
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

Collision Resolution Techniques in Hash Table: A
Review

Ahmed Dalhatu Yusuf1, Saleh Abdullahi2, Moussa Mahamat Boukar3, Salisu Ibrahim Yusuf4
Nigerian Communications Commission1

Department of Computer Science, Nile University of Nigeria, Abuja, Nigeria2,3,4

Abstract—One of the major challenges of hashing is achieving
constant access time O(1) with an efficient memory space at a
high load factor environment when various keys generate the
same hash value or address. This problem causes a collision
in the hash table, to resolve the collision and achieve constant
access time O(1) researchers have proposed several methods of
handling collision most of which introduce a non-constant access
time complexity at a worst-case scenario. In this study, the worst
case of several proposed hashing collision resolution techniques
are analyzed based on their time complexity at a high load factor
environment, it was found that almost all the existing techniques
have a non-constant access time complexity. However, they all
require an additional computation for rehashing keys in a hash
table some of which is as a result of deadlock while iterating to
insert a key. It was also found out that there are wasted slots
in a hah table in all the reviewed techniques. Therefore, this
work, provides an in-depth understanding of collision resolution
techniques which can serve as an avenue for further research
work in the field.

Keywords—Hashing; collision resolution; hash table; hash
function; slot

I. INTRODUCTION

Hashing is a data structure for searching an element from
a collection with the primary goal of achieving a constant time
complexityO(1) [6], [7], [1]. It uses a hash function h(key)
to generate an address or a hash value of an element in a hash
table. A hash table is a collection of slots in memory defined
for storing a set of keys. A number of hashing techniques exist,
all of them use a hash function to identify an address of a key
in order to achieve constant access time both for insertion and
searching a key. However, In a situation where a hash function
h(key) generates the same address/hash value for more than
one key that introduces a collision in the hash table. The con-
straint of a hash table is only one element or key can be placed
in a single slot. Therefore, to resolve the collision researchers
have proposed several collision resolution techniques such as
probing techniques, double hashing, separate chaining, cuckoo
hashing etcetera for handling the colliding keys in the hash
table. A number of these techniques introduce a non-constant
time complexity in a high load factor environment.

Existing work on the hashing techniques generally focus
on security oriented hashing [23], applications of hashing [9],
[20], [8], and general comprehensive knowledge of hashing
techniques. However, in this work we focused on runtime
complexity of the existing technique and identifying the prob-
lems of the existing techniques so that a research gap will
be provided which can serve as an avenue to improve upon
collision resolution techniques. This is due to the importance

hashing demonstrated in insertion, searching, and matching
in many areas of computer [9], [8], [3]. In cryptography
such as password verification, message digest, and Rabin-Karp
algorithm. Therefore, a development in the area of hashing
will advance the efficiency of several applications across many
areas of computing.

In this work relevant proposed collision resolution tech-
niques in hash table were reviewed. Highlighting the hash
function employed in each method, how key is hashed into
a hash table, key retrieval strategies and costs based on worse-
case runtime complexity, alongside problems associated with
each existing technique and we also provided a research gap
in hashing technique for researchers to improve on.

II. RELATED WORK

The research effort of Lianhua et al [9] proffered the main
ideas on the prevailing hashing techniques for various “data
and applications”, it investigated the similarities and robustness
of each technique in the two categories demonstrated in their
work: data-situated and security-situated hashing and also
present a brief application domain that requires hashing. The
work was conducted due to an increase in the volume of data
generated every day from diverse areas such as social network
activities, daily transactions in the business domain, data from
IoT applications, and other numerous domains. This increment
of data has led to significant issues in analyzing and processing
data and hashing strategy has been an efficient approach for
fast data access for decennaries. The techniques and applica-
tions reviewed in their work have shown the positive impact
hashing has on the performance of various applications such
as networking, image classification, text classification and thus
makes it an interesting area of study in order to make real-
world applications very efficient.

