
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

Effective Service Discovery based on Pertinence
Probabilities Learning

Mohammed Merzoug, Abdelhak Etchiali, Fethallah Hadjila, Amina Bekkouche
Computer Science Department

Abou Bekr Belkaid University of Tlemcen
B.P. 119 Faculty of Sciences, Tlemcen, Algeria

Abstract—Web service discovery is one of the most motivating
issues of service-oriented computing field. Several approaches
have been proposed to tackle this problem. In general, they
leverage similarity measures or logic-based reasoning to perform
this task, but they still present some limitations in terms of
effectiveness. In this paper, we propose a probabilistic-based
approach to merge a set of matching algorithms and boost the
global performance. The key idea consists of learning a set
of relevance probabilities; thereafter, we use them to produce
a combined ranking. The conducted experiments on the real
world dataset “OWL-S TC 2” demonstrate the effectiveness
of our model in terms of mean averaged precision (MAP);
more specifically, our solution, termed “probabilistic fusion”,
outperforms all the state of the art matchmakers as well as the
most prominent similarity measures.

Keywords—Service-oriented computing; web service discovery;
rank aggregation; probabilistic fusion

I. INTRODUCTION

The web service technology is actually involved in many
applications, such as business processes management and
recommendation systems [1]

Thanks to its modularity, composability and loose coupling,
this technology is largely utilized in data integration and
applications’ composition. To ensure these objectives, one has
to discover and rank the services that best meet her/ his needs.
According to [2], the service discovery can defined as follows:

Given a web service repository, and a query request-
ing a service (hereafter service query), finding auto-
matically a service from the repository that matches
these requirements is the web service discovery
problem. Only those services that: 1) produce at least
the requested output parameters that satisfy the post-
conditions, 2) use only part of the provided input
parameters that satisfy the pre-conditions, and 3)
produce the same side effects can be valid solutions
to the query.

Several approaches have been proposed in the literature
for tackling the web service discovery problem [3]. Based on
the works of [4], [5], we distinguish three types of discovery
approaches: logic-based reasoning methods, non logic-based
techniques (i.e. similarity measures, graph matching, datamin-
ing, etc.) and hybrid techniques which merge the logic and
the non logic solutions. Despite the progress made in this
field, much remains to be done to achieve an acceptable rate
of performance. For instance, the logic-based approaches are
often characterized by a poor recall rate (Since the underlying

semantic of service interfaces can be implicit and not captured
by the ontologies) [4]. On the other hand, the similarity mea-
sures do not have the same performance; in addition, the choice
of the most relevant similarity is not obvious and generally
it depends on the actual user’s request. Furthermore, a lot of
similarity measures may have hyper-parameters (e.g. the fuzzy
similarity proposed in [6]) that need to be adjusted for the
search; therefore, arbitrary initialization of these parameters is
inappropriate and may entail misleading results. Consequently,
we must utilize both types of matching algorithms to enhance
the discovery performance. In this line of thought, the creation
of a hybrid matching algorithm must address the following
concerns:

1) How to solve the ordering conflicts entailed by the
individual matching algorithms (for instance an al-
gorithm may conclude that service S1 is better than
service S2, while another may decide that S2 is better
than S1)?

2) How to infer the most suitable matching algorithm
for each user’s request, and exploit this knowledge in
the fused scheme?

3) How to boost both recall and precision, while pre-
serving a tolerable execution time?

In this paper, we handle the aforementioned difficulties, by
adopting machine learning and the theory of probability as a
clue for combining the individual matching algorithms.

More specifically, given the m rankings provided by the
m matching algorithms (or similarity measures), our machine
learning algorithm derives a global ranking by calculating a
fusion score for each service Si; this score is weighted sum
of the scores (denoted as scoreij where j is the identifier of
a matching algorithm) provided by the matching algorithms.
Each scoreij represents the probability that Si is relevant to
the current request; the more the value of scoreij is high,
the better the fusion score of Si. With this fusion scheme,
we can answer the abovementioned concerns. In particular,
the ordering conflicts are resolved using the weighted sum
(which can be considered as weighted vote). Additionally, the
most suitable matching algorithms are those that have a higher
weight and a higher value of scoreij (see equation 22). These
heuristic will ensure a good performance in terms of recall
and precision. Moreover, if we assume that the m matching
algorithms are independent and have a precision equal to p
(where p >= 0.5), then according to the theorem of jury [7],
a majority voting method (or a weighted voting method) will
achieve a precision higher than p. In summary, our proposed
solution is can be described as follows:

www.ijacsa.thesai.org 799 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

First, we divide each individual ranking into a set of
segments. Second, for each segment, we compute its prob-
ability of relevance (i.e the probability of having a relevant
segment member with respect to the current request). Third,
we aggregate the aforementioned probabilities through a linear
formula. To choose the ideal number of segments (ns) used in
the second step, we perform a cross-validity that evaluate the
mean averaged precision of the proposed model.

The remainder of the paper is organized as follows. In
Section II, we review the state of the art. We formally define
the problem in Section III. Section IV presents the probabilistic
fusion algorithm. The results of the experimental study and
threads to validity are presented in Section V. Finally, Section
VI concludes the paper.

II. STATE OF THE ART

The web service discovery has received much attention
in the recent years. In general, we discern three types of
web service matchmaking approaches: logic matchmaking, non
logic matchmaking and hybrid matchmaking [5], [3], [8].

A. Logic-based Matchmaking

The first category of matchning leverages pure logic rea-
soning, more precisely, the matchmaking utilizes the consis-
tency tests or subsumption mechanisms to decide whether a
relationship exists between the user request and the advertised
service [9].

The work by [10] presents an automatic location of services
(ALS) that allows for discerning five magnitudes of matching
degrees (Match, ParMatch, PossMatch, NoMatch and PossPar-
Match).

In [11], the authors enhance the framework proposed in
[10]; in particular, they add additional magnitudes of matching
degree such as:

• RelationMatch: The advertised service does not meet
the required outputs, but it offers outputs having a
relation with them.

