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Abstract—Sorting is one of the most frequent concerns in 
Computer Science, various sorting algorithms were invented for 
specific requirements. As these requirements and capabilities 
grow, sequential processing becomes inefficient. Therefore, 
algorithms are being enhanced to run in parallel to achieve better 
performance. Performing algorithms in parallel differ depending 
on the degree of multi-threading. This study determines the 
optimal number of threads to use in parallel merge sort. 
Furthermore, it provides a comparative analysis of various 
degrees of multithreading. The implementation in this empirical 
experiment takes a group of devices with various specifications. 
For each device, it takes fixed-sized data set and executes merge 
sort for sequential and parallel algorithms. For each device, the 
lowest average runtime is used to measure the efficiency of the 
experiment. In all experiments, single-threaded is more efficient 
when the data size is less than 105 since it claimed 53% of the 
lowest runtime than the multithreaded executions. The overall 
average of the experiments shows either four or eight threads, 
with 72% and 28%, respectively, are most efficient when data 
sizes exceed 105. 
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I. INTRODUCTION 
Merge sort is a divide and conquer algorithm that was 

invented by John von Neumann in 1945, it is an efficient, 
general-purpose, comparison-based sorting algorithm [1]. Most 
implementations produce a stable sort, which means that the 
implementation preserves the input order of equal elements in 
the sorted output. A detailed description and analysis of 
bottom-up merge sort appeared in a report by Goldstine and 
Neumann as early as 1948 [2]. Such divide and conquer 
algorithm recursively break down a problem into sub-
problems, making it simple to be solved easily, then combine 
the solutions of the sub-problems until the original problem is 
solved. In sorting n objects (list of array elements), merge sort 
is an efficient algorithm that has an average and worst-case 
performance of O(nlogn) [2]. 

If the running time of merge sort for a list of length n is 
T(n), then the recurrence T(n) = 2T(n/2) + n follows from the 
definition of the algorithm (apply the algorithm to two lists of 
half the size of the original list and add the n steps taken to 
merge the resulting two lists). In the worst case, the number of 
comparisons merge sort makes is equal to or slightly smaller 
than (nlogn − 2log n + 1), which is between (nlogn − n + 1) 
and (nlogn + n + O(logn)) [3]. In the section below, a pseudo-

code of merge sort is illustrated, followed by an example in 
Fig. 1, using a simple data set of {38,27,43,3,9,82,10} [4]. 

Fig. 1 illustrates how the algorithm divides all items one by 
one then combines them recursively. This approach indicates 
the possibility of applying the algorithm in parallel. Hence, 
parallel merge sort reduces the complexity to O(nlogn/t), where 
t is the number of threads, by using multi-threaded operations 
where the data is divided into equal portions and each portion 
is assigned to a specific thread. The complexity is reduced to 
O(n) but could vary according to the number of threads used 
[5]. 

Merge sort is suitable when the data structure is a linked list 
because it is a sequential access structure. Implementing a 
linked list hinders the performance of other algorithms such as 
quicksort and heapsort [6,7]. Moreover, parallel merge sort is 
frequently used in various domains, including; sorting NoSql 
databases [8], high-performance computing environments [9], 
and massively parallel architectures [10,11]. 

Algorithm 1 Merge Sort 
1: procedure Mergesort 
2: var list left ,right , result 
3: if length(m) ≤ 1 then return m 
4: else 
5: var middle = length(m) / 2 
6: for each x in m up to middle do 
7: add x to left 
8: end for 
9: for each x in m after middle do 

10: add x to right 
11: end for 
12: left ← mergesort(left) 
13: right ← mergesort(right) 
14: 
15: 

result ← merge(left, right) return result 

When it comes to executing algorithms in parallel, most 
studies show results of the performance on several processors 
[12-15]. These results will mainly rely on the specifications of 
the device and the behavior of the execution in terms of 
multithreading. The question that led to this research is, what is 
the suitable degree of multi-threading required for parallel 
merge sort? This study conducts an empirical experiment and 
highlights several factors that influence multithreading 
performance. First, the number of cores that affect 
multithreading performance and second, the given data size 
that demands multithreading when a single-threaded 
performance degrades. 
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Fig. 1. Merge Sort Algorithm. 

