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Abstract—Malware constitutes a prime exploitation tool to 
attack the vulnerabilities in software that lead to a threat to 
security. The number of malware gets generated as exploitation 
tools need effective methods to detect them. Machine learning 
methods are effective in detecting malware. The effectiveness of 
machine learning models can be increased by analyzing how the 
features that build the model contribute to the detection of 
malware. The model can be made robust by getting insight into 
how features contribute to each sample that is fed to a trained 
model. In this paper, the boosting machine learning model based 
on LightGBM is enhanced with Shapley value to detect the 
contribution of the top nine features for classification such as 
true positive or true negative and for misclassification such as 
false positive or false negative. This insight in the model can be 
used for effective and robust malware detection and to avoid 
wrong detections such as false positive and false negative. The 
comparison of the top features and their contribution in shapely 
value for each category of the sample gives insight and inductive 
learning into the model to know the reasons for misclassification. 
Inductive learning can be transformed into rules. The prediction 
by the trained model can be re-evaluated with such inductive 
learning and rules to ensure effective and robust prediction and 
avoid misclassification. The performance of models gives 98.48 at 
maximum and 97.45 at a minimum by 10 fold cross-validation. 

Keywords—Artificial intelligence; machine learning; malware 
detection; shapely value; decision plot; waterfall plot 

I. INTRODUCTION 
At the current time, the malware is generated in large 

numbers. Open Threat Exchange [1] is a platform for the 
exchange of information related to computer security. The 
reason for the high volume generation of malware is both from 
the generation side, and end-use of it. Malware authors use tools 
such as polymorphic and metamorphic engines. Metamorphic 
engines can generate malware with minor modification of code. 
It uses techniques such as register reassignment, NOP 
instruction insertion, code transposition, the substitution of 
machine-level opcode/instructions, dead code insertion, and 
combinations of these techniques. Polymorphic engines can 
generate malware with encryption, prepend data, append data, 
and combinations of these techniques. The generated malware 
exhibits the same behavior as old malware. However, this 
generated malware can evade detection by antivirus software 
based on the signature. The detection engine of many 
antiviruses is based on the signature. Hence, databases of 
signatures need a constant update for upcoming malware. On 
the use side of malware, the number of software products has 

increased over time. Ten top software products with 
vulnerabilities are listed in Table I [2]. Software products with 
vulnerabilities from the top ten vendors are listed in Table II [3]. 
These vulnerabilities are exploited for an attack using existing 
or new malware.  The software products are not limited to but 
include Operating Systems (OS), Driver for hardware devices, 
software applications, etc. The more a software product is used 
and popular, the more attacks it may have. Hence, hackers need 
more malware to attack the vulnerabilities. The vulnerabilities 
in hardware, OS, application, firewalls, anti-virus products, etc. 
may be by accident. The author [4] identifies three phases of the 
life cycle of vulnerabilities. In the first phase, a product is 
released in the market. The second phase starts when a 
vulnerability is found in the software product. In the third phase, 
the vulnerability has to be fixed by the developer and released 
for the user of the software. The vulnerabilities can de 
systematically discovered with needful tools. Knowing 
vulnerabilities is not enough, the vulnerabilities have to be 
proven by exploits, and attack software (malware). Machine 
learning and deep learning methods are used for malware 
detection and classification in research work these days. 

TABLE I. TOP SOFTWARE VENDORS WITH VULNERABILITIES 

SL
. 
No
. 

Vendor 
Name  

Number 
of 
Product
s  

Number of 
Vulnerabilitie
s  

#Vulnerabilities/#Produc
ts  

1  Microsof
t  655  8178  12  

2  Oracle  938  8043  9  

3  Google  124  6571  53  

4  Debian  106  5697  54  

5  Apple  139  5380  39  

6  IBM  1314  5334  4  

7  Cisco  5592  4137  1  

8  Redhat  407  3984  10  

9  Canonica
l  49  3075  63  

10  Linux  23  2751  120  
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https://www.cvedetails.com/product-list/vendor_id-93/Oracle.html
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https://www.cvedetails.com/vendor/1224/Google.html
https://www.cvedetails.com/product-list/vendor_id-1224/Google.html
https://www.cvedetails.com/vulnerability-list/vendor_id-1224/Google.html
https://www.cvedetails.com/vendor/23/Debian.html
https://www.cvedetails.com/product-list/vendor_id-23/Debian.html
https://www.cvedetails.com/vulnerability-list/vendor_id-23/Debian.html
https://www.cvedetails.com/vendor/49/Apple.html
https://www.cvedetails.com/product-list/vendor_id-49/Apple.html
https://www.cvedetails.com/vulnerability-list/vendor_id-49/Apple.html
https://www.cvedetails.com/vendor/14/IBM.html
https://www.cvedetails.com/product-list/vendor_id-14/IBM.html
https://www.cvedetails.com/vulnerability-list/vendor_id-14/IBM.html
https://www.cvedetails.com/vendor/16/Cisco.html
https://www.cvedetails.com/product-list/vendor_id-16/Cisco.html
https://www.cvedetails.com/vulnerability-list/vendor_id-16/Cisco.html
https://www.cvedetails.com/vendor/25/Redhat.html
https://www.cvedetails.com/product-list/vendor_id-25/Redhat.html
https://www.cvedetails.com/vulnerability-list/vendor_id-25/Redhat.html
https://www.cvedetails.com/vendor/4781/Canonical.html
https://www.cvedetails.com/vendor/4781/Canonical.html
https://www.cvedetails.com/product-list/vendor_id-4781/Canonical.html
https://www.cvedetails.com/vulnerability-list/vendor_id-4781/Canonical.html
https://www.cvedetails.com/vendor/33/Linux.html
https://www.cvedetails.com/product-list/vendor_id-33/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/Linux.html
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TABLE II. TOP OPERATING SYSTEMS WITH VULNERABILITIES 