The work of Tom [15] Indicated that several algorithms are
implemented using dictionary complex type that most high-
level programming comes with. This dictionary type could be
implemented in several ways with a different data structure.
However, a study has shown that for better lookup perfor-
mance it should be implemented with a hash table. Python
dictionary takes advantage of that, it uses a hash table with
open addressing [30]. But the problem with that is whenever
a collision occurs probing method has to happen. Therefore,
In an environment where the collision is high then the lookup
performance reduces. The trivial method is to use chainning
for dictionary implementation.

Abhay [20] presented a technique that minimized the mem-
ory space used in implementing the hash table by compressing

www.ijacsa.thesai.org 757 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

the key for data-item in the hash table. The hash value h(key)
can be generated by any hash function and subsequently, the
compressed value is generated to mapped the input key.

Sailesh et al [8] proposed a technique that try to achieve
constant time for retrieving keys at high load factor envi-
ronment and memory minify bandwidth in high-performance
networking subsystem. The method uses a hash table with
many multiple logical chunks given a key n likely slot in
memory. An item will be mapped with h(k), which inserted
the key in the search space U in the scope of the chunked
subscripts of the hash tables, i.e. h: U = {0, 1, ..., |U | − 1},
where |U | is the length of the chunked hash table. An item
can be inserted in a bucket h(k) in any of the chunked hash
tables. In the event where all the chunked buckets for h(k) are
not empty then a collision is inevitable.

Yuanyuan et al [4] improved upon open address cuckoo
hashing by overcoming the problem of an infinite loop at a time
of insertion, which reduces the efficiency of query processing.
They proposed a better technique called SmartCuckoo, which
presents the relationship of hashing using directed pseudo
forest and uses it subsequently to indict element placement for
the correct determination of the existence of an infinite loop.
SmartCuckoo can also predict insertion failure without going
through some probing steps. However, in some environment
the prediction might not be accurate. Therefore, there is still a
change for an infinite loop. The work has been implemented
on a “cloud storage system” the source code has been released
for public users.

Peter et al [12] presented an approach for resolving col-
lision in one-dimensional array. The technique concatenated
(dot (.)) the key and the h(k) and insert it in the first empty
bucket in the hash table. For example, in a hash table of size
7, h(23) = 23 mod 7, will be placed 2.23 at the first available
cell in the hash table. Searching an element in this technique
is linear O(n), hence the h(k) will not help in locating the key
from the hash table.

Randomized hashing was proposed by Shai et al [11] as
a process that takes a message and returns a hash value of
the message that can be used in digital signature without any
modification in traditional hash function such as SHA. The
objective of their work is to free “digital signature schemes”
from their dependence on collision contention.

A. Collision Resolution Strategies

The circumstance where a hash value calculated using a
hash function matches with another hash value that is already
involved within the hash table is named as collision [24]. To
place all the colliding keys in the hash table that could be
achieved using a method called collision resolution. Collision
resolution refers to a situation when two items hash to the
same slot, and a systematic method must be used to insert the
second item in another slot in the hash table. An example of
collision is described in Fig. 1.

1) Open Addressing: is a technique that resolve colliding
keys in the hash table by looking for an empty slot using
some sequence of probing techniques to find a new slot for an
element that caused the collision [28]. This hash table has a
probe sequence which is usually in the form: (h(k) = [h(k) +

Fig. 1. Example of Collision [9].

c(i) mod n, for i=0,1,..,n-1) where h is the hash function and
n is the size of the hash table. The function c(i) is required
to iterate through n-1.

The probe sequence method include the following:

• Linear probing, in this method if a collision occurs
it resolve it by finding the next empty slot in the
hash table and place a key. To search a key say y,
the approach is to look for it in a hash table starting
with an index of h(y) and continue to the next slot in
the hash table i.e. h(y)+1, h(y)+2, ..., until an empty
slot is reached or a slot whose content is y. If an empty
slot is reached then the key is not in the hash table. The
problem with this method is clustering, (likelihood of
one collision causing neighbouring bucket collision)
at a high load factor which degrades its performance
[25]. The method was founded by “Gene, Elaine and
Samuel” [26].