The contribution of this paper is to determine the optimal 
number of threads to use in parallel merge sort. Furthermore, it 
provides a comparative analysis of various degrees of 
multithreading. Each data size is examined among a 
determined number of threads, starting from one thread 
(sequential), two, four, eight, and sixteen threads (parallel). 

In Section 2, related studies were taken to see how parallel 
merge sort was implemented and what the results were. 
Section 3 explains and walks through how the experiment was 
conducted. The results are illustrated in Section 4 and 
elucidated in the discussion. Finally, Section 5 presents the 
conclusion of this study. 

II. RELATED WORK 
There have been several papers that conducted various 

researches on parallel merge sort, and they have come up with 
the following. 

Jeon [13] improved parallel merge sort by distributing and 
computing the approximately equal number of keys in all 
processors throughout the merging phases. Using the histogram 
information, keys can be divided equally regardless of their 
distribution, which evaluated the speedup showing a better 
performance by applying parallel merge sort on two different 
parallel machines: a Cray T3E and a Pentium III PC cluster on 
maximum data size of 106 × 4. 

The tested algorithm on loosely coupled parallel machines 
and the performance of the algorithm has been observed. It has 
been found that the computational time of the algorithm varies 
logarithmically for a varying number of processors scenario 
[14]. 

Uyar [5] experimented with applying parallel merge sort 
using multi-threads similar to this experiment. It stated that two 
threads could perform one merge operation simultaneously. 
One thread generates the first half of the sorted values that start 
from the minimums of the two sorted subsets. The other thread 
generates the second half of the sorted values starting from the 
maximums of the two sorted subsets. It also compared it with 
double merging by using four threads implementing it on Java. 
The comparison focused on array sizes from 10 million up to 

50 million. In this study, the array size starts from 5000 up to 
50 million to detect when executing in parallel is more efficient 
than sequential. 

A study was conducted on three parallel sorting algorithms 
(Odd-even transposition sort, Parallel rank sort, and Parallel 
merge sort) on a number of processors 2, 4, 6, 8, 10, and 12 on 
10000 integers [15]. The results proved that parallel merge sort 
was the fastest, yet the study was comparing only one input 
size and may differ when the data size increases. 

These previous studies show that merge sort could be 
conducted in parallel in several ways, giving better results than 
sequential as the array size increases [5,13-15]. Yet, these 
studies were concerned with enhancing the performance of 
merge sort without comparing the degree of multi-threading. 
Only [5] compared different array sizes that were only applied 
up to four threads on a specific range of sizes, from 106 to 106 
×5. This study experiments parallel merge sort on four 
different degrees of multi-threading in a broader range of array 
sizes from 105 to 107, which is explained in Section 3 
maintaining the integrity of the specifications. 

III. EXPERIMENT 

A. Requirements 
This experiment was implemented on Java SE8. It was 

conducted on five devices to ensure diversity in the 
environment of implementation. Moreover, to verify the results 
are not dependent on the specifications of a particular device. 
The specifications of the devices used in this experiment are 
shown in Table I. 

B. Implementation 
This experiment takes a specific data set and executes it in 

two approaches: 1) Sequential (one thread), 2) Parallel (two, 
four, eight, and sixteen threads). The source code is available 
on https://github.com/muhyidean/ParallelMergeSort.git. 

The implementation in this experiment takes a data set and 
applies merge sort for sequential and parallel algorithms. For 
sequential, it executes Algorithm 1. As for parallel, it executes 
Algorithm 2 based on the following: 

1) Data formation: The array sizes for the data sets begin 
from 103×5, 104, 104×5, 105, ... up to 107. Based on the array 
size, ten different random data sets are initiated to be 
implemented in both execution approaches. Each data set will 
be placed in a separate array and executed in each approach. 
The average runtime of ten executions for each array size is 
taken in milliseconds. 

TABLE I. DEVICE SPECIFICATIONS 

 OS Processor # Cores RAM 

Device 1 Windows Intel i5 4 16 

Device 2 Windows Intel i7 8 16 

Device 3 macOS Intel i5 4 8 

Device 4 macOS Intel i7 8 16 

Device 5 Ubuntu Intel i5 4 4 
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2) Partition process: The partitioning will be in five 
categories, one in sequential and four degrees of multi-
threading 2, 4, 8, 16. The original data set is considered the 
first partition, so it will be directly executed (sequentially). 
Then the same data set is taken and split in half making two 
data sets, each partition is assigned to a thread to run parallel. 
The process goes on for the other partitions with respect to the 
number of threads to be implemented which are two, four, 
eight, and sixteen. 

