components.
According to the use case specification in Table I, there are a
basic flow and two alternative flows in the "Patrol" use case.
Fig. 8 is the sequence diagram for the scenario combining the
basic flow and alternative 2 (intruder detection). The one
different point comparing with typical sequence diagrams is
that the states are additionally annotated on the lifeline of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

637 | P a g e

www.ijacsa.thesai.org

controller. We can confirm that the four states- Idle,
Initialized, Patrolling, StoppedByIntrution – which are related
to the scenario, are annotated on the lifeline of the
PatrollSystemController in Fig. 8. The collaboration in Fig. 9
shows that PatrollSystemController controls the sequence of
messages to WheelActuatorIF, SonarSensorIF, and SpeakerIF,

identified as actors as external modules to interface in the use
case diagram. DirectionCalculator and IntrusionDetectionIF
newly identified in designing the sequence diagram are also
identified as the objects collaborating to provide the "Patrol"
service.

Fig. 7. The State Diagram for Patrol System Controller.

Fig. 8. The Sequence Diagram for the Scenario of the Composition of the Basic Flow and the Alternative Flow 2 in the "Patrol" use Case.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

638 | P a g e

www.ijacsa.thesai.org

Fig. 9. Information Transformation from the Sequence Diagram to Requirements Specification for "Detect Intrusion While Patrolling" Scenario in the Robot

Patrol System.

Unlike the general sequence diagram, one more thing to
note is that the operation connected to each message in the
sequencediagram must match the operation in the state
diagram designed earlier. The operations that appeared in the
state diagram and the state diagram are identical. As a result,
the sum of the sequence diagrams created as many times as
necessary contains all the information identified in the state
diagram. Thus, the source of automatic generation of
specifications through the following steps is the set of
sequence diagrams as the result of step 5.

When step 5 is completed, sequence diagrams are created
for each scenario combined based on the flow of events of the
use case. As described above, the sequence diagram guided by
the proposed model additionally specifies the controller's state
transition information in the timeline. Using SpecGen, three
additional requirement specifications are created through steps
6-8 based on the controller's state transition and the message
sequence information that the controller controls to perform
the scenario.

Step 6: Specify external interaction information

First, the contents of the external interaction scenario
specification described in Fig. 9(c) are the same as the
previous use case specification information. The external
interaction scenario specification table specifies the stimuli
and reactions between external actors and the whole system.
Fig. 10 shows the relationship between the diagram and the

automatically extracted and generated fragment of each
specification. For understanding, the matching information is
denoted by the same black-boxed number. The generated row
in Fig. 9(c) specifies that User invokes startPatrol (External
Stumilus) when the system is idle (Current State). Then,
UserIF, PatrolSystemController, DirectionCalculator,
WheelActuator-IF, SonarSensotIF, IntrusionDetectionIF,
SpeakerIF (Owner Component) collaborate each other. The
system's last reaction is to alarm (System Reaction), and the
final state is stopped by intrusion.

The specified content covers just a part of the "Patrol" use
case. Fig. 9(c) specifies the external interaction scenario
specification, including another scenario for the regular
patrolling without any intrusion.

Step 7: Specify inter-component collaboration information

The second specification is generated from the message
passing information in the sequence diagram. As annotated in
the sequence diagram, the state transitions of the controller are
also reflected in the inter-component collaboration
specification. It is extracted one-to-one from each message on
a sequence diagram. The first action to invoke each
collaboration starts at the message from GUI (Graphical User
Interface) object to the controller, not the message from an
actor already specified in the external interaction scenario
specification.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

639 | P a g e

www.ijacsa.thesai.org

Fig. 10. Comparison of the Experiment Results from Groups 1 and 2: (a) Elapsed Development Time, (b) The Number of Passed Test Cases, (c) The Number of

Harmful Symptoms in the Code from Static Analysis.