• Quadratic probing, is another open addressing colli-
sion resolution method in which the interval to place
a key if collision occur is quadratic i.e h(key) +
12, h(key) + 22, ..., h(key) + n2. This technique con-
siders better than open addressing with linear probing
since it keeps away from the problem of clustering,
even though it is not resistant to it [19]. The major
problem with this method is finding an empty bucket
is challenging when the hash table is > 59% full [27].

• Double hashing, this method resolve a collision by
using another hash function to determine the interval
to insert a key. For instance given, two different
hash functions hx and hy , the position i of key in
the hash table of size |n| slots is; hx(key) + i ∗
hy(key)%|n|for i = 1, ..., n − 1, where hx and
hy ∈ ∪ = {ha, hb, ..., hz} [29].

The work of Benjamin et al. [10] demonstrated the usage
and efficiency of open addressing with quadratic probing to
handle collision in communication between applications that
use different communication design, computation, and data
structures. For example, data can be distributed to many pro-
cesses but each process will carry different tasks independently
on the data. The work offered a Berkeley Container Library
BCL; a cross-platform data structure library for a “one-sided
communication” environment for parallel applications. The
BCL is composed in C++ programming and its data structures
phase are intended to be sans coordination, utilizing one-
sided communication primitives that can be executed utilizing
RDMA equipment while not requiring coordination with re-
mote CPUs. Along these lines, BCL is steady with the soul

www.ijacsa.thesai.org 758 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

of Partitioned Global Address Space GAS language, however
profferer efficient add and search operations in the hash table,
instead of reading and read operation of PGAS languages. BCL
provides a central data structure for all the processes and can
be used by each process in a parallel program.

2) Separate Chaining: This strategy uses a collection of
nodes known as a linked list or list data structure to resolve
the colliding keys in the hash table whenever a collision occurs
as described in Fig. 2. In a high load factor environment this
method provide a non-constant time complexity of O(n) for
inserting and retrieving a key from the hash table and tends
to cause problem of tracking linked list [5]. However, another
method invented by Dhar et al. [16] provide better performance
from O(1+n) to O(logn). The technique uses a binary search
tree to chain a collide key rather than using a list or linked list
which reduces the time for searching a key. The problem of
this method is an additional cost of balancing BST when the
inserted keys cause a skewed binary tree.

Fig. 2. Separate Chaining using Linked list [12].

3) Coalesced Hashing: is approach takes advantage of two
different collision resolution techniques to handle collision in
a hash table, an open addressing and chaining. It uses similar
insertion procedure as open addressing to insert an element
in the hash table using h(k) mod n. When a collision occurs
at i position in the hash table, coalesced hashing resolve it
similar to separate chaining by inserting the key that causes
the collision in the first empty slot from the bottom of the
hash table i.e. for (i ¡ n, i ¡=0, i–) where i is an index and n
is the size of the hash table. It then chains the colliding key
original hash value to hash value the colliding key is inserted
using a pointer instead of creating a linked list like separated
chaining. It minimizes space usage but constant time lookup
is not achievable at a high load factor like an open addressing
and separate chaining [2]. Any open addressing method can
be used to identify a position to insert a key that collides in
coalesced hashing.

4) Cuckoo Hashing: This is another open addressing
technique that was first introduced in 2004 by “Flemming and
Rasmus” [13]. The method is ubiquitous and uses in an array
of real-life applications [14], [17], [18], [21]. It uses two or
more hash functions to insert key to slot in a hash table,
which means any key in U = {k1, k2... kn} can be in more
than one slot. Any key can also be relocated to another slot
in the hash table. Insert a key has a number of hash function
options say, h1(k) and h2(k). Relocation of a key can be done
if h1(k) and h2(k). are not free for insertion. This problem can
be overcome by relocating an existing key to a new slot using
another h(k) and supersede the new key into relocating key

