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Abstract—Proper functioning of the air compressor ensures 

stability for many critical systems. The ill-effect of the 

breakdown caused by the wear and tear in the system can be 

mitigated if there exists an effective automated fault classification 

system. Traditionally, the simulation-based methods help to 

extend to identify the faults; however, those systems are not so 

effective enough to build real-time adaptive methods for the fault 

detection and its type. This paper proposes an effective model for 

the fault classification in the air compressor based on the real-

time empirical acoustic sensor time-series data were taken on a 

sampling frequency of 50Khz. In the proposed work, the time-

series datais transformedinto the frequency domain using fast 

Fourier transforms,where half of the signals are considered due 

to its symmetric representation. Afterward, a masking operation 

is carried out to extract significant feature vectors fed to the 

multilayer perception neural network. The uniqueness of the 

proposed system is that it requires less trainable parameters, 

thus reduces the training time and imposes lower memory 

overhead. The model is benchmarked with performance metric 

accuracy, and it is found that the proposed masked feature set-

based MLP-ANN exhibits an accuracy of 91.32%. In contrast, 

the LSTM based fault classification model gives only 83.12% 

accuracy, takes more training time, and consumes more memory. 

Thus, the proposed model is realistic enough to be considered a 

real-time monitoring system of the fault and control. However, 

other performance metrics like precision, recall, and F1-Score 

are also promising with the LSTM based fault classifier. 

Keywords—Air-compressor; fault detection; LSTM; multi-layer 

perception; ANN; acoustic sensor data 

I. INTRODUCTION 

The air compressors (AC) play a significant role in 
essential functions like fuel injection and metal finishing in the 
aircraft's design [1]. The ACs are used widely in thermal plants 
[2], power generation systems [3], vehicle propulsion [4] and 
pipeline systems [5], etc. In building an effective quality 
control system, the compressor simulation plays an 
essentialrole in evaluating the tolerable pressure by the 
different components of the aircraft while in transit [6]. 
Specifically, the aircraft manufacturer depends on the very 
high quality of the compressors for every phase of the 

production for the operative success of the functions. Another 
important aspect is that the aircraft components thwart the 
contamination due to mixing the air with the lubricants in ACs. 
Fig. 1 demonstrates the common applications in aircraft ACs.In 
order to design the complete line of the product of anair 
compressor, a compress air system is used. Two main air 
compressors are widely used: i) Rotary screw AC, and 
ii) Reciprocating ACs used depending upon the application 
requirements. 

The automated fault classification (AFC) problem in 
compressors has attracted researchers to address the issues and 
build solution paradigms in the recent past so that early 
detection can minimize the damage caused to the overall 
system. The early warning systems are a step towards 
preventive maintenance [7], which is broadly classified into 
two categories,namely: i) maintenance on breakdown [8] and 
ii) condition-based maintenance (CBM) [9-10]. However, the 
CBMhas taken an edge over the maintenance on breakdown 
because the CBMperforms both the detection and seclusion of 
the faults that occurred in the early stage of the breakdown 
itself. The early and intelligent fault detection system [11] 
synchronizes with the conditions [12] of the various machine 
aspects dynamic changes in pressure, temperature, vibration, or 
acoustics [13]. Dhosi et al. [14] reviewed the correlation of 
vibrations and fault for various machines like pumps, turbines, 
and compressors. However, the most predominant 
measurement for fault detection is an acoustic signal.Some of 
the recent studies include the fault diagnosis in the planetary 
gearbox [15], Polak et al. [16], have highlighted the fault 
detection in the compressor, combustion engines using acoustic 
signals, last but not least, Ahmed et al. [17] reviews the use of 
acoustic measurement for the power unit fault detection in 
aircraft. 

This paper proposes fault classification in the air 
compressor based on the real-time empirical acoustic sensor 
data. However, the challenging point in designing such an 
intelligent fault detection system (IFDS) is to identify the 
sensitive points from where the signals are acquired, and that is 
performed by the mechanism of the sensitive point or position 
analysis (SPA) [18-19]. The raw data collected from all the 
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sensitive positions are exposed to various noises requiring 
appropriate denoising treatments [20]. The learning model does 
not take these de-noised data directly into its computing model. 
Therefore, the significant information representation of the 
acoustic signals using mathematical models plays a vital role in 
accuracy for both dimensionality reduction and predictor 
performance. Various representations of the signals, including 
time, frequency, and time & frequency domains, are found in 
the designing of the fault detection systems for pipeline 
leakage [21], mechanical compound fault [22], centrifugal 
compressor [23], and reciprocating compressor [24]. 
Theoretically, the detection probability and accuracy are 
assumed to be higher if more features are considered while 
designing the detection models [25]. However, in contrast, the 
machine learning-based model performances degrade with the 
higher number of features [26] due to ill-effect posed by high 
polynomiality complexities and approximation. 

Furthermore, this is handled by using an effective feature 
selection mechanism towards dimension reduction techniques 
like Partial least squares (PLS) used in the gas turbine's 
compressor blade [27]. Many other popular ones used in 
machines related faults detection systems are PCA [28], the 
variance of the ICA [29], etc. Moreover, there exist various 
types of faults which is trained to the model using these feature 
sets and many of the learning models as a function 
approximator such that if Yn represents all the feature set, then 
a function Fn emerge out as Fn(Yn)  C, where C is the class 
or the type of the faults. Popular learning models used in the 
fault classification in the machine are linear-SVM used for 
vehicle power systems [30], CNN for bearing fault 
classification [31], and LSTM for compressor valves [32]. 
Towards achieving better classification performance, this paper 
has presented an effective model for the fault-classification in 
the air compressor using a multilayer perceptron neural 
network that overcomes memory overhead, unlike Long Short 
Term Memory (LSTM) based approaches. The paper utilizes 
the autistic signal data prepared by Verma et al. [33] from 24 
sensor positions based on SPA from an air compressor. The 
entire process flow of this method is described in the respective 
sections in this paper as a snap-view given in Fig. 2. 