Fig. 9(d) shows the inter-component collaboration
specification for the "detect intrusion while patrolling"
sequence diagram. A user invokes the startPatrol event. And
then, the event makes UserIF trigger startPatrol message when
the controller's state is Idle. Fig. 9(d) captures the message
passing after the triggering according to the information in
Fig. 9(b). The state transition of the PatrolSystemController in
executing the "detect intrusion while patrolling" scenario is
depicted in the Transformed State column in the specification.
The state is transit from the Idle state to the states of
Initialized Patrolling Stopped by Intrusion in the
sequence.

Fig. 9(d) is the inter-component collaboration specification
for the "Patrol" use case that includes the messages extracted
from another sequence diagram for the regular patrolling
scenario, denoted by shading. The content of Fig. 9(d) could
be the key development specification for the developer in
charge of the "Patrol" use case.

Step 8: Specify development requirements for unit
components

The third specification automatically generated by
SpecGen is the unit component specification. SpecGen
classifies each message captured in the inter-component
collaboration specification according to the destination

component. For example, Fig. 9(e) is a table of the group of
messages - turnDirection, startWheel, stopWheel- of which
destination component is the same, WheelActuatorIF. The
table becomes the unit component specification of
WheelActuatorIF later if all of the other incoming messages to
WheelActuatorIF appeared in other sequence diagrams are
added. Fig. 9(e) is the completely generated unit component
specification for the WheelActuatorIF of RPS. In the case of
WheelActuatorIF, the extracted actions to implement the
scenario in Fig.10 are equivalent to the whole set of actions in
RPS. The three actions required to implement
WheelActuatorIF are the same as the APIs for WheelActuator,
which means that the developer in charge of the
WheelActuator should implement each action in the unit
component specification. And the other developers can
reference the specification when they need to call any actions
of WheelActuator.

VI. EVALUATION OF THE AUTOMATICALLY DESIGNED

REQUIREMENTS SPECIFICATION FOR A ROBOT PATROL SYSTEM

A. Experimental Design

To evaluate the effectiveness of the proposed requirements
specification method, we designed an experiment. The scope
of the experimental development is a basic flow and an
alternative flow of the "Patrol" use case, which is described in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

640 | P a g e

www.ijacsa.thesai.org

Table I. The participants of this experiment were 48 third or
fourth-year university students from a computer engineering
program, and they took the 8-week UML education course
before they participated in the experiment. So, they can be
classified as novice-level developers with more or fewer
experiences in software development. 4 to 5 of them created a
team.

Consequently, ten teams participated in this experiment.
We divided the ten teams into two subgroups, one of which
(group1) was given only the existing use case specification we
named as the black box-based specification. The other group
(group2) was given the artifact set of the provided
requirements specification method as the gray box-based
specification. The followings are the lists of the provided
requirements specification artifacts for the two groups:

 For group1: black box-based requirements specification

o Use case diagram

o Use case specifications

 For group2: gray box-based requirements specification
(black box-based requirements specification +
additional requirements specifications generated by
SpecGen)

o Use case diagram

o Use case specifications

o External interaction scenario specification

o Inter-component collaboration specification

o Unit component specification

The results we wanted to confirm through this experiment
and the corresponding measures we used were as follows:

 Enhancement of software development productivity:
We compared the development time by asking each
team to record each development phase's required time
on the PSP sheet (Personal Software Process) [27]. The
objective of the comparison is to confirm that the
automatically generated requirements specifications
from SpecGen contribute to decreasing embedded
software development time.

 Enhancement of software product quality: We have
defined 12 test cases for the given "Patrol" use case and
tested the result from ten teams according to the test
cases. And then, we compared the number of passed
test cases related to functional aspects by each group,
groups 1 and 2. We wanted to check if the provided
requirements specifications from SpecGen can help the
number of passed test cases increase.

 Enhancement of code quality: We expected that the
requirements specifications generated from SpecGen
contribute to enhancing the implemented code quality.
If our expectation is correct, the number of bad
symptoms from group 2 will be less than group 1. To
confirm the assumption, we used the static analysis tool,
Understand [28], to measure the number of bad

symptoms inherent in the implementation codes from
the two groups.