position hashing. If the relocating key h(k) is not empty, then
repeat relocating key supersede another key until the method
gets a free slot. In a situation it iterates through the hash table
without resolving the problem, all the keys will be rehashed
with different h(k). N number of rehashes might be conducted
in order for cuckcoo to achieve. However, “MinCounter”
technique presented in [22] reduced the number of rehashing
by superseding a new key with a rarely accessed key to
address collision in a hash table instead of superseding any
random key. Each slot in a MinCounter method has a counter
variable that keeps track of the number relocation that occurs
at a slot. To insert a new key it checks the counter variable
and inserts it into a slot with a minimum value rather than
iterating through the hash tables for an empty slot to place a
key. In a situation of insertion failure, a key is placed in the
“memory cache” to avoid rehashing. “MinCounter” provides
better performance for inserting and query response in cloud
services. The structure of this algorithm is described in Fig.
3.

Fig. 3. Example of MinCounter Hashing Technique [22].

Jeyaraj et al [14] research effort improve the performance
of eliminating duplicate fingerprint date in data duplication
method for a backup system using cuckoo hashing. The
approach in the work is implemented with two tables Ti and
Tj . To insert a new fingerprint. We use fp to denote fingerprint,
It will check; if Ti[h(fp)] = fp then it will skip the insertion.
Else it checks; if Ti[hi(fp)] = NULL then; Ti[hi(fp)] = fp
else; if Ti[hi(fp)] ̸= NULL then check; if Tj [hj(fp)] =
NULL then; Tj [hj(fp)] = fp It continue with normal cuckoo
process until all the available fingerprint are distributed into
the two hash table depending on the when cuckoo succeed.
The research work also support parallel insertion into the
hash tables which gives the technique a better throughput and
minimises memory space compare to [5] but add cost for
inserting a key similar to techniques in [28], [10], [2], [13].

III. RESEARCH GAP

Hashing is indeed a very important algorithm that depicted
interest from many areas of storage systems. It must be
efficient for retrieving an element at all times and the memory
space should be utilized efficiently due to the limited nature of
the storage system. The worse-case time complexity, mapping
method, key retrieval approach and problem of most of the
important techniques is shown in Table I. Reviewed research
efforts above tried to use hashing in various domains to

www.ijacsa.thesai.org 759 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

TABLE I. SUMMARY OF SOME OF THE IMPORTANT REVIEWED HASH COLLISION RESOLUTION TECHNIQUES

Technique Mapping Lookup Problem Time complexity of lookup
& mapping (worst-case)

Linear probing [26] x←
h(key) mod n, i←

0 while (x ̸=
NULL){ i←

i+1, x← x+i mod n}
insert ’key’ at x position.
Where n is the size of the

hash table.

x←
h(key) mod n, i←

0 while (x <
n){if(x = key) print
’Key found’ break loop
i← i + 1, x← x +

i mod n if(x = NULL)
print ’Key doesn’t exist’

break loop}.

• Clustering
problem

• Wasted slot(s)
• Rehashing

O(n), O(n)

Quadratic probing [19] This works similar to
linear probing but move in
quadratic form to resolve a

collision. x←
h(key) mod n, i←

0 while (x ̸=
NULL){ i← i +

1, x← x + i2 mod n}
insert ‘key’ at x position.
Where n is the size of the

hash table.

x←
h(key) mod n, i←

0 while (x <
n){if(x = key) print
‘Key found’ break loop

i← i + 1, x←
x + i2 mod n if(x =
NULL) print ‘Key
doesn’t exist’ break

loop}.

• This technique
keeps away
from clustering
problem
although is
not resistant to
it.

• Wasted slot(s)
• Rehashing
• Finding empty

slot if hash
table is > 59%
occupied is
challenging.