 

Fig. 1. Air Compressor Application in Aircraft. 

 

Fig. 2. Snap View of the Paper Organization. 

As mentioned in the above Fig. 2 the remaining part of the 
paper are organized as follows: Section II discusses the related 
work in the context of AC fault prediction, Section III presents 
dataset visualization and analysis; Section IV discusses the 
implementation of LSTM model; Section V discusses 
implementationof the proposed model based on MLP; 
Section VI presents the result and performance analysis of the 
proposed system and finally entire work of this paper is 
concluded in Section VII. 

II. REVIEW OF LITERATURE 

This section discusses the related work carried out towards 
air compressor fault prediction. In the existing literature, there 
are two kinds of approaches used to predict fault AC 
classification. The first one is the model-based approach, and 
the second is the data-driven approach [34]. The model-based 
approaches utilize mathematical modeling for machine life 
estimation and fault prediction [35-36]. In contrast, data-driven 
approaches are based on statistical analysis and soft computing 
approaches like machine learning, deep learning, and 
evolutionary. However, model-based approaches involve 
complicated procedures to describe attributes of the mechanical 
system [37]. Conditions of a mechanical system like air 
compressors can be analyzed by processing sensory data using 
data-driven and soft-computing approaches [38]. The work 
carried out by Ouadine et al. [39] has applied a neural network 
optimized using a genetic algorithm for predicting Aircraft 
AC-bearing fault. The dataset used in this study consists of 
vibratory signals captured from different bearings defects. The 
features are determined based on spectral density estimation, 
and prediction outcomes were compared with discriminant 
analysis classifier.Li et al. [40] introduced an intelligent fault 
detection system for mechanical rotating systems. The study 
uses a recurrent neural network (RNN) with fuzzy logic. The 
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RNN filters the input signal, and then the filtered signal is fed 
to fuzzy logic to detect faults. Ghorbanian and Gholamrezaei 
[41] investigated the application of different machine learning 
mechanisms in the context of analyzing performance 
compressors. The authors have utilized general regression 
neural (GRN) and MLP to simulate the performance of these 
models. The result indicated GRN is less associated with mean 
error and performed well with the experimental data but 
limited to interpolationfactor. On the other hand, MLP was 
evaluated, and the result indicated the most favorable outcome 
to analyze compressor performance.The work of Aravinth and 
Sugumaran [42] adopted a statistical feature extraction 
approach and random forest (RF) classifier to monitor and 
predict the fault in the AC to avoid regular failure in industrial 
and domestic applications. In this study,the accelerometer 
sensory signal is processed via a statistical approach, and RF is 
applied to detect the type of fault in AC.Fan et al. [43] have 
considered the case study of vehicle communication and 
presented their work on predicting AC breakdown using data 
streamed by the vehicles. The authors have used histogram 
analysis to model the signal. However, the histogram is a more 
straightforward approach that can determine the deviation in 
the signal to some extent. The study of Cui et al. [44] suggested 
an intelligent model for the early detection of faults in AC. The 
approach used in this study is based on the construction of an 
adaptive matrix based on the PCA and backpropagation 
techniques. This matrix is constructed to store the signals and 
determine a function of deviation in the signal pattern. 

Further, identify early fault signature, a threshold is 
computed based on the mechanism of the sliding statistical 
window method. Work towards evaluating trustworthiness and 
prediction reliability on the AC in the Ammonia Plantis 
considered by Musyafa et al. [45]. Chen et al. [46] presented an 
LSTM-oriented approach for classifying compressor 
breakdown using aggregated sensory data.The performance of 
the presented model is evaluated using information captured 
from large heavy-duty vehicles. The authors have formulated a 
classification task to identify whether a compressor fault will 
occur within the specified horizon. An LSTM learning model 
is used to predict, and its performance is evaluated against the 
RF classifier. The experimental outcome exhibited that RF 
slightly outperforms LSTM regarding AUC. However, the 
prediction outcome from LSTM shows stability over time, 
maintain stability in the trend of healthy faulty classification. 
Another work carried out in a similar direction by Yang et al. 
[47] suggested an AC fault classification mechanism using on 
lifting wavelet approach. Initially, this study has decomposed 
the vibration signal of the AC wavelet; and further statistical 
features of decomposition are computed as the AC faults. In 
the classification process,the probabilistic model-based 
supervised classifier is employed to predict the fault class. The 
study outcome suggested that faulty features determined using 
a wavelet-based approach provide comprehensive fault features 
that lead to higher accuracy by the supervised classifier. 

III. DATASET DESCRIPTION, EXPLORATION, AND 

VISUALIZATION 

This section describes the process of data creation, its 
description, and an exploratory analysis and Visualization that 
decides the line of research for the data presentation for the 
learning model to overcome the memory constraints of the 
traditionally applied LSTM based fault classification system 
for higher accuracy. 

A. Data Description 

The Department of Electrical engineering of the Indian 
Institute of Technology (IIT), Kanpur, India having an air 
compressor of the single-stage reciprocating type. An effort by 
Dr. N.K Verma and his team to provide an open-source dataset 
[33][34] on the following specification as in Table I. 

In the work of Verma et al. [33], all sensors, as in Fig. 3, 
records raw data every 5 seconds at the sampling rate of each 
sensor at 50 kHz and gets stored into the respective eight files 
as a structure shown in Fig. 3. 