3) Thread management: The implementation for the 
parallel merge sort divides the array into sub-arrays to be 
sorted by the number of threads. The threads sort their 
assigned sub-arrays independently. Two consecutive sorted 
sub-arrays are combined by one thread. Each merging thread 
merges two sorted arrays. The merge operation follows this 
approach. Whenever the arrays are sorted, the number of 
arrays is decreased by half. During the last iteration, two 
sorted arrays are merged to produce a sorted array. This 
implementation did not use any third-party 
libraries/frameworks, it was implemented with the java thread 
package in JDK (Java Development Kit). 

Fig. 2 illustrates the partitioning process and the merging 
mechanism. Each elliptical shape is considered a thread; the 
shapes labeled with D represent the partition of the original 
array sorted by merge sort. The shapes labeled with M merge 
the results from the previous threads until it merges the whole 
array. To be better illustrated, sixteen threads are not shown 
Fig. 2 because it follows similar partitioning. 

C. Data Analysis 
Tables III to VII shows the average runtime for different 

array sizes on each. Furthermore, they also show how each 
device performs on different execution approaches (sequential 
and parallel). For example, the average execution time is 
calculated by running the algorithm ten times, then the average 
of times is taken. Table II is one of the execution results for 
device 4 on array size 105. For instance, the result shows that 
(Th-4) was the most efficient for this case. However, it may 
differ as the size increases and is subject to the device 
specifications. For each device, on each data size, it will have a 
table like Table II. 

 
Fig. 2. Parallel Merge Sort using Three Degrees of Multi-threading (2,4,8). 

 
Algorithm 2 Parallel Merge Sort 

 
1:  procedure PMergesort 
2:   var val ← (v)                                                                  // v: the number of values here 
3:                                                                                          // x: the number of threads 
4:   var list arr test 1[ ], arr test 2[ ], ...arr test x[ ]          // Defining main arrays 
5:   var list arr 2[ ] ... arr x[ ]            // Defining sub arrays  
6:        // Defining threads to execute merge sort for each array 
7:   threads t1(mergesort(arr 1)), t2(mergesort(arr 2))... t x(mergesort(arr x))  
8:    // Assign random integers to main arrays, to give each same set of random values 
9:   for i ← 0 to val do 
10: n ← random value in range of (1 − x) 
11: arr test1[ ],arr test 2[ ]...arr test x[ ] ← n 
12: end for 
13:      // Partition data set and add into x sub arrays for each set of threads  
14: var mid ← (length of arr test x/x)                    // Get mid points for each partition  
15: ∗ repeat code in line 14 for x partitions 
16:        // Calculate the time taken for each set of threads  
17: var ts ← take current time 
18: execute t1 , t2 ... tx                                                      // Execute threads 
19: var te ← take current time 
20: ∗ repeat codes in lines (17 − 19) for each set of threads (2,4, 8 ... x ) 
21: var tr ← ts − te                                                           // to calculate the time taken in parallel mergesort (x threads) 
22: file ← export results(tr1,tr2...trx)                             // to take results (time taken in milliseconds) 
23: end procedure=0  
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TABLE II. DEVICE 1 – RUNTIME ON SIZE 105 (MS) 

Execution # Th-16 Th-8 Th-4 Th-2 Th-1 

Execution 1 159 14 18 17 46 

Execution 2 33 21 37 50 27 

Execution 3 37 22 31 36 36 

Execution 4 23 26 30 24 44 

Execution 5 32 32 16 32 49 

Execution 6 38 48 38 32 32 

Execution 7 17 16 32 81 44 

Execution 8 31 48 32 33 32 

Execution 9 35 33 16 49 34 

Execution 10 14 16 25 97 16 

Average 41.9 27.6 27.5 45.1 36.0 

IV. RESULTS AND DISCUSSION 
This section highlights and points out the main findings of 

the empirical experiment. To measure the efficiency of the 
experiment, the lowest average execution time (ms) is taken for 
each data size on each device. 