• ExcessMatch: The advertised service meets all the
required outputs, but it offers supplementary outputs
that are not needed by the user.

A logical matching framework is presented in [9]; this latter
architecture takes into account almost all functional properties,
including inputs, outputs, preconditions, and effects (IOPE).

-The major weakness of logic-based approaches are the
high rate of false positives and false negatives [4].

In addition, the theoretical complexity of subsumption test
is Pspace-complete or exp-time complete for certain portions
of description logics [12].

B. Non-logic-based Matchmaking

Based on the fact that the aforementioned pitfalls discour-
age the research in this type of matchmaking, some scholars
have developed a new type of solutions. These techniques [13]
mainly leverage graph matching, data-mining, combinatorial
optimization, and probabilistic matching.

The framework proposed by [8] matches the user’s request
against the OWL-S using the parameters of service name,
service input, and service output. These attributes are first
filtered using the part of speech (POS) procedure to eliminate
the Stop Words, Special Characters, Numbers, and Uncat-
egorized nouns. Then, the resulting terms are disambiguated
using the Wordnet directory. At the end, these terms are
matched using a Wordnet based similarity measure.

A new redescription of services is presented in [14].
The main idea consists of using dischlit probability
distributions[15] and clustering [16] to provide a latent factor-
based specification of services.

The iMatcher1 framework presented in [17] leverages the
service profile to perform a syntactic matching of services ;
more specifically, it uses four distance functions to match the
request and the services (Term Frequency-Inverse Document
Frequency [18], the Levenshtein similarity distance [19], the
Cosine vector measurement [20], and the divergence measure-
ment of Jensen-Shannon [21]).

In [22], the authors utilize fuzzy sets and rule based
systems to tackle the web service discovery and selection
problem. More specifically, the proposed work matches both
capability attributes (functional aspect) and context attributes
(non-functional aspect).

The work by [23] presents a collective dominance function
to handle the QoS preferences of a set of users. This function
is more flexible and enables the controle of the size of the
service skylines.

In [24], the authors tackle the discovery of services. While
taking into account the dynamic QoS properties. In particular,
they leverage statistical time series to model the QoS fluctua-
tions.

The work in [25] defines a composition framework by
means of integration with fine-grained I/O service discovery
that enables the generation of a graph-based composition
which contains the set of services that are semantically relevant
for an input-output request. The proposed framework also
includes an optimal composition search algorithm to extract
the best composition.

The work of [26] compare the semantic discovery ap-
proaches according to several criteria, such as interface type
(e.g. OWL-S, WSMO), the scalability, the request expansion,
the adopted similarity measure and the use of natural language
processing.

The work by [27] proposes a two-stage discovery approach:
an offline phase and an online phase. The input of the offline
phase is a set of categorized services (most of the existing
registries ensure this categorization (e.g. Programmable Web)).
Each service is represented as a set of service goals. A
service goal is a triple constituted of a verb, a core noun and
optional parameters (such as adjectives and non-core nouns).
The ensemble of service goals extracted from all services
of each category are clustered into groups using K-means
algorithm and Wordnet-based similarity measure.

In the online phase, the nearest category (with respect
to the request) is retained and thereafter the user’s request
is expanded using the service goal clusters of the previous

www.ijacsa.thesai.org 800 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

category. At the end, the services of the target category are
matched against the expanded query.

C. Hybrid Matchmaking

The third class aggregates the former categories in order to
enhance the search quality. There are several ways for merging
the aforementioned types: either by using machine learning or
heuristics to tune the weights of the matching algorithms, or
by using social choice theory to fuse the input rankings, or
by leveraging probabilistic / fuzzy relationships to ensure the
same purpose.

The most simple heuristic for merging a set of individual
matching algorithms is to associate a fixed rank t (or priority)
to each matching function.

The OWLS-MX framework [28] matches the in-
puts/outputs attributes of service profiles. This system pro-
poses seven levels of matching degree (Plug-in, Subsumes
and Subsumed-By) and hybrid matching (Logic-based Fail and
Nearest-neighbor).

The work by [29] introduces a matchmaker for SAWSDL-
based services. The approach leverages both subsumption test
and information retrieval models for pairing the request and
the advertised services.

The ISEM framework [5] is a hybrid matching approach
that combines both the OWLS-MX3 filters and SVM-based
learning for discovering services.

Merzoug and al. [3], fuse five matching algorithms (i.e.
similarity measures) using a fuzzy dominance relationship
[30].

In [31] the authors develop three probabilistic functions for
searching and ranking web services. Each function involves
multiple matching algorithms (logic, textual similarities, etc.).

In the same work [31], the authors show a comparative
evaluation which involves several voting models, such as
CombSUM, CombMNZ [32], Borda-fuse model [33], and
outranking model [34]. According to the experiments, the
CombMNZ system is better than the other voting models, but
it is less effective than some individual matching algorithms
(such as information loss).

In [35], the authors adapt also the Condorcet fuse model
[36] to the service discovery problem. More specifically, they
compare the partial scores provided by the individual matching
functions through a fuzzified version of the dominance rela-
tionship [6]. The preliminary results show that the proposed
approach largely outperforms the individual algorithms. How-
ever, the results can be largely boosted if a smart parameter
tuning is performed.

In [37], the authors introduce a new context-based solution
based on QoS (Quality of Service) exploiting both functional
and non-functional user’s requirements and providing the user
ability to control and proceed with the discovery of web
services, i.e. the main aim of this work is to locate the
appropriate web service correspondence with the context of
the user.

In [38], the authors propose a multi-criteria decision
method (MCDM) for searching web services based on con-
textual attributes (e.g. location, language, and size of screen).