A closer analysis of each record shows that it consists of 
precisely 225 'dat' files in all the folders. Since there are 24 
sensors at the sensitive points and an additional one sensor kept 
at a far distance to record the acoustic data at every 5 seconds, 
there are nine different timeslots; thus, as per Fig. 4, there are 9 
x 25 = 225 files for each fault. 

TABLE I. SPECIFICATIONS 

SI. No Specification Values 

1                    0-500     , 0-35 Kg     

2                    , 415V,    ,    ,        

3                      Pr-15,       100-213    

 

Fig. 3. A File Structure for the Data. 

 

Fig. 4. Time Slot for the Data Records from the Sensors. 
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TABLE II. CLASSES OF THE FAULT 

Sl. No Fault class Abbreviation 

1 Bearing fault BF 

2 Piston Ring fault PRF 

3 Flywheel fault FWF 

4 Rider Belt fault RBF 

5 Leakage Inlet Value fault LIVF 

6 Leakage Outlet Valve fault LOVF 

7 Non-Return Valve fault NRVF 

The raw data undergoes various pre-processing stages, 
including filtering to eliminate the undesirable frequency 
component using FIR filter at 400 Hz cut-off frequency (COF) 
threshold and low pass filter with COF of 12 kHz to obtain the 
valuable information.Further, clipping, smoothing, and 
normalization operations are performed to obtain the pre-
processed data. The operation for extracting the name of the 
fault classes is applied and as in Table II. Moreover, the fault 
class is categorized as seven faults classes and consists of the 
normal class. 

1) Bearing fault: Bearing fault in the compressor arises 

when there is malfunctioning in the bearings, which are meant 

to make the compressor wheels running smoothly. Either 

bearing may break or may get imbalanced due to wear and tear. 

Due to this, friction in the machine will increase, and noise will 

arise. 

2) Piston fault: Piston is the major part of the mechanism 

which converts rotatory motion into linear or vice versa. If 

there is a fault in the piston RPM of the entire machine may 

reduce. Moreover, due to this, the full sound of the machine 

will get less loud. 

3) Flywheel: Flywheel is the main storage of kinetic 

energy in any machine. The main source of rotary motionis its 

motor or IC engine, which may not provide continuous energy 

to the machine. Hence if there is a fault in the flywheel due to 

wear and tear, the wheel spins faster; however, it can store less 

kinetic energy. Since it spins faster, the frequency of the sound 

may increase. 

4) Leakage in inlet valve: This fault occurs when the inlet 

valve of the compressor leaks, the pressure in the cylinder also 

reduces significantly. The noise becomes lessloud since the 

compressor is no longer working at optimal efficiency. The 

speed of the piston will reduce, and the frequency of the noise 

also reduces. 

5) Leakage in outlet valve: Contrary to the previous 

problem, high frequency and loud noises will appear when the 

leakage is in the outlet valve. This is because the pressure in 

the cylinder and speed of the piston remains the same, but still, 

the air escapes from the outlet valve with high pressure. This 

causes extra noises of various frequencies to appear. 

6) NRV fault: NRV refers to a Non-return valve, which 

means that the valve will close when air tries to flow in the 

opposite direction. The fault arises when the air starts hitting 

the NRV valve in the opposite direction, which might be 

caused due to blockage or damage. In either case, there will be 

an impulsive load on the valve. This will induce noises of low 

frequency to appear along with the rest of the noises. 

All these faults including normal is encoded as 
{0,1,2,3,4,5,6,7}. In order to take the recording, typically, 
faults were inducted into the AC. Fig. 5 illustrates the 
placement of the 24 acoustic sensors (AS) setup at four typical 
locations as {top of the piston: 6, NRVF: 6, Opp. of NRV 
Side:6, Opp. Of FW Side: 6}, where 6  number of AS. 

B. Data Exploration and Visualization 

Initially, all the 225 data files stored into the respective 
directories are read and converted into the 2D vector of size 
50,000 x 1, as each file contains reading at every '1' sec at a 
50KHz sampling rate. The explicit procedure for this operation 
is as in algorithm 1. That can be understood using the flow 
chart in Fig. 6. 

Algorithm-1: 2D Vector representation of the processed data  

Input: C 

Output:P, R 

Start 

Initialize P, R 

for   fault_Dir   C 

fread(fault_Dir) 

for   file   fault_Dir 

Fnfjoin(fault_Dir, fault, file) 

Textfread(Fn) 

CSVfsplit(Text : ,) 

Vffloat(CSV) 

Append V P &faultR 

End 

End 

End 

    
Top Of Piston NRV Side Opp. of NRV Side Opp.of Flywheel Side 

Fig. 5. Position for the Sensitive Position Analysis on the different Sides of the Air Compressor. 
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Init P and R 

  

Split the text ß fsplit(Text : ,)

Convert values to float

Append values to P and R

End

for each fault_Dir ϵ C

 for ∀ ‘255’ file ϵ fault_Dir 

Obtain filename ß 
fjoin(fault_Dir, fault, file)

Read text ß fread(Fn)

 

 

Fig. 6. Process Flow of the 2D Data Representation of the Pre-process 

Sensor Data of Faults. 

In the process of this stage of the data representation, all the 
data stored into respective folders(fault_Dir)  , the main folder 
(C) are read.Then  '255' file   fault_Dir are read to obtain the 
file names (Fn) of the data by joining the strings: {fault_Dir, 
fault, and the file name.wav}, however when the 'Fn' is read, it 
is in the string format that gets converted into the comma-
separated string that gets converted into the number types as 
values(V). Further,the value and the fault are updated to the 
initialized prediction vector (P) and response (R). 

C. Signal Transformation 

This section presents the transformation of the time-domain 
signal into the frequency domain, as demonstrated in Fig. 7. 

The time-domain audio signal is transformed into the 
frequency domain using the numerical expression given in 
equation 1. 