A. Results 
In Tables III to VII, it shows the average of 10 executions 

for each degree of multi-threading. Each column is a different 
size starting from 103 × 5 up to 107. The rows show the 
performance of each thread for a specific data size. For 
example, (Th-1) is one thread, (Th-2) is two threads and goes 
on. As shown in Tables III to VII, for data size 103 × 5, all 
devices perform efficiently in terms of runtime in a single-
threaded execution. As for the sizes 104  and 104 × 5, it varies 
from one to eight threads depending on the number of cores in 
the device. With data sizes of 105 and larger, each device 
performs better with a certain number of threads, depending on 
the number of cores. All results are illustrated in Fig. 3 to 7. 

Fig. 3 to 7 illustrates the performance graphs according to 
different data sizes and the number of threads used. 
Multithreading is clearly more efficient when the data size 
increases. The appropriate number of threads will generally be 
visible when the data size exceeds 105. 

B. Findings 
There were two main findings from these results. First, 

multithreading does not always have the most efficient runtime 
as it depends on the data size. Second, even when the data size 
increases, a specific number of threads will determine the 
optimized performance based on the device specifications. In 
other words, implementing as many threads as possible will not 
lead to higher runtime performance. 

Tables VIII and IX were presented to highlight the findings 
of the results, one below 105 and the other greater 105. 
Table VIII shows the overall average for each device with data 
sizes below 105. For example, in Device 1, the sequential 
runtime performance was most efficient. By taking the overall 
average, 

single-threaded was more efficient since it claimed 53% of the 
lowest runtime than the multithreaded executions. Table IX 
shows the overall average for each device with data sizes 
above 105. As shown in Table IX, multi-threaded 
implementation with either four or eight threads provided 
better performance with 72% and 28%. Fig. 8 and 9 visualize 
which threads performed better in the overall average for 
different data sizes. A higher percentage indicates that using a 
specific number of threads is more efficient on a particular data 
size. 

Based on the experiment results, all devices that have four 
cores achieved efficient runtime performance with four 
threads. Moreover, all devices with eight cores achieved 
efficient runtime performance with eight threads. Evidently, 
the selection of the number of threads is mainly determined by 
the number of the cores. 

C. Discussion 
The main question of this study is, what is the optimal 

number of threads for parallel merge sort considering two main 
factors: data size and number of cores? 

TABLE III. DEVICE 1 - RESULTS - AVERAGE RUNTIME (MS) 

Th(x) = 
number 
of threads 

Array Size 

103 
x 5 104 104 

x 5 105 105 x 
5 106 106 x 

5 107 

Th-16 18 17 25 42 94 165 678 1303 

Th-8 10 18 34 28 90 131 588 1173 

Th-4 8 13 26 28 83 130 585 1142 

Th-2 8 11 38 45 104 179 818 1724 

Th-1 2 4 23 36 145 261 1342 2751 

TABLE IV. DEVICE 2 - RESULTS - AVERAGE RUNTIME (MS) 

Th(x) = 
numbe
r of 
threads 

Array Size 

103 x 
5 104 104 x 5 105 105 x 5 106 106 x 5 107 

Th-16 3 3 5 9 30 51 228 523 

Th-8 3 4 8 20 36 44 201 415 

Th-4 4 3 7 19 34 47 251 523 

Th-2 7 1 9 20 43 69 371 778 

Th-1 1 2 9 34 69 134 693 1442 

TABLE V. DEVICE 3 - RESULTS - AVERAGE RUNTIME (MS) 

Th(x) = 
number 
of 
threads 

Array Size 

103 x 5 104 104 x 5 105 105 x 5 106 106  
x 5 107 

Th-16 4 5 10 23 57 97 501 1011 

Th-8 11 5 16 13 45 86 431 943 

Th-4 4 3 9 10 43 85 420 859 

Th-2 2 3 7 13 62 130 665 1356 

Th-1 1 3 13 27 114 206 1100 2258 
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TABLE VI. DEVICE 4 - RESULTS - AVERAGE RUNTIME (MS) 