Sl. 
No. Product Name  Vendor Name  Product 

Type  
Number of 
Vulnerabilities 

1  Debian Linux  Debian  OS  5572  
2  Android  Google  OS  3875  
3  Ubuntu Linux  Canonical  OS  3036  
4  Mac Os X  Apple  OS  2911  
5  Linux Kernel  Linux  OS  2722  
6  Fedora  Fedoraproject  OS  2538  
7  iPhone OS  Apple  OS  2522  
8  Windows 10  Microsoft  OS  2459  

9  Windows 
Server 2016  Microsoft  OS  2233 

10  Windows 7  Microsoft  OS  1954 

The objective of this paper is to further improve the 
effectiveness of the machine learning (ML) model based on 
boosting algorithms such as LightGBM by overcoming the 
wrong prediction, misclassification the ML model may have. 
Good ML models are made general with feature engineering 
and learning from a large dataset, to detect unknown malware. 
There are many algorithms for ML models and many feature 
engineering techniques to make the models effective that 
resulting in increasing the accuracy of models.  
Misclassification in the machine learning model is wrong 
identification. For malware, the ML model may not identify 
them and they are termed as a false negative. A false negative 
detection can be very dangerous for any organization. As the 
malware is not detected, it will be able to meet the objective of 
the attacker despite all the security solutions applied. ML model 
may also declare benign software as malware. Such occurrences 
are termed false positives. A false positive detection causes 
issues such as panic among users of the software, 
inconveniences, non-use of software until a confirmed source 
declares the software as benign. All machine learning models 
have misclassification without exception. 

Machine learning models to detect malware are many and 
they also use feature importance as part of an algorithm to 
identify top features. There are other methods for feature 
importance using feature engineering such as Principal 
Component Analysis (PCA), Redundant Feature Removal 
(RFR), and Haar Wavelet Transform (HWT) [6] and Leave One 
Feature Out importance (LOFO) method [7]. 

In this paper, a novel method is proposed to identify the 
change in top features that contribute to the misdetection of 
malware or future input sample that may be malware or benign 
software to a trained ML model. In addition, to identify the 
amount of contribution the top features are having for 
misclassification of a future sample in consideration as input to 
the ML model. Shapely values and visualization techniques are 
used to achieve these objectives. Shapely values are from 
classic game theory. Shapely values are used to find feature 
importance in an ML model. Lundberg et al. [5] have used 
Shapley value for explainable artificial intelligence. Hence, 
Shapley values can identify the top features in an ML model. 
The top features in an ML model based on LightGBM have 

shapely values associated with them. These top features along 
with their contribution to Shapley values are visualized using 
decision plot, waterfall plot, and force plots. Further, this work 
proposes to identify the false positive and false negative from 
the test dataset part. Further, the work also associates 
visualization with change in top features and amount of 
contribution of top features. Having identified top features and 
the amount of contribution of the top features for 
misclassification, this work proposes the use of inductive 
learning techniques to overcome the misclassification of future 
samples. The present work aims to improve the effectiveness of 
the ML model based on the LightGBM model. It can be used 
for zero-day malware detection as well. 

The gaps that this work addresses are highlighted as follows. 

• These feature importance from algorithms and feature 
engineering methods cannot associate the top features 
for a new sample used for prediction by a trained 
machine learning model. 

• They cannot determine the amount of contribution of a 
feature for a sample used for prediction by a trained 
machine learning model. Hence, they cannot associate 
the visualizations with the amount of contribution of a 
feature for a new sample to be predicted by the machine 
learning model. 

• There remains always a doubt if the new sample under 
test is part of high accuracy as published for the model 
or part of misclassification as false negative or false 
positive. 

• The inductive method proposed in this work improves 
the probability of prediction to a higher level. 

• A novel approach as proposed in this work is not 
available in the literature survey. Hence, this paper 
opens new dimensions for increasing the probability of 
effective detection of a new sample by a trained model. 

Specific contributions in this study are: 

• Use of Shapley values and visualization for 
identification of top features for false negative (FN), 
false positive (FP), true positive (TP), and true negative 
(TN) categories of samples for LightGBM machine 
learning models. 

• Amount of contribution by top features for each 
predicted category in Shapley values are identified. So 
that the comparison for inductive learning is effective. 

• Comparison of the features and amount of contributions 
of features for samples with the test dataset part that may 
be FP, FN, TP, and TN. Using the comparison to 
identify the top features and their contribution for 
misclassified FP and FN samples. 

• Use of LightGBM, boosting algorithms, for effective 
prediction of a future sample that may be malware or 
benign software. The proposed inductive method will 
avoid misclassification and improve the effectiveness of 
the ML model. 
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https://www.cvedetails.com/product/20550/Canonical-Ubuntu-Linux.html?vendor_id=4781
https://www.cvedetails.com/vendor/4781/Canonical.html
https://www.cvedetails.com/vulnerability-list/vendor_id-4781/product_id-20550/Canonical-Ubuntu-Linux.html
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https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/vendor/33/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/Linux-Linux-Kernel.html
https://www.cvedetails.com/product/16334/Fedoraproject-Fedora.html?vendor_id=6924
https://www.cvedetails.com/vendor/6924/Fedoraproject.html
https://www.cvedetails.com/vulnerability-list/vendor_id-6924/product_id-16334/Fedoraproject-Fedora.html
https://www.cvedetails.com/vendor/49/Apple.html
https://www.cvedetails.com/vulnerability-list/vendor_id-49/product_id-15556/Apple-Iphone-Os.html
https://www.cvedetails.com/product/32238/Microsoft-Windows-10.html?vendor_id=26
https://www.cvedetails.com/vendor/26/Microsoft.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-32238/Microsoft-Windows-10.html
https://www.cvedetails.com/product/34965/Microsoft-Windows-Server-2016.html?vendor_id=26
https://www.cvedetails.com/product/34965/Microsoft-Windows-Server-2016.html?vendor_id=26
https://www.cvedetails.com/vendor/26/Microsoft.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-34965/Microsoft-Windows-Server-2016.html
https://www.cvedetails.com/product/17153/Microsoft-Windows-7.html?vendor_id=26
https://www.cvedetails.com/vendor/26/Microsoft.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-17153/Microsoft-Windows-7.html
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This paper is organized with a literature survey in Section II, 
followed by the methodology of malware detection and the use 
of shapely values for visualization in Section III. The Dataset, 
experimental setup, and results are outlined in Section IV. The 
paper concludes in Section V with a conclusion and an 
Appendix in Section VI. 