 [ ]   ∑  [ ] 
      

    

 
   

            (1) 

Where  [ ]  refers to the frequency domain using fast 
Fourier transformation, N denotes samples per second 
(sampling frequency),  [        ,  [ ]  indicates samples 

in the time domain,  
    

 
   

 is the Euler's formula, and 

coefficient of e,
    

 
   denotes rotation, and finally, K 

indicates the amplitude of AS signal at a particular frequency. 

1) Time domain analysis: The time-domain signal 

represents variation in quantity concerning time as a waveform. 

The advantage of considering AS signals in the time domain 

are highlighted as follows: 

Advantages 

 Minor changes in the AS signaling pattern can be 
represented in the time domain. 

 If there is time-sensitive data, a particular noise 
occurring only in the first few seconds of the machine's 
starting can be represented in the time domain. 

 Phase shifts can be easily recognized in the time 
domain representation. 

However, even considering these advantages time domain 
may not be a suitable representation of the data since the 
readings are taken after sometime of the machine being started. 
In a mechanical system like AC, there are absolutely no 
changes of occurrences of phase shifts. Phase shifts occur only 
in electronic systems. In a complex machine-like AC, many 
types of audio signals are mixed. There may be sound coming 
from the main cylinder, sound from the flywheel, and minor 
sounds due to friction between moving parts. The 
disadvantages of AC signal analysis in the time domain are 
described as follows: 

Disadvantages 

 AC signals are captured at different frequencies and 
often change depending on the sampling frequency of 
the sensors. 

 Time-domain analysis may not be suitable to determine 
the fault accurately because of a high number of 
captured signal overlapping. 

 The ambient noises are removed in the adopted dataset 
[BP]. However, there are common sounds recorded by 
all the sensors, for example, the sound of the motor 
being captured by ASs since it transmits efficiently 
through the metal shell of the AC. 
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    (a) Bearing Fault-Time Domain               (b) Bearing Fault Frequency Domain 

   
    (c) LOV- Time Domain                 (d) LOV-Frequency Domain 

   
    (e) Flywheel-Time Domain             (f) Flywheel- Frequency Domain 

   
    (g) LIV-Time Domain.               (h) LIV-Frequency Domain 

Fig. 7. Represents the Acoustic Signals  Fault Classes in a Time Domain and Frequency Domain Such that AS   Fault Classes   Time-Domain = {7a, 7c, 7e, 

7g, 7i, 7k,7m,7o}, Whereas AS   Fault Classes   Frequency Domain = {7b, 7d, 7f, 7h, 7j, 7l,7n,7p}. 

2) Frequency domain analysis: The AS signals in the 

frequency domain represent the amplitude of the quantity over 

various frequencies. The signal in the frequency domain is 

called a spectrum. There are many advantages of representing 

AS signal in frequency domain described as follows: 

Advantages 

 Any frequency domain transformation works as a 
frequency un-mixer. 

 Easier to find out which instrument faults by looking at 
variations in the natural frequencies in the spectrum. 
For example, when there is a fault in the bearing, the 

friction increases and produces high-frequency noise 
from rubbing the metal pieces. So, the higher 
frequency noise becomes more dominant when there is 
a bearing fault present. Hence, such fault can be easily 
recognized. 

Disadvantages 

 In the frequency domain representing phase, shifts are 
quite challenging tasks. However, phase shits are not 
important in a mechanical system. 

Further, a descriptive statistical analysis is performed better 
to understand the overall data through the summarization 
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process and generate actionable information from the signal 
representation data. It provides ‘225 x 8 = 1800’ samples. 

Each has nine statistically significant computations 
belonging to a set {min, Q1, Q2, Q3, max, count, standard 
deviation, mean, fault-type}. Table III provides some random 
samples subset from the complete descriptions. 

The count of all the samples is 50,000, indicating that there 
is no need to work on the cleaning process as there are no 
missing values in the value point in the sample or data point. 

However, a better correlation is analyzed through the 
histogram of a sample for each fault type as shown in Fig. 8 
provides a better visual perception of the data pattern. 

TABLE III. A SUBSET OF A SAMPLE OF DESCRIPTIVE STATISTICAL ANALYSIS OF THE DATA 

Sample No count Min Q1 Q2 Q3 Max Std Dev. Mean Fault type 

0 50,000 -1.5920 -0.049589 0.049434 0.147045 1.3448 0.186775 0.048568 1 

1 50,000 -1.2099 -0.082617 0.034085 0.149682 1.2805 0.206034 0.032862 1 

2 50,000 -1.1444 -0.070414 0.059485 0.188635 1.1400 0.223090 0.058771 1 

3 50,000 -1.1913 -0.095192 0.045985 0.188565 1.1978 0.242442 0.044639 1 

4 50,000 -1.1168 -0.025945 0.082214 0.190672 1.2462 0.194634 0.080915 1 

… … … … … … … … … … 

1795 50,000 -1.3833 -0.105585 0.000489 0.107895 1.3087 0.192076 0.000854 8 

1796 50,000 -1.2674 -0.111110 0.002802 0.116820 1.3919 0.206447 0.003726 8 

1797 50,000 -1.5291 -0.052908 0.049118 0.155342 1.2516 0.194609 0.049839 8 

1798 50,000 -1.2897 -0.166673 -0.074163 0.019368 1.6754 0.167009 -0.074875 8 

1799 50,000 -1.4939 -0.075400 0.035780 0.148352 1.5342 0.204002 0.035833 8 

   
8 (a) Healthy 8(b) Flywheel 8 (c) LIV 

   
8 (d) LOV 8 (e) NRV 8 (f) PISTON 

  
8 (g) Ridger Belt 8(h) Bearing 

Fig. 8. Histogram Plot of a Sample Set of each Category of Fault. 
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As shown in Fig. 8, the amplitude ranges from a higher 
value to a lower value depending on the fault type. The 
histograms for the respective fault types, as in Fig. 8(a) to 
Fig. 8(h), indicates the repetitions of amplitudes with thecentral 
tendency of each curve to zero. However, Fig. 8(d) and 8(h) 
show multiple central tendencies with zero and a little higher 
peak in Bearing and a lower peak in the case of LOV fault. The 
detailed observatory description for the rest ofthe distribution is 
as below: 