O(n), O(n)

Double hashing [29] This technique uses two
different hash functions

hx and hy , the position i
of key in the hash table

of size |n| slots is;
hx(key) + i ∗
hy(key)%|n|for

i = 1, ..., n− 1, where
hx and hy ∈ ∪ =
{ha, hb, ..., hz}

i← 0, x←
hx(key), y ← hy(key)

while(T [(x+i∗y)mod n] ̸= key){

if(T [(x+i∗y)mod n] = −1){

print “key does not exist”
break} i← i + 1 } print

”Key found”

• Wasted slot(s)
• Rehashing

O(n), O(n)

Coalesced hashing [2] x←
h(key) mod n, i←

n while (x ̸=
NULL AND i >
−1){ i← i− 1, x←
x + i mod n} insert

‘key’ at x position then
set a pointer from the

colliding position. Where
n is the size of the hash

table.

x←
h(key) mod n, i←

n while (x <
n AND i >

−1){if(x = key) print
‘Key found’ break loop
i← i− 1, x← x +

i mod n if(x = NULL)
print ‘Key doesn’t exist’

break loop}.

• Wasted slot(s)
• Rehashing

O(n), O(n)

Cuckoo hashing [13] This method uses two hash
tables (T1 & T2) and two
hash functions h1(key)

& h2(key)).
h1(key) = key mod n

and h2(key) =
(key/n) mod n. if
(T1[h1(key) =

key OR T2[h2(key) =
key]]) print “Key already

exist” else while(true){
key swap T1[h1(key)]
if key = NULL key
swap T2[h2(key)] if

key = NULL} rehash
all keys then try inserting

the key.

Similarly, retrieve a key
uses the two hash tables
(T1 & T2) and two hash

functions h1(key) &
h2(key)).

h1(key) = key mod n
and h2(key) =

(key/n) mod n. if
(T1[h1(key) =

key OR T2[h2(key) =
key]]) print “Key already
exist” else print “Key does

not exist”

• Wasted slots
• Rehashing
• High cost of

insertion which
could lead to
deadlock

O(1), O(n)

Separate chaining with linked list hashing [5] This method uses
h(key) mod n to insert
a key like linear probing.
But resolve the colliding
keys by using linked list.

if (h(key) mod n) =
key print “Key found”

else{ p← head
while(p ̸= NULL AND
p.info ̸= key){ access
p.info p = p.link }

• Wasted slots
• Rehashing

O(n), O(n)

Separate chaining with binary search tree hashing [16] This works similar to
separate chaining with a
linked list but it resolve
collision using a binary
search tree. The time

complexity for searching a
key from a binary search

tree is O(log n).

node← start while
(node ̸= NULL){

if(key[node] = key)
return y else if

key[node] < key then
node← right[node] else
node← left[node] }
print “Key not found”.

Where start is the root
node.

• Wasted slots
• Rehashing
• Computation

for balancing
skew tree

O(log n), O(log n)

www.ijacsa.thesai.org 760 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

improve the performance of retrieving, matching, and inserting
data. However, these existing collision resolution techniques
both have their pros and cons. In this work we identified three
major issues of the current techniques mention below:

Issues I, All the existing technique mentioned reviewed in
this work suggested using prime number as a size of a hash
table |T |, usually in form:

s = (x× |key|)

|T | = > p(s)

where > p, means next prime number of s and x > 1.0.
The problem with this method it creates a wasted slot in the
hash table and in that case it does not achieve the goal of
the hashing that is primarily designed to utiliaze minimum
amount of memory to store data, which is less than the
amount to store the actual data [26].