II. LITERATURE SURVEY 
Malware is like any software product. It has to be 

distinguished from a benign software product. The methods 
available to distinguish and detect the malware are broadly 
categorized into static analysis, dynamic analysis, and hybrid 
analysis. 

A. Static Analysis 
In static analysis, the malware is not executed. Features for 

machine learning are extracted from the software without 
running the software, the sample under consideration. It has the 
advantage that the sample cannot infect the system used for 
extraction of features. All the software, malware, shared 
libraries required, and dynamic link libraries (DLL) have a 
header.  For windows, the header of the executable is termed 
Portable Executable (PE) header. The features from the PE 
header of windows executables can be extracted as explained in 
[6][8]. In addition, features can be extracted using properties of 
the executable file as an object and are termed file-related 
features.  File related features are not limited to but include a 
histogram of bytes in executable, the entropy of complete file 
entropy of various parts of files, strings embedded in the 
executable, N-grams [9] from byte code, N-grams from 
assembly code, N-grams from API calls, images of hex 
bytecode of a file [10][11], images of hex bytecode of different 
part of a file, etc. Many machine learning models and deep 
learning models use features with different combinations 
derived from static analysis[12]. However, malware authors use 
methods such as obfuscation  [13], encryption of various types 
to evade feature extraction methods. The obfuscation and 
encryption methods are many and may be categorized into 
standard and non-standard (private). These shortcomings of 
static analysis may be overcome by dynamic analysis [14]. 

Authors in [15] convert the sample file to images and extract 
features using the trained CNN model. The extracted features 
are plotted using t-Distributed Stochastic Neighbor to identify 
the cluster of malware. Subsequently, they make N-grams with 
n values 1 to 5 using the API call sequence for six types of 
malware actions. The malware actions are creating or 
modifying files, hooking on to system services, getting 
information for loading the DLL, etc.  The N-grams are used 
with eight types of distance measurement to make a similarity 
matrix using four types of kernel functions with the Support 
Vector Method (SVM). Distance measurements used in this 
work are Cosine, Bray-Curtis, Canberra, Manhattan, 
Chebyshev, Euclidean, Hamming distance, and Correlation for 
feature extraction. This technique may handle malware with a 
known packing method, as they can be unpacked to process and 
get features but will have a deficiency in handling packed 
malware with unknown packing methods. 

Yousefi-Azar et al in [15] extract static features of a sample, 
malware, or benign software, using term frequency based on 

natural language processing. Extracted features are used with 
the deep learning model and Extreme Learning Machine (ETM) 
for malware detection. Backpropagation results in large feature 
space which increases computation complexity.  The authors 
multiply term frequency with a random projection matrix to 
reduce the computation complexity. Balanced android dataset 
Drebin and Dexshare and windows executables from 2016 are 
used as a dataset. Windows executables from 2017 are tested as 
zero-day malware to achieve an accuracy of 95.5%. 

The authors [16] collect malware samples that are used for 
attacks in financial institutions in Brazil, affecting cyber users 
for over 6 years. They use static analysis to extract features 
from PE header of collected samples and use Multilayer Layer 
Perceptron, K-nearest neighbor (KNN), Random Forest (RF), 
and Support Vector Machine (SVM) classifiers to detect 
malware. Further, they identify the family of malware using the 
t-Distributed Stochastic Neighbor Embedding (SNE) method. 
Concept drift of ML model is detected using Drift Detection 
Method (DDM) and Early Drift Detection Method (EDDM) to 
detect drift in the malware samples over time. The authors 
visualize and relate the new malware families coming over time 
using confirmation and warning indicated by the drift methods. 
They conclude that a warning indication by drift methods 
implies a degradation of ML models and a confirmation 
indication by drift method implies that the ML model needs to 
be updated. 

B. Dynamic Analysis 
In dynamic analysis, the malware is executed in a protected 

environment, and the behaviors, actions of malware are 
observed. In a normal environment, the sample will infect the 
system and will affect the future normal use of the system. 
Hence, a protected environment is used to avoid infection of the 
system conducting the malware test.  The actions and behaviors 
of malware are not limited to but include adding, deleting, and 
modifying related changes in the file name, registry, processes, 
communication in the network, system configuration, etc. 
Features are derived with these changes and used in machine 
learning models with various algorithms. The dynamic analysis 
method is very expensive in terms of time to execute malware, 
computing resources, and trained manpower required. Besides, 
the malware authors employ techniques to avoid malware 
detection. One of the techniques employed by the malware 
author is to detect the virtual environment required for running 
the malware. If the virtual environment is detected, they switch 
off the behavior of malware and act as benign software. Another 
technique used by malware authors is to connect to the 
command and control center owned by them and download the 
malware at a later time to take control of the target machine. If 
the network is not available in virtual environment, the sample 
acts as benign software. Hence, trained persons are required to 
note this behavior of malware. The hybrid analysis is used to 
overcome these shortcomings of dynamic analysis. 