 Flywheel: As it can be observed that the flywheel curve 
is wider compared to both above histograms. (When 
we call it wider, observe the x-axis. The curve is 
landing at -2,+2) due to this, it can be concluded that 
when there is a flywheel fault, the noise of a particular 
frequency from the machine gets louder. This is an 
important indicator. 

 LIV: It can be observed here that the noise will become 
less loud compared to normal operation. This is quite 
understandable since LIV stands for leakage in the inlet 
valve. Moreover, due to this, pressure will reduce, and 
the loudness of the machine will also reduce. 

 LOV: Contrary to the previous example, when there is 
a leakage in the outlet valve (LOV), it will induce 
another high-frequency noise. Upon closer inspection 
of the peak, there are two peak points present. The 
lower one is for the formal operation, and the higher 
one is for the noise. The air will escape with a much 
higher velocity from the outlet valve. Moreover, due to 
this, high-frequency noise is induced. 

 NRV: NRV or non-return valve occurs only when the 
air hits the NRV with the impulsive load. The purpose 
of NRV is to ensure the unidirectional flow of air. 
Except for this, the machine is in normal working 
condition. Hence, this is very similar to a normal 

operation. However, due to lack of pressure in output, 
some noises are not present. 

 PISTON: In this case, however, the outside piston is 
malfunctioning. Since both flywheel and piston are 
external components to the main turbine, this 
histogram looks very similar to flywheel fault. 

 Ridge Belt: Ridge belt is the belt connecting the 
flywheel to some machine tool or energy converter. If 
this is at fault similar effect of flywheel fault is 
produced in the case of acoustics. 

 Healthy: In a healthy air compressor, it can be observed 
that the central tendency of the KDE plot is little 
towards the positive side of the plot. This means that 
there is a very low-frequency noise is present when the 
compressor is working normally. This could be due to 
the rotation of the wheels and bearings. 

IV. LEARNING MODEL DESIGN USING LSTM 

LSTM is a specific Recurrent Neural Network (RNN) 
class, which is most suitable for predicting time-domain 
sequences and their long-term dependencies more accurately 
than ordinary machine learning models.RNN considers that the 
association amongcellsisformulated as a directed graph. The 
previous state of the cell may be recurrent, which gives the 
network the ability to "remember" the information. With this 
exclusive structure, RNN can make decisions based on 
previous output value and current Input. However, RNN 
encountered the issue of exploding andgradient vanishing 
during the training phase.LSTM has been conceptually 
designed to address the issue of vanishing and exploding 
gradients. The LSTM network has a unique structure called a 
cell (neuron), allowing it to control the flow of information in 
the network. The elementary unit structure of the LSTM cell is 
shown in Fig. 9. 
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Fig. 9. Basic Structure of LSTM Cell. 
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In Fig. 9, the basic structure of the LSTM cell is 
demonstrated that utilizes vector connection by different 
functions such as sigmoid ' 'and hyperbolic tangent ' ' with 
point-by-point addition '∑’ and multiplication ‘ ’ operations. 
The cell has knodes such as input nodes (    that takes input 
samples in the form of vector to the LSTM, activation-n 
(   shows the output of a node, the current short-term 

memory, or current state of cell (  ) where both {     }   
   , 

previous short-term memory (    ) indicates the previous state 
of cell and activation n-1 (     Shows the output of the 
previous node. Moreover, to have better control and memorize 
the flow of information, the LSTM cell utilizes gating 
mechanisms such as input gate   , forget gate  And the output 

gate  , where each cell gate such that {        }      . The    
utilizing    and      determines what value to use to decide the 
value of   . The operation of updating   by   gate numerically 
expressed as follows: 

     (   [       ]                  (1) 

  
    (   [       ]                  (2) 

Where, in equation (1)    denotes input gate of the cell at 

timestep ‘ ’ (occurrence of LSTM cell), the variable    and    
are the weights and bias of ‘ ’ sigmoid operation between    
and   . In equation (2)   

  denotes values of cell state 

generated by  , the variable    and    denotes weight and 
bias of   operation between    and   .The next    gate decides 
what information from      to be considered to update   . The 
operation of information flow by   the gate is numerically 
expressed as follows: 

     (   [       ]                  (3) 

Where, in equation (3)    denotes forget gate of the cell at 

‘ ’, the variable    and    are the weights and bias of ‘ ’ 
sigmoid operation between    and   . Using equations (1), (2), 
and (3), the operation of    can be numerically expressed as 
follows: 

       (           
             (4) 

Further, the    gate determines what information in    
become value of   . The operation of information flow by 
  the gate is numerically expressed as follows: 

     (   [       ]                  (5) 

         (                (6) 