TABLE I. EXAMPLES OF PARTIAL MATCHING SCORES OF SERVICES

Services Parameter f1 Services Parameter f2

A scorein 0.78 B scorein 0.86
scoreout 0.84 scoreout 0.80
mean 0.81 mean 0.83

B scorein 0.76 A scorein 0.86
scoreout 0.80 scoreout 0.78
mean 0.78 mean 0.82

C scorein 0.78 C scorein 0.74
scoreout 0.60 scoreout 0.62
mean 0.69 mean 0.68

Since the standard similarity measures (such as Cosine and
Extended Jaccard) are not suitable for handling contextual
attributes, the authors propose a set of rules and a voting
method to compare and rank services.

III. PROBLEM STATEMENT

A. Introduction

In the following, we present a motivating scenario that
highlights the major difficulties encountered in web service
discovery. We assume that a given user is interested by a
service which accepts a set of input concepts Pin1, P in2...
and provides a set of output concepts Pout1, Pout2..., (for
the sake of simplicity we disregard for the moment, the other
attributes such as preconditions or effects).

To achieve this purpose, the customer may utilize multiple
matchmaking algorithms or similarity functions denoted by
f1 · · · fn. Each function is applied on the request/service
parameters (in our case the inputs/ outputs). Let RQ be the
request parameter set, i.e. RQ = RQin ∪ RQout, where
RQin = {Pin1, P in2, ...}, RQout = {Pout1, Pout2, ...}.
Similarly we define the parameter set of the advertised service
S as follows: AS = ASin ∪ASout.

Each matchmaking function fj matches the request pa-
rameters against the parameters of the advertised services by
applying the following equations.

scorein = fj(RQin, ASin) (1)

scoreout = fj(RQout, ASout) (2)

Equations 1, 2 compute the similarity degree between the
inputs (resp outputs) of the request and the inputs (resp
outputs) of the advertised service.

Table I shows two ranked lists produced by two matching
functions f1 and f2. Each cell labelled with scorein or
scoreout indicates a partial matching score computed through
Equations 1 and 2. These matching scores belong to [0,1]. The
aforementioned (individual) lists are ranked according to the
mean score.

For the sake of simplicity, we suppose that all services
have a single input Pin and a single output Pout, the same
assumption is considered for the request. By analysing the
previous table, we notice the following findings:

First, the two rankings disagree about the ordering of the
services A and B. Second, the resolution of the conflict by

www.ijacsa.thesai.org 801 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

computing the mean score over all partial matching scores (see
the third line of each service) is not always a relevant heuristic.
This solution may be erroneous for some user’s requests.

Thus, the creation of an optimal ranking (which provides
the highest precision and recall) is not obvious, since we must
deal with the specificities of each request as well as the service
position within each (individual) list.

As discussed above, each matching function is only ef-
fective on a subset of requests, and it may give a poor
performance on the remaining requests. Consequently, it will
be advantageous to combine a set of matching functions. By
doing so, we leverage the advantages of the adopted matching
techniques, and we boost the global performances.

To combine the individual matching algorithms, we have
to aggregate the partial scores/ ranks of the services. Several
aggregating schemes are proposed in the literature [28], [3].
These approaches may leverage voting based models, proba-
bility theory, fuzzy set theory, and machine learning.

To determine the most effective mechanism, we have
to conduct an exhaustive comparative study and derive the
optimal configuration of parameters.

B. Specification of the Discovery Problem

To facilitate the presentation of the problem, we assume
the following notations:

let PRLij be a (partially) ranked list of the ith request
under the jth matching function.

Formally:

PRLij =< (S1, V1ij), (S2, V2ij), ...(S|dataset|, V|dataset|ij) >

where, dataset is the collection of services (i.e
S1, .., S|dataset|) and Vkij ∈ Rd , each Vkij represents a partial
matching score computed through Equation 1 or Equation 2.
It measures the similarity between the parameters of the ith

request and the parameters of the kth service using the jth

matching function. In this case, d is set to 2, since we have
two descriptors for inputs and for outputs.

In the following, we specify the discovery problem as
follows. Given:

• A set of matching functions {f1, ...fm}.

• A set of user’s requests Q = {RQ1, RQ2, ...};
each request is represented by the union of the in-
puts concepts and the outputs concepts, i.e. RQi =
{Pin1, P in2, ...} ∪ {Pout1, Pout2...}.

• A set of (partially) ranked lists, for each request
{PRL11, ..., PRLm1, .., PRL1|Q|. . . ., PRLm|Q|}

We aim to produce a combined ranking (denoted
Combined Rankingi) for each request RQi, such that:

MAP(Combined Ranking1, .., Combined Ranking|Q|)
is maximized.

Where:

Combined Rankingi: represents the fused list of the ith
request (RQi).

MAP : represents the mean average precision criterion. It
is defined as follows:

MAP (Combined Ranking1, .., Combined Ranking|Q|) =

1
|Q|∑
i=1

AveragePrec(Combined Rankingi)

(3)

and
AveragePrec(Combined Rankingi) =

|dataset|∑
k=1

precision(Combined Rankingi, k) ∗ rel(k)
(4)

where precision(Combined Rankingi, k) is the precision at
the kth position over the ith combined ranking.

and

rel(k) =

{
1 if the service Sk is relevant to the ith request
0 Otherwise

(5)

IV. WEB SERVICE DISCOVERY AND RANKING

In what follows, we present our main contributions to solve
this service discovery problem; in particular, we demonstrate
the individual matching algorithms (Sections IV-A) as well as
the probabilistic fusion scheme (Section IV-B).

A. Individual Matching Functions

In this work, we use the most promising matching functions
of the information retrieval field. More specifically, we use five
matching functions that are defined below. To match a request
R with the service S, we introduce the following notation:

Let RQ be the parameters set of R. let Vir (resp Vor) be
the vector containing the occurrence numbers of the indexed
inputs (resp outputs) of the request R. Vir is derived from
RQin; similarly, Vor is derived from RQout.