Robert et al. [17] use a large dataset of malware with a 
Malheur tool to know the behavior of samples. Malheur tool 
executes the samples and generates a report. Needful 
information such as DLLs imported, API used as the callback 
are extracted from the report to understand the actions, behavior 
of malware with help of domain experts. Domain experts make 
rules and rules are externalized to the malware detection 

103 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 1, 2022 

module. Authors believe malware will exhibit its behavior as 
per framed rule and that can be detected. However, new types of 
malware may not exhibit behavior as per rules framed, because 
that malware was not part of the dataset used. Hence, this 
unknown malware will not be detected. 

Binayak et al. [18] create a knowledge database of In-
memory processes based on the use of Dynamic Link Library 
(DLL) sequences using TF-IDF (Term Frequency-Inverse 
Document Frequency) and multinomial logistic regression 
based learning approach. The suspected process from malware 
uses a different DLL than of system DLL. This knowledge 
database is compared with DLL sequences used by In-memory 
processes to identify suspected, unwanted processes and 
malware. 

C. Hybrid Analysis 
Hybrid analysis combines static and dynamic analysis to 

overcome their shortcoming. Lifan Xu et al. [19] extract both 
static and dynamic features from android malware dataset and 
represent the features as vector. Advance features are derived 
using deep learning, a Deep Neural Network (DNN) using both 
the original static and dynamic feature vector sets. The 
advanced and original features are concatenated as new vectors 
as input to the DNN that modifies with multiple different kernel 
to detect malware. The combined hybrid analysis has 
shortcomings as in dynamic analysis or static analysis. 

Sethi et al. [20] use feature from both static analysis and 
dynamic analysis on PHP, pdf, exe files. For dynamic analysis, 
the authors use a Cuckoo sandbox. Cuckoo sandbox is a virtual 
environment to run executable. It gives an analysis report of 
actions and behavior of the file executed. J48, SMO, and 
Random Forest machine learning algorithms are applied in the 
WEKA tool with the combined feature extracted using static 
and dynamic analysis. They achieved 100% accuracy with J48. 

The literature survey gives different methods of improving 
the accuracy and other performance parameters of the machine 
learning model by feature engineering for malware detection. 
However, they do not give insight into the top features and 
contribution of each feature for a new sample by a trained 
machine learning model. Hence, there is a gap in research that 
can give insight into the top features and their contribution in 
the prediction of an unseen sample by machine learning model. 
This work is an effort to fill the gap. 

III. METHODOLOGY 

A. Shapley Value and Feature Importance 
The machine learning model should be both interpretable 

and accurate. Interpretation of ML model based on decision tree 
may be based on decision path, heuristic value to features, and 
model-agnostic. In this work, Shapley value is used for making 
the ML model interpretable. A local explanation is assigning a 
numeric measure, credit, to each input feature that constitutes a 
machine learning model based on a decision tree.  These local 
explanations are combined to represent a global structure that 
represents an ML model based on a decision tree or an 
ensemble of decision trees. The ensemble of decision trees may 
be based on a bagging algorithm such as Random Forest or 
boosting algorithm such as LightGBM. The global explanation 

of the ML model continues to retain the local faithfulness as in 
local explanation. Shapely values from game theory satisfy 
simultaneously local accuracy, consistency, and missingness 
three properties required for credit score to a feature in an ML 
model.  The credit score, Shapley values, are computed by one 
feature at a time into the output function of the model with 
some condition as in Eq. (1). Lundberg et al. [5] follow the 
causal do-notation formulation. It justifies use of the Shapley 
additive explanation (SHAP) interaction values as a richer type 
of local explanation and feature perturbation formulation. 

𝑓𝑥(𝑆) =  𝐸[ 𝑓(𝑋)|𝑑𝑜(𝑋𝑠 = 𝑥𝑠)] (1) 

S = Set of features to condition on 

X = A random variable from M input features of model 

x = input vector for the current prediction for the model 

Lundberg et al. [5] give TreeExplainer, an explanation 
method for ML models based on tree, that enables optimal local 
explanations based on shapley values from classic game theory. 
Classic Shapley values are ways to measure feature importance. 
It is optimal and maintains natural properties from cooperative 
game theory. Exact computation of these values is NP-hard 
problem. Hence, they have approximate computation. Authors 
have developed an algorithm for decision tree categories of 
algorithms that computes local explanations with theoretical 
guarantees of local accuracy and consistency in polynomial 
time with Shapley values. Local explanations are also used to 
capture feature interactions in a theoretically grounded way. S is 
the set of features in Eq. (1) to condition on and refers to 
features of a specific tree in the ensemble of trees in the 
boosting LightGBM machine learning model. We can find the 
SHAP value for each feature, x in Eq. (1), in a tree using the 
TreeExplainer and add for all the features, X in Eq. (1), in the 
tree under consideration to match with the tree. This can be 
applied to all the trees in the model one by one. Finally, we find 
the contribution of a feature for the ensemble of trees by the 
TreeExplainer. By knowing the contribution of all features in an 
ML model, it provides valuable insight into top features for 
each prediction. 

B. Malware Detection Model 
All samples in the dataset are from windows executable. 

The features are derived from the PE header of the samples and 
as properties of a file. Each window executable contains a PE 
header that is explained in [6] [8] [21]. The PE header can be 
extracted using a python program using "Library for 
Instrumenting Executable Files" (LIEF) a library in python. The 
extracted features are listed in detail in Appendix A. PE header 
consists of DOS header, file header, NT header, section header, 
optional header, and many directories such as Import 
directories, Resource directory, Export directory, and Exception 
directory. Import directories list Dynamic Link Libraries (DLL) 
loaded by the executable and Application Program Interfaces 
(APIs) used by executables. Resource directory lists the 
information required by executable such as icons, bitmaps, 
strings, menus, dialogs, configuration files, version information, 
etc. Exception directory lists exception handling information. 
Features extracted are listed in Appendix A. Some of the 
features are described here. File header of PE header gives 
features such as timestamp, vsize, has_debug, has_relocations, 
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has_signature, has_tls, has_symbol, imports, Machine1-
Machine10 listed in Appendix A. Machine representing, type of 
processor required, in the file header part of PE header is hashed 
and put into one of ten bins and named as Machine1 - 
Machine10. Features that are hashed and put in several bins are 
named like this. Section header and optional header give section 
name, section size, section characteristics, and start and end 
byte contents of each section. The section name is a string. It is 
hashed and put into 1 of 50 bins. This gives us feature 
entry_name1 - entry_name50 listed in Appendix A. Section 
size, section virtual size, and section characteristics values are 
hashed and put into 1 of 50 bins. These operations give us 
features Sec_size_1 – sec_size_50, sec_vsize1 - sec_vsize50, 
sec_char1 - sec_char50 listed in Appendix A. Entropy of 
content of each section in the sample is hashed and put in to 1 of 
50 bins. This gives us features sec_entropy_1 - sec_entropy_50 
listed in Appendix A. 