Where, in equation (5)    denotes output gate of the cell at 

‘ ’, the variable    and    are the weights and bias of ‘ ’   . 
In equation (6)    denotes the output of LSTM network 
computed point-by-point multiplication of previous equation 
(5) and function   with the input argument  . In the proposed 
work, the task of compressor fault prediction using time-
domain AS signals is regarded as a sequence classification 
problem.Therefore, the proposed study explores implementinga 
deep learning mechanism, particularly LSTM, for large-scale 
time-domain AS signals modeling for fault prediction in 
AC.The proposed architecture learning model for AC fault 
classification is demonstrated in Fig. 10. 
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Fig. 10. LSTM Model for AC Fault Classification. 
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The architecture of the learning model consists of a total 
three-layer such as i) sequence input layer (I), ii) 5 hidden 
layers (H), and iii) one output layer (Y), such that learning 
model    {           } . Three hidden layers are 
configured with 1700 LSTM cells,and the remaining two 
hidden layers are dense with 158 (regular,deeply connected 
neurons). The configuration description of the LSTM learning 
model is presented in Table I. The learning model takes Input 
as time-domain sensory signals in sequence such that    
{                }where t denotes timestep,    length of 
time-domain signal samples x and maps to output class 
  {           }  via hidden layer   {           } 
using function     {       }, where functionf refers to the 
LSTM cell method discussed above that generalizes the long-
term dependence between the time domain relationship of the 
Input    signal. The LSTM is trained considering the Input 
  in the form of vectors using the sliding windowing (w) 
approach,where the Input is a sequence of time-domain signals 
with length L and w+1 window length. The process of window 
sliding is illustrated in Fig. 11 with window length (w=1000 
AS signal samples). 

In the above illustrated, the model takes Input as the first 
window having the first 1000 AS signal. Then, the next 
window is selected from the second signal sample of the first 
window, i.e., from the 2

nd
 sample to the 1001

st
 sample. This 

process is recurrent until all-time-domain input signals are 
windowed and fed to the LSTM model. The process flow of 
AC faults prediction using LSTM is shown in Fig. 12. 

The system initially imports the dataset, consistingof 1800 
AS signals captured at a 50,000 Hz sampling frequency. To 
execute the sequence classification tasks, splitting the dataset 
into two sub-datasets, i.e., training and testing sets. The 
training dataset is used to train the model, and the testing 
dataset is used to evaluate the model performance. This allows 
understanding characteristics of the trained model and provides 
scope for minimizing the effects of overfitting and underfitting 
of the model. The dataset split is carried out with a ratio of 

80%-20% for training and testing, respectively. Therefore, the 
training dataset consists of 1440 AS signal samples and a 
testing dataset composed of 360 AS signaling samples. The 
study further considers feature selection, where descriptive 
statistics were analyzed in the time domain. In the training 
phase, a sliding windowing operation is carried to represent AS 
signals into the fixed-sized frame, which is further processed 
via the LSTM layer. Its output is then accumulated with the 
operation of the dense layer that considers descriptive statistics 
as Input. 

The adoption of a dense layer enhances the generalization 
of the learning model minimizes the issue of overfitting and 
underfitting during the learning process. In the proposed LSTM 
architecture, Adam optimizer is used with a categorical cross-
entropy loss function to reduce training loss by adjusting 
learning attributes such as weights, biases, and learning rate. 
The configuration details of the LSTM model implemented in 
this study are mentioned in Table IV. Moreover, Softmax 
activation is used at the output layer of the LSTM model, as it 
is designed to address multiclass sequence classification 
problems (i.e., multiple AC faults). A similar procedure is 
carried out during model testing, and its effectiveness is 
assessed regarding the accuracy, precision, recall, and F1-
score. 

Fig. 13 illustrates the learning curve of the LSTM model 
training performance over 1000 epochs. As the epochs pass by, 
the reduction in learning also reducesin the LSTM. Generally, 
learning rate reduction happens when the error is not reducing 
for more than 5 epochs. The learning rate is reducing rapidly 
the error is not converging quickly enough in LSTM. It can 
beobserved thata sharp exponential decrease in learning rate in 
the LSTM model. When evaluated with the testing dataset, the 
model achieved an accuracy rate of 83.12% in AC fault 
classification. The following section discussed the proposed 
learning model based on a multilayer perceptron neural 
network. 
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Fig. 11. Process of Sliding Window. 
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Fig. 12. Illustration of the Process Flow of the LSTM for AC Fault Classification. 

TABLE IV. LSTM MODEL CONFIGURATION DETAILS 

Input layer 1 Fixed window length of 1000 AS signal 

LSTM layer 3 Specific to time-domain AS Signal  

Dense Layer 2 Specific to Descriptive Statistics 

Optimizer Adam Stochastic optimizer 

Activation for output Softmax Multiclass classification  

Loss Function  Categorical cross-entropy  Computesthe difference between two probability distributions 

Min Learning rate  10-5 Minimum permitted learning rate for reduce_lr 

Max Learning rate 10-3 Initial learning rate  

Epochs  1000 The optimal number of epochs for best generalization  
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Fig. 13. Learning Curve of LSTM. 

V. PROPOSED LEARNING MODEL USING MULTILAYER 

LAYER PERCEPTRON 

The neural network consists of an artificial neuron 
interconnected together by synaptic weights to form a network. 
Each neuron is modeled by the linear threshold unit, which 
maps single Input to single output using mathematical 
operation described as follows: 

   (∑        
                 (7) 

where  denotes the output of the neuron,    indicated 
synaptic weight,   {       } ,    is the Input   
{       }, and   indicates a threshold function. A non-linear 
  (x) can be a sigmoid function or a hyperbolic tangent 
function. 

Amultilayer perceptron (MLP)class of NN. In MLP, the 
signal travels only in a forward direction; numerically, it can be 
represented as follows: 

   (     )              (8) 

   (                    (9) 

where,  is an     vector refers to the output of the 
neurons at the output layer;  is a     vector, indicates the 
outputs of neurons at the hidden layer;   is an    vector, 
indicates the feature vector of the input signal;   and   arethe 

threshold vector for the neurons at the output and hidden 
respectively;the size of    is      and    is     ,  and   

are the matrices of size     and       respectively. Both 
refer to synaptic weights connecting the hidden layer neuron to 
the output and the Input and hidden layer neurons. The 
nonlinearity function to be a sigmoid function, i.e., 

 (   
 

                 (10) 

The unknown parameters  ,  ,   and    can be determined 

viareducing an error criterion such that: 

  ∑ (      
  

              (11) 

Where    indicates expected outputs which are required to 
MLP learn and   {       },   indicated a total number of 
instances. 