B. Experimental Results

 Enhancement of software development productivity:
According to the PSP record documented during the
two-week experimental development, the elapsed time
of group1 in each development phase was shorter than
group2. The teams' average total elapsed development
time in group1 and group2 to develop the same use
case, "Patrol," were 6,022 minutes and 3,950 minutes,
respectively. The development time of group1 is the
same as 66% of the elapsed time of group2.

As shown in Fig. 10(a), it is confirmed that group2
performed all steps, which are successive to the requirements
specification, in less time than group1. In particular, the time
taken for group2 to perform the design activity was less by
61% compared to group1. This decrease in development time
can be interpreted as the benefit of the additionally provided
requirements specifications generated by SpecGen, which
include the analysis model in the early stage.

On the other hand, in the test phase, the execution time of
group2 was less by only 8% compared to group1. In this
experiment, the teams accomplished only integration tests
since only a use case, "Patrol," was the development scope.

Since the use case specification is the exact requirements
artifact provided for both groups, there is little difference in
the information used for testing, so we can understand that
there is no significant difference in the time taken for testing.
To compare the time required for maintenance, we made the
same request to change the requirements for each team
belonging to both groups. The time to reflect the change
request to the implementation code and test the changed code
was measured as the maintenance time. As the teams in
group2 can utilize the component collaboration specification
generated from SpecGen, they took almost half the time of
group1.

To ascertain that the elapsed time declines do not come
from individual student's programming capabilities, we
performed a simple regression analysis to analyze the
correlation between the development time of each group and
individual grades in programming-related courses. As a result,
the R-Square value is 0.01, which explains no influence
between students' development time and individual
capabilities. Thus, the development time decline could be
interpreted as the benefit of the proposed software
requirements specifications.

 Enhancement of software product quality: We checked
the number of passed test cases without any detected
errors. The counted test cases are related to the
functional requirements of the RPS, and the total test
cases were 12. Fig. 10(b) shows that 7.2 test cases,
averagely, are passed through the test in the product of
group1. On the other hand, the average number of the
passed test case in group2 was 9.6. This result means
that compared with the development result of group1,
the development result of group2 satisfies the given
requirements by 33% more completely.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

641 | P a g e

www.ijacsa.thesai.org

 Enhancement of code quality: We used Understand, a
static analysis tool, to evaluate each group's quality of
source codes. As a result, the number of detected bad
symptoms of the source code implemented by group1
was 2.6 times larger than group2. The types of detected
errors were unused program units, unused variables and
parameters, unused objects, and uninitialized items, as
shown in Fig. 10(c). These errors can be risks in
software maintenance or reduce the efficiency of
memory utilization in the future. Moreover, there is a
wide variation in the number of detected errors
extracted from five individual teams in group1, from 5
to 130. These figures produce evidence that there was
no design guideline for developers (students), which
can cause the quality of source code to depend wholly
on individual developers' capability. On the other hand,
we found a comparatively slight variation, from 13 to
42, in the numbers of detected total errors from five
teams in group2. It shows that the proposed
requirements specifications helped developers in
group2 to construct uniformly qualified codes.

C. Comparison with Related Work

As proved by the experimental result, the proposed method
help enhance the productivity of embedded software
development and the quality of the product itself and
implementation code. We analyze that the enhancement comes
from providing (1) guidelines for the degree of detail for each
analysis diagram, (2) support of an automating tool for the
creation of specifications from the analysis diagrams, and
(3) the specification methods for each development phase.
Table II shows the results of comparing several related works
and this study, based on the satisfaction of the features as
mentioned above. Compared with that other related work [13,
18, 29, 30] limits providing guidelines for the degree of detail
for each diagram and supporting an automatic tool for the
proposed specification methods, Table II shows that this study
acquires originality by providing the critical features
mentioned above.