DLL in an import directory and the name of an API in the 
DLL are concatenated to make a string. The string is hashed and 
put into one of 1280 bins. This gives us the feature Imp1-
Imp1280 listed in Appendix A. Function name in the export 
directory is hashes and out into one of 128 bins. This gives us 
feature exp1-exp128 listed in Appendix A. File-related 
information used to derive features are histogram of bytes, 
strings, and entropy of hex values in each sample. The byte 
value in the sample can be 0-255. A histogram is count of value 
of the byte in each sample. The count of the value of a byte is 
put into the respective bin H1-H256 to represent the feature 
listed in Appendix A. Strings in a sample give very important, 
insightful information used by malware. Strings reveal created 
and modified filenames and registry related information. Strings 
may also reveal IP addresses used by malware authors for 
communication, command and control center URLs, signature 
of malware authors and groups. All strings of size five-character 
or more are extracted, hashed, and put in one of 104 bins. This 
gives us features Str1 - Str104 listed in Appendix A. The 
encryption and packing methods increase the entropy, disorder 
of bytes in samples. Entropy is computed as the method 
described by [8]. In this method, a block size of 2048 bytes is 
extracted and counts of bytes are put in 16x16 bins. These 
operations of making a block of 2048 bytes with windows of 
1024 bytes and putting in 16x16 bins are repeated for the entire 
content of a sample. This gives us features Ben1-Ben256 listed 
in Appendix A. Both the PE header and file-related information 
give 2351 features. Dataset consists of malware and benign 
samples and belongs to January 2017 time period. 

Gradient Boosting Decision Tree (GBDT) LightGBM ML 
algorithms are selected for experiments in this work. The ML 
algorithm is selected for the following advantages. 

• Feature importance of the ML model can be extracted 
after training of the model. 

• Faster training and prediction 

• Ease of computation 

 
Fig. 1. System Block Diagram for Top Feature and their Contribution from 

Shapley Diagrams for Misclassification and Inductive Learning. 

The system block diagram for this work is shown in Fig. 1. 
LightGBM boosting machine learning algorithm in the sklearn 
library is used to train the ML model. A trained model can 
predict the samples in the test dataset and correct detection of 
samples in true positive (TP), malware, and true negative (TN) 
benign software categories. Misclassified samples such as false 
positive (FP), benign software detected as malware, and false 
negative (FN), malware detected as benign software categories 
can also be identified. Nine to twenty five top features among 
the 2351 features can be identified for samples in TP, TN, FP, 
FN categories using diagrams such as waterfall plots, decision 
plots, and force plots. These diagrams show the amount of 
contribution by each top feature in Shapley values. Shapley 
values give a local explanation of top features with global 
structure as per ML model prediction for a sample. Changes in 
the top few features and their contribution to Shapley value for 
TP, TN, FP, and FN is compared. The comparison identifies a 
change in top features and their contribution for FP, FN also. 
This insight can be used as inductive learning to identify other 
samples which may have been misclassified and for future 
unknown samples without labels. Having found the 
misclassified samples by trained ML classifier, correct 
classification or malware detection can be performed. This leads 
to an increase in the performance of the trained ML model. One 
has to be very careful in this comparison and inductive learning 
with an unknown sample that does not have a label. Top 
features and their contribution in Shapley value for the 
unknown sample should match top features and their 
contribution in Shapley value for with known TP and TN 
samples also. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Dataset 
The dataset in the proposed system is derived from [21]. It 

has Malware data from December-2006 to December 2017. 
The dataset from December 2006 to December 2016 contains 
only the malware and no benign entries and the reason for 
exclusion. Fig. 2 shows the exclusions, filter and pre-process 
used on the dataset to get the sub dataset used in this 
experiment. Dataset part from January 2017 is used in this 
proposed system. The unidentified entries are without labels in 
the dataset and are excluded for malware detection and 
analysis. The unidentified entries in the dataset may be 
malware or cleanware. The dataset consists of 32761 malware 
and 17186 benign software that appeared in January-2017. The 
details of the derived dataset are in Table III. 
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Fig. 2. Filter and Process the Database for the Experiments. 

TABLE III. DATASET USED IN THIS WORK 

SL No. Samples label  appeared  
1  28606 Unidentified  2017-01  
2  17180 Benign 2017-01  
3  32761 Malware 2017-01  

Each entry in the dataset has 2351 features. These features 
are from PE headers, sections of windows executable, systems 
APIs used in the executable, exported API from the executable, 
and file related properties. File related properties include 
Histogram of the complete executable in 256 bins, Byte entropy 
of executable file hashed into 256 bins and strings in 104 bins. 
The executable here means both the malware and cleanware. 
These features are defined in Appendix A and are used in the 
various diagrams in this paper. These features’ names help 
identify exact features that are contributing to the detection of 
malware and the amount of contribution in the detection of 
malware or cleanware. 