In addition, let Vis (resp Vos) be the vector containing the
occurrence numbers of the indexed inputs (resp outputs) of the
service S. Vis is derived from ASin , similarly Vos is derived
from ASout. Based on the aforementioned vectors, we define
the probability distributions Pir (resp Por) and Pis (resp Pos)
as follows:

Pir(k) =
Vir(k)

|Vir|∑
k=1

Vir(k)

(6)

Pis(k) =
Vis(k)

|Vis|∑
k=1

Vis(k)

(7)

Por(k) =
Vor(k)

|Vor|∑
k=1

Vor(k)

(8)

www.ijacsa.thesai.org 802 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

Pos(k) =
Vos(k)

|Vos|∑
k=1

Vos(k)

(9)

The first similarity measure is defined as follows:

sim1(R,S) =
1

2
(cos(Vir, Vis) + cos(Vor, Vos)) (10)

where cos measures the proportion between the dot product
of the compared vectors (or objects) and the product of their
length. It is defined as follows :

cos(Vir, Vis) =
< Vir, Vis >

(||Vir||.||Vis||)
(11)

and < X,Y > is the dot product operator, ||X|| is the
euclidean norm of X .

Similarly, for Vor and Vos:

sim2(R,S) =
1

2
(EJ(Vir, Vis) + EJ(Vor, Vos)) (12)

where EJ (Extended Jaccard) computes the proportion
between the size of shared elements and the cardinal of the
union. It is defined as follows:

EJ(Vir, Vis) =
< Vir, Vis >

(||Vir||2 + ||Vis||2− < Vir, Vis >)
(13)

Similarly, for Vor and Vos:

sim3(R,S) =
1

2
(IL(Vir, Vis) + IL(Vor, Vos)) (14)

where IL (Information Loss) is based on the percentage of
elements that are not shared among the compared objects. The
more the percentage is low, the better the similarity degree. It
is defined for binary vectors as follows:

IL(Vir, Vis) = 1−[

(
|Vir|∑
k=1

MAX(Vir(k), Vis(k))− < Vir, Vis >)

(
|Vir|∑
k=1

Vir(k) +
|Vis|∑
k=1

Vis(k))

]

(15)

Similarly, for Vor and Vos:

sim4(R,S) =
1

2
(JS(Pir, Pis) + JS(Por, Pos)) (16)

where JS (Jensen–Shannon based similarity) is based on
the estimation of the difference between two probability dis-
tributions that represent the compared vectors. The more the

difference is low, the better the similarity degree. It is defined
as follows:

JS(Pir, Pis) =

(
1

2
log2) ∗

|Pir|∑
k=1

[h(Pir(k)) + h(Pis(k))− h(Pir(k) + Pis(k))]

(17)

where h(x) = −xlog2(x).

Similarly, for Por and Pos:

sim5(R,S) =
1

2
(LOG(ASin, RQin)+LOG(RQout, ASout))

(18)

Where LOG (logic matching) is defined as follows :

LOG(RQout, ASout) = MINPl∈RQout(LogMatch1(Pl, Asout))
(19)

In addition:

LogMatch1(P1, ASout) = MAXPk∈ASout
(LogMatch2(Pl, Pk))

(20)

In general, the logical comparison of two parameters Pu, Pt

is established as follows:

LogMatch2(Pu, Pt) =

1(Exact) if Pu ≡ Pt

0.95(plugin) if Pu is parent of Pt

0.85(Subsume) if Pu < Pt

0.75(Subsumedby) if Pt is a parent of Pu

0(Fail) Otherwise

(21)

This is done similarly for ASin and RQin.

In the following, we present our probabilistic fusion
scheme, which is constituted of 3 algorithms. The first one,
hereafter referred to as RPC (Relevance Probability Com-
putation), computes the knowledge that allows the fusion of
the input lists. The second one is termed PF (probabilistic
fusion), it produces the TopK elements of the combined (fused)
ranking. The third one is termed CVBT (cross-validation-
based tuning). CVBT leverages the cross-validation to select
the optimal number of segments.

B. Proposed Algorithms

To build the combined ranking, we adapt the probabilistic
approach proposed in [39], to the context of web services.
In a nutshell, the basic idea consists of learning a set of
probabilities that are involved in the computation of the fused
score of each service. The more the fused score is high,
the better the rank is. The algorithm performing this task
is referred to as RPC. Each learned probability (denoted by
MRelPri(Sl)) represents the likelihood that a service Sl

returned in segment r is relevant, given that it has been returned
by the matching function i.

Algorithm 1 represents the pseudo code of RPC.

RPC algorithm is explained as follows:

www.ijacsa.thesai.org 803 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

Algorithm 1: Algorithm RPC
Input: dataset : a set of services,

SRQ : a subset of requests,
m : Integer (the number of matching functions),
ns : Integer (the number of segments),
Rel :
a binary matrix of dimension |requests| . |dataset|

Output: MRelP : a matrix of dimension ns.m
1 for i = 1 to m do
2 rankingi = EmptyList

3 foreach Qj ∈ SRQ do
4 foreach Sl ∈ dataset do
5 score = simi(Qj , Sl)

insertInto(score, rankingi)

6 decreasing sort(rankingi)
7 relv services = extract(Rel, j)

8 for r = 1 to ns do
9 segment members = extract seg(rankingi, r)

10 relv[i][j][r] =
|relv services segment members|/|segment members|

11 for r = 1 to ns do
12 for b = 1 to |SRQ| do
13 MRelP [i][r] = MRelP [i][r] + relv[i][b][r]

14 MrelP [i][r] = MRelP [i][r]/|SRQ|

15 return (MRelP)

• (Lines 1 up to 7), for each matching function i and
request Qj , we compute the corresponding ranking
termed rankingi.

• (Lines 8-9), we sort the aforementioned ranking and
we get the relevant services of the request Qj .

• (Lines 10-13), for each segment r, we extract its mem-
bers, thereafter we compute its relevance probability
by applying the formula of the precision criterion. This
rule calculates the likelihood that a segment r derived
from the function i is relevant to the request Qj .

• (Lines 15-19), for each segment r and each matching
function i, we compute their averaged relevance prob-
ability (also denoted MRelPri). More specifically, we
take the mean of the relevance probabilities related to
the requests of the learning set (SRQ).