Th(x) = 
numbe
r of 
threads 

Array Size 

103 x 
5 104 104 x 5 105 105 x 5 106 106 x 5 107 

Th-16 3 3 7 13 27 47 371 671 

Th-8 2 3 4 10 23 37 184 474 

Th-4 2 2 5 8 32 45 259 604 

Th-2 1 2 7 13 44 75 387 801 

Th-1 2 2 11 23 93 160 832 1660 

TABLE VII. DEVICE 5 - RESULTS - AVERAGE RUNTIME (MS) 

Th(x) = 
number 
of 
threads 

Array Size 

103 x 5 104 104 x 5 105 105 x 5 106 106 x 5 107 

Th-16 6 15 24 29 63 108 446 1198 

Th-8 7 15 22 27 88 120 440 1064 

Th-4 9 11 21 25 63 104 421 931 

Th-2 8 12 20 32 87 120 654 1492 

Th-1 2 4 23 36 149 261 1336 2200 

 
Fig. 3. Device 1 - Results - Average Runtime (MS). 

The results of this study had shown that having as many 
threads as possible will not lead to the best runtime 
performance. To achieve the best runtime performance, the 
number of cores present is crucial in determining the optimal 
number of threads. The cruciallity is due to how multiple 
threads are executed by the operating system. Correspondingly, 
the data size determines whether multiple threads are required. 
In small data sets, the use of multiple threads is unnecessary 
since one thread can perform more efficiently. 

The conclusion is that if the data size is under 105, single-
threaded will be more efficient. In contrast, having multiple 
threads will perform better for data sizes that exceed 105. In 
addition, it should not spawn threads more than the number of 
cores (excluding merging threads). 

 
Fig. 4. Device 2 - Results - Average Runtime (MS). 

 
Fig. 5. Device 3 - Results - Average Runtime (MS). 
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Fig. 6. Device 4 - Results - Average Runtime (MS). 

 
Fig. 7. Device 5 - Results - Average Runtime (MS). 

TABLE VIII. MULTITHREADING EFFICIENCY PERCENTAGE (< 50000) 

Device 
Th(x)= number of threads 

Th-1 Th-2 Th-4 Th-8 Th-16 

Device 1 1.00 0 0 0 0 

Device 2 0.33 0.33 0.33 0 0 

Device 3 0.33 0.66 0 0 0 

Device 4 0 0.66 0 0.33 0 

Device 5 1.00 0 0 0 0 

Average 0.53 0.33 0.06 0.06 0 

TABLE IX. MULTITHREADING EFFICIENCY PERCENTAGE (> 50000) 

Device 
Th(x)= number of threads 

Th-1 Th-2 Th-4 Th-8 Th-16 

Device 1 0 0 1.00 0 0 

Device 2 0 0 0.40 0.60 0 

Device 3 0 0 1.00 0 0 

Device 4 0 0 0.20 0.80 0 

Device 5 0 0 1.00 0 0 

Average 0 0 0.72 0.28 0 

 
Fig. 8. Multithreading Efficiency Percentage (< 50000). 

 
Fig. 9. Multithreading Efficiency Percentage (> 50000). 

V. CONCLUSION 
This study conducts an empirical experiment to determine 

the optimal number of threads to use in parallel merge sort. 
Several factors are discussed in this study to answer this 
question. First is the number of cores that impact 
multithreading performance. Second is the given data size that 
requires the use of multiple cores. 

The implementation in this experiment takes a group of 
devices with various specifications. For each device, it takes 
fixed-sized data set and applies merge sort for sequential and 
parallel algorithms. For each device, the lowest average 
execution time (ms) is used to measure the efficiency of the 
experiment. Taking the average for all experiments, single-
threaded is more efficient when the data size is less than 105 
since it claimed 53%. Whereas, for data sizes exceeding 105, 
multi-threaded implementation has better performance. The 
overall average of the experiments shows either four or eight 
threads are most efficient, with 72% and 28% respectively. 
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There were two main findings from these results. First, 
multithreading does not always have the most efficient runtime 
as it depends on the data size. Second, even when the data size 
increases, a specific number of threads will determine the 
optimized performance based on the device specifications. In 
other words, implementing as many threads as possible will not 
lead to higher runtime performance. 

The conclusion is that if the data size is under 105, single-
threaded will be more efficient. In contrast, having multiple 
threads will perform better for data sizes that exceed 105. In 
addition, the number of threads spawned should not exceed the 
number of cores (excluding merging threads). 
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