B. Experimental Setup 
Intel(R) Core(TM) i5-7200U CPU @ 2.50 GHz, 2701 MHz, 

2 Core(s), and 4 Logical Processor(s) with 8 GB Ram is used as 
computing resource in this work. 

C. Malware Detection with LightGBM 
Dataset is divided into a training set and testing set in the 

ratio of 70% and 30%. The model is trained with the training set 
and tested with the testing set. The results of this are in row 1 of 
Table IV. It has performance data for Accuracy, Precision, 
Recall, F1-score, and confusion matrix parameters in terms of 
false negative (FN), false positive (FP), true positive (TP), and 
true negative (TN). 

30% of the dataset is separated for the testing of the 
LightGBM model. The samples in the test dataset are identified 
in false negative (FN), false positive (FP), true positive (TP), 
and true negative (TN) categories. It is interesting to explore 
how the top features and other features contribute to FP, FN, 
TP, and TN samples by the LightGBM algorithm. Waterfall 
plot, decision plot, and force plot are drawn with Shapley 
values. 

TABLE IV. PERFORMANCE OF LIGHTGBM MODEL WITH ZERO-DAY 
MALWARE 
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Fig. 3. Waterfall Plot of True Positive Sample in a Dataset with Shapley 

Values for each Feature. 

Fig. 3 shows the waterfall plot for a true positive in the 
dataset. The Shapley value sum features to 5.378. The waterfall 
plot adds the contribution of each feature and also shows the top 
features with their contribution leading to the decision. 
Although the total contribution of 2342 features; lowest bar, in 
figure is significant compared to any top feature. In additional 
analysis, the feature importance of LightGBM showed only 588 
features contributed to the model. Other 1763 features do not 
have any contribution to malware detection. Hence, many 
features in 2342 features have zero contribution. Kumar et al. 
[22] identified that 276 features among 2351 only contributed to 
prediction in the XGBoost model with 600k samples of training 
dataset from [21]. The remaining 2075 features have zero 
contribution to the model. 

These figures help us to identify top features contributing to 
decision at leaf note with LightGBM algorithm. 

Fig. 4 is displays the decision plot for a true positive entry in 
the dataset and shows how the top features contribute to make 
the decision. The decision plot adds the contribution of each 
feature and draws the line that takes it to make a decision. It has 
the same TOP features as in Fig. 3. The waterfall plot adds the 
contribution of all the features but does not show the graph that 
leads to a decision as in the decision plot. 

 
Fig. 4. Decision Plot of True Positive Sample in Dataset with Shapley 

Values for each Feature. 
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The decision plot can be for more number of samples. Fig. 5 
shows the decision plot for the first ten samples in the dataset. 
The value that shows negative from zero in blue color are 
benign and the values that are on the right side of two, the 
purple color vertical line, in the graph are malware. The seven 
samples, pink color, with the specific features as shown are the 
malware and three samples are benign. The objective of these 
figures is to display how the features are contributing to 
decision with use of the LightGBM model. The label of samples 
is verified with the prediction of each sample with the 
LightGBM GBDT algorithm for all the 10 samples. It matches 
as given in the decision plot. 

Fig. 6 shows the force plot for a true positive sample in the 
dataset in the Shapley values. The force plot shows how each of 
the feature is contributing in the positive direction from the left 
side with red color and other features that contribute negatively 
to scale value down and finally the value set near 5.38 for 
Shapley values. The top three features that contribute to the 
decision are named. The meaning of these features can be 
referred at Appendix A. The force plot cannot display the name 
of many features as in the decision plot. The top three features 
are the same as in Fig. 3 and Fig. 4. 

Fig. 7 shows the force plot for the first 10 samples of the 
dataset in Shapley values. This figure is like rotating Fig. 6 
clockwise and stacking the ten force plot of the figure in the x-
axis. The count of the sample is seen at the top with numbers 0, 
1, 9. The Y-axis displays the Shapley value for samples. The 
Shapley values for sample 2 are different from another sample. 
This change in Shapley value for each sample in the dataset is 
visible.  It is possible to change the parameters in x-axis and y-
axis from a drop down menu and analyze the top features for a 
sample. Amount of contribution top features make to the 
decision using the LightGBM algorithm can be observed. 

 
Fig. 5. Decision Plot of First 10 Samples in Dataset with Shapley Values for 

each Feature. 

 
Fig. 6. Force Plot of True Positive in Dataset with Shapley Values for each 

Feature. 

 
Fig. 7. Force Plot of First 10 Samples in Dataset with Shapley Value for 

each Feature. 

Fig. 8 displays a waterfall plot for a false positive sample 
from the test dataset part of the dataset. The advantages of 
waterfall plots are: 

• Top 9 features contributing to predicting the sample as a 
false positive. 

• In the Shapley scale, it starts at 2.0 and adds up to 3.589 
with the top 9 features contributing in both positive and 
negative directions. 

• The contribution of the remaining 2342 features for the 
sample is +0.2, much less than the top five features. 

 
Fig. 8. Waterfall Plot of a False Positive Sample in Dataset in Shapley Value 

for each Feature. 
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Fig. 9 reveals the force plot for a false positive sample in the 
test dataset from dataset. The top features are RX_sec_num, 
C_char1, and has_debug from the PE header. The contribution 
of RX_sec_num is the highest among all the features. The top 
features for false positive in Fig. 9 are very different from the 
top features of malware (true positive) in Fig. 3. In addition, the 
final Shapley value for the sample is down to -0.09 in Fig. 9 
compared to 5.38 in Fig. 3 for malware. The start point is very 
low at less than -6 in Fig. 9 compared to the start point at -1 in 
Fig. 3. 

Fig. 10 presents a waterfall plot for a False Negative 
sample in the test dataset from the dataset in the Shapley value. 
All the advantages as explained for a false positive sample can 
be observed. In addition, features that are making the sample 
false positive and false negative can be compared. There is no 
contribution of the RX_sec_num, H129 feature in the false 
negative sample as in the false positive sample. The 
contribution of feature C_char4 is there in false negative but 
not in false positive. 