• (line 22) We return the learned probabilities.

The second algorithm referred to as PF (probabilistic
fusion) allows to compute a fused score for each service Sl.
To this end, PF leverages the learned relevance probabilities
of the five individual rankings. PF is based on two heuristics
(H1 and H2); which are summarized as follows:

• The more the rank (or the segment identifier) of a
service Sl is higher within the individual rankings,
the more the fused score is better (H1). •

• The more the relevance probability MRelPri(Sl) is
higher, the more the fused score is better (H2).
This rule is explained as follows: if we assume that
MRelPri(Sl) is large, then service Sl is more likely
to be relevant and, thus it should be ranked higher in
the combined (fused) list. The fused score is summed

up as follows:

Fscore(Sl) =

m∑
i=1

MRelPri(Sl)

r
(22)

where r is the segment identifier of Sl, i the identifier
of the matching function, and m is the number of
matching functions.

The pseudo code of PF is given in Algorithm 2.

Algorithm 2: Algorithm PF
Input: Qj : the current request to be handled, m :

Integer (the number of matching functions),
k : Integer (size of the returned list),
ns : Integer (the number of segments),
MRelP : a matrix of dimension m.ns

Output: Top k(CombinedList) : an ordered list
1 for l = 0 to |dataset| − 1 do
2 Fscore[l] = 0

3 CombinedList = EmptyList
4 for i = 1 to m do
5 rankingi = EmptyList
6 for eachSl in dataset do
7 score = simi(Qj , Sl)
8 insertInto(score, Sl, rankingi)

9 decreasing sort(rankingi)
10 for each Sl in dataset do
11 Sid = Get Seg ID(Sl, rankingi)
12 Fscore[l] = Fscore[l] +MRelP [i][sid]/sid

13 for eachSl in dataset do
14 insertInto(Fscore[l], Sl, CombineList)

15 decreasing sort(CombineList)
16 return Top k(CombinedList)

PF algorithm is explained as follows:

• (Lines 1-4), we initialize the fused scores with 0, the
fused (combined) ranking is also initialized with an
empty list.

• (Lines 5-10) for each matching function i and the
current request Qj , we compute the corresponding
ranking termed rankingi.

• (Line 11), we sort the aforementioned ranking.

• (Lines 12-14), for each service Sl, we get the identifier
of the segment in which he lies (Sid).

• (Line 15), we update the fused score by applying the
formula 22 (heuristics H1&H2).

• (Lines 17-20), we create and sort the combined list,
according to the decreasing order of the fused score.

• (Line 21): we return the Top K elements of the
combined list.

In what follows, we present the third algorithm referred
to as CVBT (cross-validation based tuning). This algorithm

www.ijacsa.thesai.org 804 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

aims to select the optimal number of segments (denoted by ns)
that ensures the best mean averaged precision of the combined
rankings. We notice that ns ∈ {2, 3, ..., round(|dataset| /2)}.

To fulfill this goal, we use the cross-validation principle.
This means that we firstly initialize ns to a given value, then
we divide the requests collection on a set of parts (np parts).
Thereafter, we perform the cross-validation section as follows:

• We compute the relevance probabilities (i.e the RPC
function) by choosing (np − 1) parts as the set of
learning requests.

• We perform the probabilistic fusion (PF) over the
entire set of requests.

• We calculate the mean averaged precision (MAP)
that corresponds to the actual learning requests.

• We change the set of learning requests, by considering
another union of (np − 1) parts, and we redo the
previous steps

• We take the average of the calculated MAP and we
consider it as the final MAP associated to the actual
ns (we denote this result as MAP ′). We iterate the
previous process (the five steps) for all possible values
of ns and then we choose the value that ensures the
best MAP ′.

In the following, we describe the pseudo code of CVBT
(see Algorithm 3)

• (Line 1), we divide the entire collection requests on a
set of parts, for instance, if np = 5, then we have five
subsets of requests.

• (Line 2), we initialize the optimal number of segments,
as well as the optimal MAP .

• (Lines 3-6), for each candidate ns, we initialize its
corresponding (averaged) MAP ′ with 0.

• (Lines 7-9), for each iteration of the cross-validation,
we initialize the learning requests (SRQ). The latter
is constituted of (np − 1) parts of the entire collec-
tion. Thereafter we use this set (SRQ) to learn the
relevance probabilities (MRelP).

• (Lines 10-13), for each request Qj we produce the
fused ranking CombinedListj, afterwards, we calculate
the corresponding average precision.

• (line 14), we estimate the mean averaged precision of
the actual SRQ set.

• (line 16-19), We calculate the mean averaged precision
of the cross-validation loop (denoted MAP’). This
score is associated to the actual ns.

• (line 20), we return the optimal number of segments
(ns∗).

In the following, we show a scenario that illustrates the
processing performed by the probabilistic fusion (i.e. RPC and
PF).

Algorithm 3: Algorithm CVBT
Input: dataset : the set of services,

CRQ : the collection of requests, m :
Integer (the number of matching functions),
np : Integer (the number of parts),
the defaut value is 5,
Rel :
a binary matrix of dimension∥requests|.|dataset|,
Qj : the current request to be handled, m :
Integer (the number of matching functions)

Output: ns∗ :
Integer (the optimal number of segments)

1 Parts = divide(CRQ,np)
2 MAP∗ = 0; ns∗ = 2;
3 for ns = 2 to round(|dataset|/2) do
4 SRQ = CRQ
5 MAP ′[ns] = 0
6 for i = 1 to np do
7 SRQ = SRQ− Parts[i]
8 MRelP = RPC(dataset, SRQ,m, ns,Rel)
9 for each Qj in CRQ do

10 CombinedListj =
FP (MRelP, |dataset|, Qj)

11 AP [j] =
AveragePrecision(CombinedListj , Rel)

12 MAP [i] = MeanAveragedPrecision(AP)

13 for i = 1 to np do
14 MAP ′[ns] = MAP ′[ns] +MAP [i]

15 MAP ′[ns] = MAP ′[ns]/np
16 return (ns∗)

V. EXPERIMENTAL STUDY

This section presents our experiments related to the prob-
abilistic fusion as well as the individual matching functions.
We also show a comparison with respect to the Borda [33]
fusion scheme and other state of the art methods.