Theorem: For n arbitrary set of keys K to hash into a
hash table T

|T | = > p{x× |K|} ⇒ ∃wastedSlot ∈ T

Proof: Consider a set of positive integers K = {k1, k2, ..., kn}
to hash into a hash table

|T | = > p(x× |K|)

Let I
|K|
i=1 =

(
i++ if h(ki)→T
i=i+0 else

)
h(ki) = ki mod |T |

|T | > |K|

So, after mapping kn into T, I will be equal to |K|
Therefore, wastedSlot = |T | − I

Issues II, Rehashing is a problem with all the existing
techniques, which has to be done whenever there is an ad-
ditional element to hash as a result of determining the size
of hash table described in issues I and also when a certain
threshold is reached which was considered to be set for some
hashing technique like, double hashing technique [29]. For any
arbitrary key is map into T

K = {k1, k2, ..., kn} → T [0, 1, ...,m− 1]

Every ith location of a key is determine with:

h(key) mod |T |

Therefore, any change in |T | all the element need to be
remapped into T:

h(key) → T using h(key) mod |Tnew|

Issues III, The better performance technique among the re-
viewed works is cuckoo hashing, which has a time complexity
of O(1) to search for an element but has a deadlock problem
which is a result of a high number of relocations before
inserting an element. To resolve this problem of deadlock
entire rehashing of the keys has to be done which is quite
time-consuming and not efficient. It also has a high amount of
wasted slots compare to other reviewed technique this because
it uses two hash tables.

IV. CONCLUSION

In conclusion, this work reviewed a number of different
collision resolution techniques in the hash table. These tech-
niques were employed in many areas of computer science
such as IP address lookup, job balancing, security, etc. The
time complexity for inserting and retrieving an element of all
the collision resolution techniques was identified. However, we
found that achieving constant access time with a good insertion
performance is still challenging with all the current collision
resolution techniques. This work provided runtime complexity
and the major problems associated with the existing collision
resolution techniques which can serve as an avenue for further
research in the field. Here, the analysis was based on worse-
case time complexity of the respective algorithms. However,
other future research should consider other different aspect of
algorithm analysis such as space complexity and most suitable
conditions with respect to input size through mathematical
notation or simulation.

ACKNOWLEDGMENT

I will like to express my gratitude to my parents for their
advice and support. Many thanks goes to Nile University of
Nigeria for the 90% financial support opportunity provided to
carryout this work.

REFERENCES

[1] Black, Paul E. ”DADS: The On-Line Dictionary of Algorithms and Data
Structures,” NIST: Gaithersburg, MD, USA, 2020.

[2] Sriram, Ranjena, et al. ”Efficient Data Cleaning Algorithm and Swift
Unique User Identification Algorithm Using Coalesced Hashing and
Binary Search Techniques for Web Usage Mining,” International Journal
of Pure and Applied Mathematics 118.18, 2018.

[3] Brenton Lessley and Hank Childs. ”Data-Parallel Hashing Techniques
for GPU Architectures,” IEEE Transactions on Parallel and Distributed
Systems Volume: 31, Issue: 1, 2020.

[4] Sun, Yuanyuan, et al. ”SmartCuckoo: a fast and cost-efficient hashing
index scheme for cloud storage systems.” 2017 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 17). 2017.

[5] Brad Miller, David Ranum. ”Problem Solving with Algorithms and Data
Structures,” 2013

[6] Necaise, Rance D. ”Data structures and algorithms using Python,” Wiley
Publishing, 2010.

[7] Cormen, Thomas H., et al. Introduction to algorithms. MIT press, 2009.
[8] Sailesh Kumar, Patrick Crowley. ”Segmented Hash: An Efficient Hash

Table Implementation for High Performance Networking Subsystems,”
2005 Symposium on Architectures for Networking and Communications
Systems (ANCS), 2005.

[9] Lianhua Chi, Xingquan Zhu. ”Hashing techniques: A survey and taxon-
omy,” ACM Computing Surveys, Vol. 50, No. 1, Article 11, 2017.

[10] Brock, Benjamin, Ayd?n Buluc, and Katherine Yelick. ”BCL: A cross-
platform distributed data structures library,” Proceedings of the 48th
International Conference on Parallel Processing. 2019.

[11] Halevi, Shai, and Hugo Krawczyk. ”Strengthening digital signatures
via randomized hashing,” Annual International Cryptology Conference.
Springer, Berlin, Heidelberg, 2006.