Fig. 11 shows the force plot for a False Negative (FN) 
sample in the test dataset in Shapley values. 

 
Fig. 9. Force Plot of a False Positive Sample in Dataset in Shapley Value for 

each Feature. 

 
Fig. 10. Waterfall Plot of a False Negative Sample in Dataset in Shapley 

Value for each Feature. 

 
Fig. 11. Force Plot of a False Negative Sample in Dataset in Shapley Value 

for each Feature. 

Fig. 12 shows the waterfall plot for the True negative 
sample in test dataset in Shapley value. Fig. 13 gives the force 
plot for the True negative (TN) sample in the test dataset in 
Shapley value. 

The top features of waterfall plots in Shapley value from 
Fig. 3, Fig. 8, Fig. 10, Fig. 12 for in FP, FN, TP, and TN 
samples respectively in test dataset of the dataset are compared 
in Table V. Top features are listed in the features column. For a 
sample in each category in false positive, false negative, true 
positive and true negative, it identifies the presence of a feature 
as “Y” and no presence as “N”. Further, it identifies the topmost 
feature, with the value among the top feature with a “T” in each 
category. The probability value contributed by each feature is 
identified in respective columns. This table helps to conclude 
that there is disjoint set of features for each category samples in 
FP, FN, TP, and TN. The topmost feature for the FN sample is 
has_debug and is present in FP and TP. The topmost feature for 
FP is Rx_sec_num and contributes very low value in other 
categories of samples. 

The contribution of the remaining 2342 features is lowered 
significantly for FP and FN. For TP the value is +ve .42, for TN 
the value is negative -.03. 

These comparisons can identify the misclassified FP and FN 
samples and improve the efficiency of the ML model by correct 
classification for an unknown sample. Few insightful rules that 
can be formed are as follows: 

• The malware sample with a high contribution of 
Imp321, H33, C_char1, and str43 may be a FP sample. 

• The Malware sample with the highest contribution by 
Rx_sec_num among all the features will be a FN 
sample. 

 
Fig. 12. Waterfall Plot of a True Negative Sample in dataset in Shapley Value 

for each Feature. 

 
Fig. 13. Force Plot of a True Negative Sample in the Dataset in Shapley 

Value for each Feature. 
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TABLE V. FEATURES AND THEIR CONTRIBUTION IN FALSE POSITIVE, 
FALSE NEGATIVE, TRUE POSITIVE, TRUE NEGATIVE PREDICTION BY 

LIGHTGBM MODEL 

S
L 
no 

Features False 
Positive 

False 
Negative 

True 
Positive 

True 
Negative 

1 C_char1 Y,+0.81 Y, 0.73 Y,0.61 Y, –2.25 

2 C_char4 N Y, -0.65 Y, -0.45 Y, - 1.08 

3 Machine6 N N N Y, -1.27 

4 Subsystem9 0.18 N N Y, -1.0 

5 Rx_sec_nu
m Y, +0.95 N Y, 0.36 0.24 

6 has_debug Y, +0.48 Y, -0.88 Y, 0.61 -0.5 

7 sec_size43 Sec_size44 
= -0.17 Y, 0.31 0.24, 

sec_char38 N 

8 H129 Y, -0.37 

Y, H33 = 
-0.28 
H67=0.2
6 

Y, -0.35 -0.28 

9 Imp370 
Y, -0.32 
imp857=0.1
6 

N Imp31=0.2
9 N 

10 sec_char38 N N 0.23 N 

11 Str43 N -0.25 N str104=0.1
8 

12 imports N N N -0.48 

13 Ben255 N 
-0.26, 
BEn253=
-0.24 

N N 

14 Other 2342 
features 0.2 Y,-0.67 Y, 1.72 Y, -2.04 

D. k-Fold Cross-Validation 
Cross-validation with k=10 is performed for less biased and 

less optimistic accuracy value for the LightGBM model. The 
test dataset is used for this 10-fold cross-validation test. The 
results of cross-validation are tabulated in Table VI. 

TABLE VI. TEN K FOLD CROSS-VALIDATION FOR THE TEST DATASET 

Sl. no Accuracy 

1 0.97938144 

2 0.9836165 

3 0.97936893 

4 0.9848301 

5 0.97451456 

6 0.97815534 

7 0.97512136 

8 0.97936893 

9 0.9836165 

10 0.97815534 

E. Comparison with other Malware Detection Works 
This work is compared with other malware detection works 

in Table VII. This work achieves higher accuracy with datasets 
compared toYousefi-Azar et al. and comparable accuracy with 
Venkatraman  et al. and Alazab et al. Jung et al [24] take 333 
malware files with .swf extension into the test dataset from 
2007-2015 for zero-day malware to get 51–100 % accuracy. 
Alazab et al. [25] get marginal higher accuracy of 98.6 
compared to 98.49%. Shafiq et al. have a small size dataset and 
give the model performance at 99.2 Area under curve (AUC) 
that cannot be compared with accuracy. 

They use more than three times malware compared to 
benign software for training and testing. They do not define 
ways to determine unknown malware. [6] Use only one tenth of 
benign software compared to malware. This highly unbalanced 
dataset lowers the probability of false positives. They consider 
zero-day malware as one which does not match known 
signature or unknown malware. 