A. Evaluation Scheme

To assess the effectiveness and the efficiency of the pro-
posed fusion scheme, we use the test collection OWLTC V2.21.
The latter contains real-world web service descriptions, ex-
tracted mainly from public IBM UDDI registries. As depicted
in Table II, the benchmark contains:

1) 1007 service descriptions,
2) 29 sample requests,
3) a manually identified relevance set for each request.

This information allows the computation of recall and
precision.

Since we set np to 5 (np is the number of parts), then 80%
of the request set is utilized for learning the relevance prob-
abilities. In addition, all requests will be used for evaluating
MAP and some other metrics (recall@N,Prec@N,R−prec)
defined below:

1http://projects.semwebcentral.org/projects/owls-tc/

www.ijacsa.thesai.org 805 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

TABLE II. OWLSTC V2 TEST COLLECTION

Class Number of services Number of re-
quests

Travel 197 6
Education 286 6
Food 34 1
Medical care 73 1
Communication 59 2
Weapon 40 1
Economy 395 12

TABLE III. AVERAGE EXECUTION TIME OF THE PROBABILISTIC FUSION

Average fusion time
(PF function)

Average learning
time (RPC function)

Sum

13830 ms 13659 ms 27489 ms

TABLE IV. AVERAGE EXECUTION TIME FOR ALL METHODS

Approach Probabilitic
fusion

Borda Cos EJ IL JS LOG

Average
time

27489 ms 700
ms

28630
ms

26391
ms

21741
ms

27659
ms

14941

• R-Precision(R-prec or R-P): measures the precision
after all relevant items have been retrieved [40].

• Precision at N (Prec@N): measures the precision after
N items have been retrieved [40].

• Recall at N (recall@N): measures the recall after N
items have been retrieved [40].

We also measure the average execution time of the probabilis-
tic fusion, the Borda fuse model and the individual matching
functions. Our algorithms have been implemented in Java
and the experiments were conducted on a Core I3 1.80 GHz
machine with 4GB of RAM, running on Windows7.

In Table III, we show the average execution time of the
learning phase (RPC function), the fusion phase (PF function),
and the total time. Since the aforementioned algorithms have
a polynomial complexity, then they remain scalable for large
services datasets.

In Table IV, we compare the performance of the probabilis-
tic fusion with respect to the other approaches. We observe
that all running times fluctuate between 21.000 and 29.000
Milli.Sec, except for Borda. The latter exhibits a performance
around 700 ms. This is due to the fact that Borda is a simple
sum of the service positions. We also notice that, the logic-
based approach is more efficient than the other individual
methods, because we implemented the subsumption test with
a logic “or”. This implementation is enabled by a binary
encoding scheme inspired from [41]. By coding the ontology
with binary words we significantly decrease the subsumption
test cost.

Tables V and VI show the behavior of PF for both recall
and precision. In general, we observe that the performance
rises as the number of segments ns increases (for all values

TABLE V. THE RECALL WITH RESPECT TO ns

ns TOP 10 TOP 20 TOP 30 TOP 40 TOP 50 TOP 60
100 0.419 0.661 0.777 0.829 0.867 0.908
150 0.425 0.678 0.793 0.85 0.884 0.911
200 0.423 0.679 0.801 0.86 0.898 0.924
251 0.421 0.679 0.815 0.871 0.904 0.931
300 0.426 0.685 0.806 0.868 0.904 0.932
350 0.434 0.691 0.811 0.873 0.911 0.936
400 0.433 0.691 0.811 0.872 0.911 0.936
500 0.432 0.705 0.828 0.892 0.93 0.949

TABLE VI. THE PRECISION WITH RESPECT TO ns

ns TOP
10

TOP
20

TOP
30

TOP
40

TOP
50

TOP
60

100 0.906 0.746 0.616 0.506 0.432 0.381
150 0.896 0.76 0.624 0.516 0.437 0.382
200 0.893 0.762 0.633 0.524 0.446 0.389
251 0.893 0.768 0.642 0.529 0.449 0.393
300 0.896 0.77 0.636 0.528 0.448 0.391
350 0.917 0.775 0.637 0.531 0.453 0.393
400 0.913 0.775 0.637 0.531 0.453 0.393
500 0.91 0.789 0.652 0.542 0.461 0.398

TABLE VII. MEAN RECALL FOR ALL METHODS

Algorithm TOP
10

TOP
20

TOP
30

TOP
40

TOP
50

TOP
60

EJ 0.33 0.59 0.73 0.79 0.83 0.85
IL 0.33 0.59 0.7 0.79 0.84 0.86
JS 0.33 0.59 0.72 0.79 0.83 0.86
LOG 0.3 0.46 0.6 0.66 0.72 0.69
COS 0.33 0.59 0.72 0.78 0.82 0.86
PF 0.43 0.70 0.82 0.89 0.93 0.94
BORDA 0.39 0.58 0.73 0.81 0.84 0.9

TABLE VIII. MEAN PRECISION FOR ALL METHODS

Algorithm TOP
10

TOP
20

TOP
30

TOP
40

TOP
50

TOP
60

EJ 0.81 0.64 0.58 0.51 0.42 0.36
IL 0.81 0.64 0.58 0.5 0.42 0.36
JS 0.8 0.65 0.57 0.49 0.41 0.36
LOG 0.73 0.53 0.48 0.42 0.37 0.31
COS 0.81 0.64 0.57 0.48 0.4 0.36
PF 0.90 0.76 0.63 0.52 0.44 0.39
BORDA 0.83 0.67 0.58 0.5 0.42 0.38

of K). We also notice that the best performance is provided
by ns = 500.