TABLE II. COMPARISON REQUIREMENT SPECIFICATION METHODS

 [13] [18] [29] [30] This Study

Guidelines for the degree

of detail for each diagram
X X X X O

Automatic creation of

specifications
X X X X O

Specification method for
each deployment phase

O O O X O

VII. CONCLUSION

This study presents a gray box-based software
requirements specification method for embedded system
domain and guidelines for constructing an analysis model in
the requirements phase, which can be a source of requirements
extraction. The case study on a robot patrol system
development demonstrates how the proposed guidelines are
realized during the analysis model development and which
information is documented as a requirements specification
from the analysis model. An experiment to show the

quantitative benefits of applying the proposed specification
method and the revised supporting tool is conducted. The
result of comparing this study and several related works based
on the critical success features that brought about the
enhancement demonstrated by the experimental results is also
discussed.

Compared with our previous study, the originalities in this
work could be captured in that:

 It proves the extensibility of the proposed gray box-
based approach to automatic requirements specification
by showing the result from applying it to the whole
system of a robot patrol system different from the case
study in the previous work. It shows that the proposed
model is not a solution dedicated to a specific domain.

 It shows the evaluation results of the proposed approach
with more various aspects. In addition to the decrease of
the elapsed time for the software development phases
after requirements, this study shows that the number of
passed test cases of the target system can be increased
by using the requirements specification automatically
generated by the SpecGen, an automating tool for
supporting the proposed model. Furthermore, the
evaluation result shows that the source code's detected
bad symptoms are decreased by a meaningful amount in
the development group using the proposed approach
compared with the other group not using it. All of the
findings were measured quantitatively on an actual
robot patrol system development, not a contrived
system only for an experiment, which can be one of the
originalities of our work.

 It provides more accessibility for embedded software
developers by utilizing a more popular open-source
UML authoring tool. In the previous work, the
automating tool runs with ArgoUML. But, ArgoUML is
not a widely used tool, and the upgrading is stopped. In
this work, we re-build the automating tool, SpecGen,
integrating with StarUML, one of the most popular
UML authoring tools. Thus, more developers who
already experienced StarUML can easily adopt
SpecGen in their development.

REFERENCES

[1] E. A. Lee, "What's ahead for embedded software?," Computer, vol. 33,
no. 9, pp. 18-26, 2000.

[2] G. Booch, J. Rumbaugh, and I. Jacobson, The unified modeling
language user guide, Pearson Education India, 2005.

[3] T. Pereira, F. Alencar, and J. Castro, "Requirements Engineering for
Embedded Systems: The REPES Process," in Proceedings of the 21st
Workshop on Requirements Engineering, 2018.

[4] S. Ernst, B. Tenbergen and K. Pohl, "Requirements engineering for
embedded systems: An investigation of industry needs," in Proceedings
of the Int. Working Conf. on Requirements Engineering: Foundation for
Software Quality, pp. 151-165, 2011.

[5] S. Ferg, "What's wrong with Use Cases?" Available at:
http://jacksonworkbench.co.uk/stevefergspages/papers/ferg--
whats_wrong_with_use_ cases.html (accessed 25/08/2021, 2021).

[6] P. Zave, "An Operational Approach to Requirements Specification for
Embedded Systems," IEEE Transactions on Software Engineering, vol.
SE-8, no. 3, pp. 250-269, 1982.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 9, 2021

642 | P a g e

www.ijacsa.thesai.org

[7] J. M. Thompson, M. P. E. Heimdahl, and S. P. Miller, "Specification-
Based Prototyping for Embedded Systems," in Proceedings of ACM
SIGSOFT Symposium on Foundations of Software Engineering 1999, pp.
163-179, 1999.

[8] J. Lavi, and J. Kudish, "Systems modeling & requirements specification
using ECSAM: an analysis method for embedded & computer-based
systems," Innovations in Systems and Software Engineering, vol.1,
pp.100-115, 2005.

[9] M. R. Sena Marques, E. Siegert, and L. Brisolara, "Integrating UML,
MARTE and SysML to improve requirements specification and
traceability in the embedded domain," in Proceedings of the 12th IEEE
International Conference on Industrial Informatics (INDIN), pp. 176-
181, 2014.

[10] L. Dean, and W. Don, Managing software requirements: A use case
approach, Addison-Wesley Professional, 2003.