The proposed system implements MLP to classify 
frequency domain AS signals to predict AC faults because 
MLP can address complex non-linear problems. It works with 
both large and small input data and offers quick prediction after 
training. All these factors are highly significant to the real-time 
scenario. Although the LSTM is suitable for time sequence 
data prediction, it is prone to computational overhead and 
sometimes overfitting problems. The architecture of the 
proposed AC fault classification system using MLP is shown in 
Fig. 14. 

The MLP can perform better if the AS signal is better 
exposed to the MLP; as observed in the data exploration, the 
frequency of audio samples provides a better insight into AS 
signal representing the faults. Hence, in the proposed study, the 
frequency domain AS signal is used to train the MLP model to 
get better accuracy in classification fault classes. The proposed 
model is composed of two core modules such as i) Adaptive 
filter and ii) MLP module. Adaptive filter as a frequency 
domain bandpassfilter, also known as the digital filter,restricts 
some frequencies from being givenInput to MLP. The 
functional process of an implemented digital filter with MLP is 
shown in Fig. 15. 
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Fig. 14. Schematic Architecture of Proposed Learning Model. 
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Fig. 15. Synchronization of Frequency Domain Bandpass Digital Filter with MLP. 

In the real-time scenario, AS-generated signals often may 
associate with noisy environmental factors, consisting of 
recursive or redundant frequencies. Since the proposed 
learning model takes Input in the frequency domain, it is 
essential to ensure that the Input AS frequency domain signal 
does not associate with any irrelevant factors to achieve higher 
accuracy in the output (O/P). The implementation of adaptive 

digital filter  ̂ (n) restricts the irrelevant and redundant 
frequencies before it is being introduced to the MLP. As a 
result, reduction in the number of input frequency domain 
signal samples x(k) reduces computational complexity, thereby 
reducing feature space complexity by removing irrelevant 
frequency domain AS signaling features. The processed 

information by  ̂ (n) representing a precise input, which 
providesbetter generalization ability to the MLP in the training 
phase. The architecture of MLP for AC fault prediction is 
shown in Fig. 16. 

The MLP architecture proposed in the current study 
consists of the single input layer, with input frequency domain 

sensory signals such that    {            } each at 25000 
sampling frequency (Nyquist frequency) and mapped to output 
class   {           } at output layer via a hidden layer of 
type dense  {        }. Since the time domain AS signal 
is transformed into a frequency domain signal, the theoretical 
maximum frequency using FFT can be detected always half of 
the sampling frequency. In the current study, since AS signal 
sampling frequency is 50 KHz, after transforming to the 
frequency domain using FFT, Nyquist frequency is 25 KHz. In 
the proposed MLP architecture, a linear activation function is 
used at each hidden layer. In the output layer, SoftMax 
activation is used to deal with the prediction of multiclass AC 
faults. Therefore, the output layer contains only 8 neurons 
signifying 8 different outputs. The SoftMax function ensures 
the sum of all outputs is always 1; hence only the maximum 
output is selected as the final output with the help of argmax 
function. A common optimizer is used for both ANN as well as 
the filter. The optimizer sets the h(n),known as the filter's 
impulse response. Fig. 17 exhibits the Nyquist frequency 
sampling process. 
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Fig. 16. Architecture of Implemented MLP Model. 
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Fig. 17. Illustration of Nyquist Frequency Sampling. 

The process flow of AC faults prediction using MLP is 
shown in Fig. 18, where the system initially imports the 
dataset,consistingof 1800 AS signals captured at a 50,000 Hz 
sampling frequency. To execute the sequence classification 
task, splitting the dataset into two sub-datasets, i.e., training 
and testing sets. The training dataset is used to train the model, 
and the testing dataset is used to evaluate the model 
performance. The input AC signal is converted to the 
frequency domain using FFT. In this present study, since the 
sampling frequency is 50 KHz, using the 
Nyquistmechanism,the sampling frequency of AS signalis 
computed at 25 KHz, which is the theoretical maximum 
frequency of FFT. Next, descriptive statistics of frequency 

domain AS signalsare computed and processed with a domain 
bandpass adaptive filter. As a result, redundant frequencies 
from the given Input AS signals being restricted. The filtered 
AS signal is further fed to MLP, where training is carried out 
using linear activation functions at each dense layer. After 
training the model, the testing dataset is used to evaluate the 
model. Fig. 19 illustrates the learning curve of the MLP model 
training performance over 1000 epochs. 

In Fig. 19, the learning curve trend exhibits a reduction in 
learning rate is slower compared to LSTM. This indicates that 
the error reduces rapidly, and effective generalization of MLP. 
The next section discusses the performance metrics considered 
for the proposed learning model performance analysis. 
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Fig. 18. Illustration of the Process Flow of the MLP for AC Fault Classification. 

 

Fig. 19. Learning Curve of MLP. 
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VI. PERFORMANCE METRICS 

Both learning models' outcome and performance evaluation 
is carried out concerning multiple performance parameters 
such as accuracy, precision, recall, and F-1 score. 

Accuracy (A): Accuracy can be defined as the ratio of 
correct predictions over a total number of predictions. 
Therefore, in the current context of the case study, accuracy 
can be described as follows: 

   
                                          

                                 
 

Precision (P): Precision is the ratio of the number of correct 
predictions over a total number of predictions made to the 
current fault class. 