According to Tables VII and VIII, we observe that PF is
more effective than the remaining approaches. The PF results
are achieved by setting ns to 500. As demonstrated in the
experiments, PF largely outperforms the Borda fuse model.

This is due to the fact that Borda is very sensitive to the
services with bad individual ranks. Consequently its global
performance is unsatisfying. On the other hand, we notice that
the four similarity measures {Cos,EJ, IL, JS} have almost
the same performance. The worst case is achieved by the logic-
based approach.

The execution of CVBT is shown in Fig. 1. It depicts the

www.ijacsa.thesai.org 806 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

Fig. 1. Mean Average Precision (MAP) vs. ns

TABLE IX. AVERAGE R-PREC FOR ALL METHODS

Algorithm R-Prec
PF 0.86
Borda 0.669
IL 0.709
LOG 0.594
JS 0.705
EJ 0.707
COS 0.692

TABLE X. PF VS S3 C CONTEST APPROACHES

Algorithm MAP
PF (ns=500 0.87
Borda 0.73
OWLS-iMatcher2 0.84
JIAC-OWLSM 0.81
SPARQLent 0.71
OPOSSUM 0.57
ALIVE 0.5
OWLS MX3 0.86

relationship between MAP and ns parameter. In general, we
distinguish two behaviours: firstly, when ns ∈ {2, .., 120} we
observe a rapid improvement of the estimated MAP. Second,
when ns ∈ 121, .., 500, we observe a slow improvement of
MAP. The optimal value is reached round 500.

From these results we conclude that the more the segment
size is small, the better the performances.

As depicted in Table IX, the R−Prec of PF is higher than
the individual ranking algorithms as well as the Borda fuse
model. In summary, PF produces a gain of 21% with respect
to the highest individual R − Prec (i.e. the information loss
R-Prec) and 28% with respect to the Borda R− Prec.

Table X shows a comparison between the probabilitic
fusion and the different systems that participate in the S3
contest 20092. We notice that this competition is based on
the same benchmark (i.e. OWLSTC.2). Table X clearly shows
that our approach outperforms all existing matchmakers.

2International Contest S3 on Semantic Service Selection 2009, http://www-
ags.dfki.uni-sb.de/ klusch/s3/

VI. CONCLUSION

In this paper, we have tackled the problem of retrieving
and ranking web services. Our proposed framework takes
into account multiple functional descriptors (input and out-
put parameters) as well as several matching functions (logic
reasoning and text similarities).

Simply speaking, our fusion algorithm leverages a set of
relevance probabilities in order to infer an optimal fused rank-
ing. These probabilities are largely dependent on the number
of segments (ns). The setting of this regulating parameter is
ensured by the cross-validation process.

The obtained results are very promising, and confirm the
effectiveness of the proposed scheme.

In the nearest future, we aim to compare our approach with
alternative fusion schemes, such as probabilistic dominance
and majority-based voting. These approaches can be further
enhanced by tuning their critical parameters with machine
learning algorithms.

REFERENCES

[1] S. Sagayaraj and M. Santhoshkumar, “Heterogeneous ensemble learning
method for personalized semantic web service recommendation.”

[2] S. Kona, A. Bansal, G. Gupta, and T. D. Hite, “Semantics-based web
service composition engine,” in Proc. of the 9th IEEE Int. Conf. on E-
Commerce Technology (CEC 2007) / 4th IEEE Int. Conf. on Enterprise
Computing, E-Commerce and E-Services (EEE 2007), 2007, pp. 521–
524.

[3] M. Mohammed, C. M. Amine, and H. Fethallah, “Leveraging fuzzy
dominance relationship and machine learning for hybrid web service
discovery,” International Journal of Web Engineering and Technology,
vol. 11, no. 2, pp. 107–132, 2016.

[4] M. Klusch, B. Fries, and K. Sycara, “OWLS-MX: A hybrid Semantic
Web service matchmaker for OWL-S services,” Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 7, no. 2, pp. 121–133,
2009.

[5] M. Klusch and P. Kapahnke, “The iSeM matchmaker: A flexible ap-
proach for adaptive hybrid semantic service selection,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 15, pp. 1–14,
2012.

[6] K. Benouaret, D. Benslimane, A. Hadjali, M. Barhamgi, Z. Maamar,
and Q. Z. Sheng, “Web service compositions with fuzzy preferences:
A graded dominance relationship-based approach,” ACM Transactions
on Internet Technology (TOIT), vol. 13, no. 4, p. 12, 2014.

[7] S. Berg, “Condorcet’s jury theorem, dependency among jurors,” Social
Choice and Welfare, vol. 10, no. 1, pp. 87–95, 1993.

[8] M. Santhoshkumar and S. Sagayaraj, “Ranking semantic web services
by matching triples and query based on similarity measure,” Interna-
tional Journal of Information Technology, pp. 1–9, 2019.

[9] N. Srinivasan, M. Paolucci, and K. Sycara, “Semantic web service
discovery in the OWL-S IDE,” in Proc. of the 39th Annual Hawaii
Int. Conf. on System Sciences (HICSS’06), vol. 6. IEEE, 2006, pp.
109b–109b.

[10] U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel, “Automatic
location of services,” The Semantic Web: Research and Applications,
pp. 1–16, 2005.

[11] U. Küster and B. König-Ries, “Evaluating semantic web service match-
making effectiveness based on graded relevance,” in Proc. of the 2nd Int.
Conf. on Service Matchmaking and Resource Retrieval in the Semantic
Web-Volume 416. CEUR-WS. org, 2008, pp. 32–46.

[12] F. Baader and U. Sattler, “An overview of tableau algorithms for
description logics,” Studia Logica, vol. 69, no. 1, pp. 5–40, 2001.

[13] A. Segev and E. Toch, “Context-based matching and ranking of web
services for composition,” IEEE Transactions on Services Computing,
vol. 2, no. 3, pp. 210–222, 2009.

www.ijacsa.thesai.org 807 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 9, 2021

[14] G. Cassar, P. Barnaghi, and K. Moessner, “Probabilistic matchmaking
methods for automated service discovery,” IEEE Transactions on Ser-
vices Computing, vol. 7, no. 4, pp. 654–666, 2014.