TABLE VII. COMPARISON WITH OTHER ZERO-DAY MALWARE WORKS 

Paper Method Sample/Dataset Result/ 
Accuracy 

This work Boosting algorithms: 
LightGBM 

Dataset Details in 
Table III 98.49  

Yousefi-
Azar et al.  
[15] 

NLP and the term 
frequency 
tf-simhasing: term 
frequency of sample 
multiple with rand 
projection matrix   

Android:Drebin, 
DexShare 
Windows PE files:  
Training:11983 
Malware, 8912 Benign 
(2016) 
Testing: 12127 
Malware, 11983  

97.33 

Venkatraman 
et al.  [23] 

Malware files to 
image as input to 
pre-trained CNN to 
get features,  
Apply SVM with 
SMO-Normalized 
Polynomial  

52k samples 98.6% 

Jung et al. 
[24] 

API call sequence 
features Use Deep 
Feed-forward NN, 
RNN  

Malicious .swf files 
333  
Benign .swf files 333  

51% to 
100% 

Alazab et al. 
[25] 

NB, kNN, 4 kernels 
with SMO. SMO– 
PolyKernel, SMO – 
Puk, SMO-
Normalized, and 
SMO- RBF 
Backpropagation J48 
and Neural Networks 
Algorithm 

66703 samples with 
51223 Malware and 
15480 Benign 
software 

98.6 

Shafiq et al. 
[6] 

Ripper, Ibk and 
SVM-SMO classifier 

1447 Benign software  
8892 + 5586 = 14478 
malware 

99.2% g 
AUC 
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V. CONCLUSION 
In this work, a boosting machine model based on 

LightGBM is enhanced using Shapely value to build an 
effective and robust machine learning model. Features derived 
by static analysis of malware and benign samples in the dataset 
are used to build the LightGBM boosting machine learning 
model. Datasets from Jan 2017 for malware is used for training 
and prediction. Waterfall plots, Decision plots and Force plots 
based on Shapley value helped identify the top few features. 
The Waterfall plots demonstrated a change in features and their 
contribution for a sample from different categories of samples 
as insight into the ML model. Table V compared the top 
features contributed to misclassified samples. The top feature 
for samples that is detected as false positive, false negative 
samples by trained models is analyzed and inductive learning 
rules are made. The inductive learning rules can be applied to 
unknown, unlabeled samples to avoid misclassification into FP 
and FN and to ensure correct detection. These top features and 
their contribution may be used to overcome the 
misclassification of malware. The cross-validation with the test 
dataset is 98.48 at maximum and 97.45 at minimum. 

The work can be further extended to analyze change in 
features and to derive inductive learning rules for 
misclassification by other ML models for false positive and 
false negative cases to ensure correct prediction. The Shapley 
values for a feature may be mapped to the probability score of 
the ML model. This will help to correlate the Shapley value to 
probability value for a feature as local explanation and as a 
whole for a sample at global explanation (structure).  Large 
datasets may be used to make a robust ML model and analyze 
reasons for misclassification for various families of malware 
such as ransomware, rootkit, Trojan horse, etc. 
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APPENDIX A 
Bn1-Bn256: The entropy of executable for a window size of 2048 bytes is 

computed for the joint distribution of byte value and put into 16x16 bins. This is 
repeated for a step size of 1024 for the full file. 

C_char1 - C_char10: Characteristics of the sample from PE file header to 
indicate if the file is DLL, Executable, systems file, etc. The value is hashed and 
put into one of the ten bins. 
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dll_c1 – dll_c10: The DLL characteristics value from the optional header of 
PE for the sample is hashed put into one of the ten bins. 

entry_name1 - entry_name50: The name of each section in the PE header of 
the sample is hashed and put into one of the fifty bins. 

exp1 – esp128: The exported APIs in the sample are hashed and put into 
one of the 128 bins. 

Exports: Flag interpreted by LIEF, a python package, indicating the 
executable exports API in the data directory of PE header. 

Imp1 – Imp1280: The DLL names and imported APIs in the DLL are 
hashed and put into one of the 1280 bins. 

H1-H256: Byte count of hex value 0x00 to 0xFF of benign software, 
malware is put their respective bin. These counts are further normalized with the 
file size.\ 

has_debug: A flag in the characteristics field of file header in PE header of 
the sample, indicating debug information for the sample. 

has_relocations: A flag in the characteristics field to indicate relocation 
sections, relocation directory. 

has_resources: A flag in the characteristics field to indicate a resource 
section, a resource data directory. 

has_signature: A flag in the characteristics field to indicate digital signature 
related information. 

has_tls: A flag in the characteristics field to indicate tls section, tls data 
directory. 

has_symbol: A flag in the characteristics field to indicate debug section with 
symbols. 

Imports: Flag interpreted by LIEF, a python package, indicating the 
executable has imports of API from DLL. 

Machine1-Machine10: It indicates hardware architecture 32/64 bit, 
processor for executable. The values are hashed and put in to one of the ten bins. 

Magic1 – Magic10: Magic value from optional header of PE for the sample 
is hashed and put in to one of the ten bins. 

num_of_sec_morethan0: Number of sections in section part of PE header 
which has content and size greater than 0 size. 

Num_sec_noname: Number of sections in section part of PE header which 
are without a name. Generally, the name of a section is .text, .rdata, .data etc. 

RX_sec_num: Number of sections in section part of PE header which has 
read and execute permission. 

Sec_size_1 – sec_size_50: The size of each section in the PE header of the 
sample is hash and put in to one of the fifty bins. 

sec_entropy_1 -- sec_entropy_50: The entropy of each section in the PE 
header of the sample is computed, hashed, and put into one of the fifty bins. 

sec_vsize1 -- sec_vsize50: The memory size of each section in the PE 
header of the sample is hashed and put in to one of the fifty bins. 

sec_char1 - sec_char50: The characteristics of each section in the PE header 
of the sample is hashed and put in to one of the fifty bins. 

Size: Size of executable. 

Str1-Str104: Five or more printable characters in the samples are hashed in 
to 104 bins. These strings include URLs starting with HTTP: HTTPS: registry 
keys starting with HKEYS, paths in systems such as c: /, file name, malware 
author’s messages, etc. 

Subsystem1 – Subsystem10: Subsystem value from optional header of PE 
header of the sample. The values are hashed and put in to one of the ten bins. 

timestamp:  Date, the timestamp of a sample. 

Vsize: virtual size of executable in memory. 

W_sec_num: Number of section in section part of PE header which has 
write permission. 
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