[11] J. M. Nicholas, Project management for business and engineering:
Principles and practice, Elsevier, pp.121. 2004.

[12] S. Park, "Software requirement specification based on a gray box for
embedded systems: a case study of a mobile phone camera sensor
controller," Computers, vol. 8, no. 20, pp. 1-11, 2019.

[13] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth and J. D. Reese,
"Requirements specification for process-control systems," IEEE
Transactions on Software Engineering, vol. 20, no. 9, pp. 684-707, 1994.

[14] B. P. Douglass, Real-time UML : developing efficient objects for
embedded systems, Addison-Wesley Longman Ltd., 2000.

[15] H. Gomma, "Designing concurrent, distributed, and real-time
applications with UML," in Proceedings of the 28th International
Conference on Software Engineering, pp. 1059-1060, 2006.

[16] J. Marin, T. Blanco, and J. J. Marin, "Octopus: A Design Methodology
for Motion Capture Wearables," Sensors, vol. 17, no. 8, pp.1875, 2017.

[17] F. Lattemann, and E. Lehmann, "Methodological approach to the
requirement specification of embedded systems," in Proceedings of the
International Conference on Formal Engineering Methods(ICFEM), pp.
183-191, 1997.

[18] J. Z. Lavi, and J. Kudish, "Systems modeling & requirements
specification using ECSAM: a method for embedded computer-based
systems analysis," in Proceedings of the 11th IEEE International
Conference and Workshop on the Engineering of Computer-Based
Systems, pp. 2-11, 2004.

[19] M. Glinz, "Statecharts for requirements specification-as simple as
possible, as rich as needed," in Proceedings of the ICSE2002 workshop
on scenarios and state machines: models, algorithms, and tools, 2002.

[20] C. Denger, D. M. Berry, and E. Kamsties, "Higher Quality
Requirements Specifications through Natural Language Patterns," in
Proceedings of the 2003 IEEE International Conference on Software -
Science, Technology and Engineering, pp. 80-90, 2003.

[21] Y. Matsuo, K. Ogasawara, and A. Ohnishi, "Automatic Transformation
of Organization of Software Requirements Specifications," in
Proceedings of the 4th International Conference on Research
Challenges in Information Science, pp. 269-278, 2010.

[22] S. Konrad and B. H. C. Cheng, "Facilitating the Construction of
Specification Pattern-based Properties," in Proceedings of the 13th
International Conference on Requirements Engineering, pp. 329-338,
2005.

[23] A. Post, I. Menzel, and A. Podelski, "Applying Restricted English
Grammar on Automotive Requirements - Does it Work? A Case Study,"
in Proceedings of the Requirements Engineering: Foundation for
Software Quality, pp. 166-180, 2011.

[24] M. Broy, and T. Stauner, “Requirements engineering for embedded
systems,” Informationstechnik und Technische Informatik, vol. 41, pp.
7-11, 1999.

[25] ArgoUML. Available at: https://sourceforge.net/projects/argouml/
(accessed 25/08/2021, 2021).

[26] StarUML. Available at: https://staruml.io/ (accessed 25/08/2021, 2021).

[27] W. S. Humphrey, The Personal Software Process (sm), vol. 11, Carnegie
Mellon University, Software Engineering Institute, 2000.

[28] Understand. Available at: https://www.scitools.com/ (accessed
25/08/2021, 2021).

[29] F. Lattemann, and E. Lehmann, "A methodological approach to the
requirement specification of embedded systems, " in Proceedings of the
1st IEEE International Conference on Formal Engineering, pp.83-191,
1997.

[30] M. Glinz, "Statecharts for requirements specification-as simple as
possible, as rich as needed," in Proceedings of the 24th International
Conference on Software Engineering (ICSE 2002)Workshop: Scenarios
and state machines: models, algorithms, and tool, pp.1-6, 2002.

https://www.google.co.kr/search?tbo=p&tbm=bks&q=inauthor:%22John+M.+Nicholas%22&source=gbs_metadata_r&cad=8