[12] Nimbe, Peter, Samuel Ofori Frimpong, and Michael Opoku. ”An
efficient strategy for collision resolution in hash tables,” International
Journal of Computer Applications 99.10, 2014.

[13] Pagh, Rasmus, Flemming Friche Rodler. ”Cuckoo hashing,” Journal of
Algorithms 51.2, 2004.

[14] Jane Rubel A. Jeyaraj, Sundarakantham Kambaraj and Velmurugan
Dharmarajan. ”High-speed data deduplication using Parallelized Cuckoo
Hashing,” Turkish Journal of Electrical Engineering & Computer Sci-
ences 2018

www.ijacsa.thesai.org 761 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

[15] Van Dijk, Tom. ”Analysing and improving hash table performance,”
10th Twente Student Conference on IT. University of Twente, Faculty of
Electrical Engineering and Computer Science, 2009.

[16] Dhar, Siddharth, et al. ”A tree based approach to improve traditional
collision avoidance mechanisms of hashing.” 2017 International Confer-
ence on Inventive Computing and Informatics (ICICI). IEEE, 2017.

[17] Debnath, Biplob K., Sudipta Sengupta, and Jin Li. ”ChunkStash: Speed-
ing Up Inline Storage Deduplication Using Flash Memory,” USENIX
annual technical conference, 2010.

[18] A. Kirsch and M. Mitzenmacher, ”The power of one move: Hashing
schemes for hardware,” IEEE/ACM Transactions on Networking, vol. 18,
no. 6, pp. 1752?1765, 2010.

[19] Konheim, Alan G. ”Hashing in computer science: Fifty years of slicing
and dicing,” John Wiley & Sons, 2010.

[20] Abhay Kulkarni. ”Efficient Hash Table Key Storage,” Avago Technolo-
gies International Sales Pte . Limited, Singapore (SG), 2019.

[21] Y. Hua, B. Xiao, and X. Liu. ”Nest: Locality-aware approximate query
service for cloud computing,” Proceedings of the 32nd IEEE International
Conference on Computer Communications(INFOCOM), pp. 1327-1335,
2013.

[22] Sun, Yuanyuan, et al. ”MinCounter: An efficient cuckoo hashing scheme
for cloud storage systems,” 2015 31st Symposium on Mass Storage
Systems and Technologies (MSST). IEEE, 2015.

[23] Arvind K. Sharma ; S.K. Mittal. ”Cryptography & Network Secu-
rity Hash Function Applications, Attacks and Advances: A Review,”.
2019 Third International Conference on Inventive Systems and Control
(ICISC), 2019

[24] Joux, Antoine. ”Multicollisions in iterated hash functions. Application
to cascaded constructions.” Annual International Cryptology Conference.
Springer, Berlin, Heidelberg, 2004.

[25] Goodrich, Michael T., and Roberto Tamassia. ”Algorithm design and
applications,” Hoboken: Wiley, 2015.

[26] Knuth, Donald E. ”Sorting and searching (6. printing, newly updated
and rev. ed.). Boston [ua].” 2000

[27] Weiss, Mark Allen, ”Data Structures and Algorithm Analysis in C++,”
Pearson Education. ISBN 978-81-317-1474-4, 2009.

[28] Agrawal, Anand, Sriram Bhyravarapu, and Nuthalapati Venkata Krishna
Chaitanya. ”Matrix hashing with two level of collision resolution.” 2018
8th International Conference on Cloud Computing, Data Science &
Engineering (Confluence). IEEE, 2018.

[29] Phillip G.Bradford and Michael N. Katehakis, ”A Probabilistic Study on
Combinatorial Expanders and Hashing”, SIAM Journal on Computing,
37 (1): 83-111, doi:10.1137/S009753970444630X, 2017

[30] Kumar, Arun, and Supriya P. Panda. ”A survey: how python pitches
in IT-world.” 2019 International Conference on Machine Learning, Big
Data, Cloud and Parallel Computing (COMITCon). IEEE, 2019.

www.ijacsa.thesai.org 762 | P a g e