[15] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003. [Online]. Available:
http://portal.acm.org/citation.cfm?id=944937

[16] T. Hofmann, “Probabilistic latent semantic analysis,” in Proc. of the
15th Conf. on Uncertainty in artificial intelligence. Morgan Kaufmann
Publishers Inc., 1999, pp. 289–296.

[17] M. Schumacher, H. Helin, and H. Schuldt, CASCOM: intelligent service
coordination in the semantic web. Springer Science & Business Media,
2008.

[18] K. Sparck Jones, “A statistical interpretation of term specificity and its
application in retrieval,” Journal of documentation, vol. 28, no. 1, pp.
11–21, 1972.

[19] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966,
pp. 707–710.

[20] E. Garcia, “Cosine similarity and term weight tutorial,” Information
retrieval intelligence, 2006.

[21] B. Fuglede and F. Topsoe, “Jensen-shannon divergence and hilbert space
embedding,” in Proc. of the Int. Symposium on Information Theory (SIT
2004). IEEE, 2004, p. 31.

[22] Z. Chouiref, A. Belkhir, K. Benouaret, and A. Hadjali, “A fuzzy
framework for efficient user-centric web service selection,” Applied Soft
Computing, vol. 41, pp. 51–65, 2016.

[23] K. Benouaret, D. Benslimane, and A. Hadjali, “Selecting skyline web
services for multiple users preferences,” in Proc. of the 19th IEEE Int.
Conf. on Web Services (ICWS’12). IEEE, 2012, pp. 635–636.

[24] A. Pahlevan, J.-L. Duprat, A. Thomo, and H. Müller, “Dynamis:
effective context-aware web service selection using dynamic attributes,”
Future Internet, vol. 7, no. 2, pp. 110–139, 2015.

[25] P. Rodriguez-Mier, C. Pedrinaci, M. Lama, and M. Mucientes, “An
integrated semantic web service discovery and composition framework,”
IEEE transactions on services computing, vol. 9, no. 4, pp. 537–550,
2016.

[26] M. Fariss, N. El Allali, H. Asaidi, and M. Bellouki, “Review of
ontology based approaches for web service discovery,” in International
Conference on Advanced Information Technology, Services and Systems.
Springer, 2018, pp. 78–87.

[27] N. Zhang, J. Wang, Y. Ma, K. He, Z. Li, and X. F. Liu, “Web service
discovery based on goal-oriented query expansion,” Journal of Systems
and Software, vol. 142, pp. 73–91, 2018.

[28] M. Klusch, B. Fries, and K. Sycara, “Automated semantic web service
discovery with OWLS-MX,” in Proc. of the 5th Int. Joint Conf. on
autonomous agents and multiagent systems. ACM, 2006, pp. 915–
922.

[29] M. Klusch and P. Kapahnke, “Semantic web service selection with

SAWSDL-MX,” in Proc. of the 7th Int. Semantic Web Conf., 2008,
p. 3.

[30] A. Halfaoui, F. Hadjila, and F. Didi, “Qos-aware web service selection
based on self-organising migrating algorithm and fuzzy dominance,” In-
ternational Journal of Computational Science and Engineering, vol. 17,
no. 4, pp. 377–389, 2018.

[31] D. Skoutas, D. Sacharidis, A. Simitsis, and T. Sellis, “Ranking and
clustering web services using multicriteria dominance relationships,”
IEEE Transactions on Services Computing, no. 3, pp. 163–177, 2010.

[32] E. A. Fox and J. A. Shaw, “Combination of multiple searches,” NIST
special publication SP, vol. 243, 1994.

[33] J. A. Aslam and M. Montague, “Models for metasearch,” in
Proceedings of the 24th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, ser. SIGIR ’01.
New York, NY, USA: Association for Computing Machinery, 2001, p.
276–284. [Online]. Available: https://doi.org/10.1145/383952.384007

[34] M. Farah and D. Vanderpooten, “An outranking approach for rank
aggregation in information retrieval,” in Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval, ser. SIGIR ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 591–598. [Online].
Available: https://doi.org/10.1145/1277741.1277843

[35] H. Fethallah, B. Amine, and H. Amel, “Hybrid Web Service Discovery
Based on Fuzzy Condorcet Aggregation,” in East Europ. Conf. on
Advances in Databases and Information Systems. Springer, 2015, pp.
415–427.

[36] M. Montague and J. A. Aslam, “Condorcet fusion for improved
retrieval,” in Proceedings of the Eleventh International Conference on
Information and Knowledge Management, ser. CIKM ’02. New York,
NY, USA: Association for Computing Machinery, 2002, p. 538–548.
[Online]. Available: https://doi.org/10.1145/584792.584881

[37] S. Samir, A. Sarhan, and A. Algergawy, “Context-based web service
discovery framework with qos considerations,” in Proc. of the 11th Int.
Conf. on Research Challenges in Information Science (RCIS 2017).
IEEE, 2017, pp. 146–155.

[38] A. D. Eddine and B. F. M’hamed, “Improved multicriteria ranking based
web service discovery approach,” in 2018 3rd International Conference
on Pattern Analysis and Intelligent Systems (PAIS). IEEE, 2018, pp.
1–6.

[39] D. Lillis, F. Toolan, R. Collier, and J. Dunnion, “Probfuse: a probabilis-
tic approach to data fusion,” in Proc. of the 29th annual int. ACM SIGIR
conf. on research and development in information retrieval. ACM,
2006, pp. 139–146.

[40] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-
tion Retrieval. USA: Cambridge University Press, 2008.

[41] Y. Caseau, M. Habib, L. Nourine, and O. Raynaud, “Encoding of
multiple inheritance hierarchies and partial orders,” Computational
Intelligence, vol. 15, no. 1, pp. 50–62, 1999.

www.ijacsa.thesai.org 808 | P a g e