  
                                                      

                                          
 

Recall (R): Recall is the ratio of correctly predicted values 
over the number of expected faults, i.e., the total fault classes 
present in the test dataset. The lower recall represents the 
inability of the system to detect the particular class. Like 
precision, even for recall,the weighted average is taken. 

  
                                                      

                                          
 

F1 score: This performance metricdescribes the harmonic 
mean of precision and recall, which truly represents the 
system's performance. 

           (
                

                
) 

VII. RESULTS AND PERFORMANCE ANALYSIS 

This section presents the outcome obtained from both 
implemented learning model and performance analysis and 
discussesAir Compressor faults classification using acoustic 
sensor signals. The entire modelling and development of the 
proposed system are carried out using Python. 

A. Analysis of Learning Rate 

The comparative analysis concerning the learning rate 
reduction to access training performance of both LSTM and the 
proposed learning model. 

Fig. 20 presents a comparison of implemented LSTM and 
Proposed MLP regarding learning rate. It can be analyzed from 
the learning curve trend that at the beginning, the proposed 
MLP method takes a little longer time to reduce the learning 
rate compared to LSTM. However, the proposed MLP model 
maintains a significant reduction in error during its initial stage 
of the training process. This indicates that the proposed method 
has a better optimization in learning and generalization 
compared to LSTM. It is to be noted that the more the area 
between the curves better the improvement will be, and if the 
error in the training phase is not reduced for continuous five 
epochs, then the learning rate will reduce. The proposed 
model's learning rate is more, which signifies that the proposed 
MLP learns faster than the LSTM. 

 

Fig. 20. Comparative Analysis Regarding Learning Rate. 

B. Analysis of Classification Performance 

The performance analysis is carried out considering 
multiple evaluation metrics. This is because the system's 
accuracy is always not a good metric to measure performances, 
especially when using learning models. The accuracy may not 
represent the performance of the system completely. If the 
modelcorrectly predicts fault classes, it indicates a higher 
accuracy even if it cannot predict negative values. Therefore, 
performance evaluation of the implemented learning model, 
i.e., LSTM and the proposed MLP, is carried out considering 
other two evaluation metrics such as precision and recall rate. 
However, there is always a trade-off between precision and 
recall. This is because the precision focuses more on the 
exactness of the learning models.On the other hand, recall rate 
focuses more on measuring the completeness of the learning 
model. For example, suppose the model recognizes the air 
compressor as faulty. When there are no faults in the air 
compressor, it is said to have a lower precision rate, which 
indicates many false positives or biases in the air compression 
fault predictions. If the model has a higher precision score, then 
the model is subjected to a low false-positive rate. A low recall 
rate indicates higher false negatives, and a higher recall rate 
indicates low false negatives in the prediction result. Since the 
precision represents the correctness of positive results and 
recall represents the correctness of negative results, the model 
should be built to balance both. In order to measure the balance 
between precision and recall, the F1_score metric is evaluated, 
which shows the harmonic mean of precision and recall. The 
harmonic mean is used instead of the regular average since the 
harmonic mean reduces the effect of extreme values. Table V 
presents the numerical outcome obtained, followed by the 
graphical outcome in Fig. 21 to evaluate the implemented 
learning models. 

TABLE V. NUMERICAL OUTCOME 

Performance Metrics LSTM Proposed 

Accuracy 0.83123 0.913234 

Precision 0.863425 0.962342 

recall 0.815464 0.892342 

F1 score 0.838759 0.926021 
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Fig. 21. Comparative Analysis of Classification Outcome. 

In Fig. 21, the comparative analysis exhibits that the 
proposed learning model outperforms LSTM in all 
performance metrics. The LSTM achieved an accuracy rate of 
83.12%, whereas the proposed model achieved a 91.32% 
accuracy rate. In the case of precision metric, LSTM has 
scored 86.34%, and the proposed model has attained 96.23 % 
of the precision rate. The proposed model achieved an 89.23% 
recall rate, whereas LSTM achieved an 81.54% recall rate. 
Also, the proposed model has a higher F1_score than LSTM, 
i.e., 92.60% and 83.87, respectively. Based on the observation, 
it can be analyzed that the LSTM is biased to an extent towards 
the faulty results. This indeed came as no surprise since the 
data contains very few healthy signal samples than faulty 
signals. The proposed method also has a difference of 
approximately 7% between precision and recall. However, 
these are within acceptable limits, which indicates that the 
proposed model is better at detecting air compressor faults. 
However, even then, the system is more reliable when both 
precision and recall are balanced. 

VIII. CONCLUSION 

In the proposed work, the study aimed to predict different 
types of air compressor faults. The analysis was carried out 
using sensory signals captured from the Acoustic sensors 
mounted on the Air compressor. The proposed study carried 
out data visualization and exploratory analysis to characterize 
the signal features and faults in time and frequency domains. 
The proposed study is concerned with two aspects of the 
classification process: the first classification of air compressor 
faults using the LSTM learning model where the time-domain 
signal is used as input. On the other hand, the frequency-
domain signal is used with a digital filter in the proposed MLP 
learning model. The result indicated that the proposed learning 
model outperforms LSTM in accuracy, precision, recall rate, 
and F1_Score. The outcome shows 83.12% and 91.32% of 
accuracy achieved by LSTM and MLP, respectively. Also, the 
learning performance of both models is evaluated. The analysis 
exhibited that the proposed MLP has less training time 
compared to LSTM. Therefore, the proposed learning can be 
claimed to be efficient and suitable for real-time 

implementation. It has less training time, does not suffer from 
feature extraction problems, has less memory overhead, and 
has good generalization ability due to preciseness in the input 
signal leads to achieving higher accuracy. 
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