
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

Effective Malware Detection using Shapely Boosting
Algorithm

Rajesh Kumar, Geetha S
School of Computer Science and Engineering

Vellore Institute of Technology
Chennai, India

Abstract—Malware constitutes a prime exploitation tool to
attack the vulnerabilities in software that lead to a threat to
security. The number of malware gets generated as exploitation
tools need effective methods to detect them. Machine learning
methods are effective in detecting malware. The effectiveness of
machine learning models can be increased by analyzing how the
features that build the model contribute to the detection of
malware. The model can be made robust by getting insight into
how features contribute to each sample that is fed to a trained
model. In this paper, the boosting machine learning model based
on LightGBM is enhanced with Shapley value to detect the
contribution of the top nine features for classification such as
true positive or true negative and for misclassification such as
false positive or false negative. This insight in the model can be
used for effective and robust malware detection and to avoid
wrong detections such as false positive and false negative. The
comparison of the top features and their contribution in shapely
value for each category of the sample gives insight and inductive
learning into the model to know the reasons for misclassification.
Inductive learning can be transformed into rules. The prediction
by the trained model can be re-evaluated with such inductive
learning and rules to ensure effective and robust prediction and
avoid misclassification. The performance of models gives 98.48 at
maximum and 97.45 at a minimum by 10 fold cross-validation.

Keywords—Artificial intelligence; machine learning; malware
detection; shapely value; decision plot; waterfall plot

I. INTRODUCTION
At the current time, the malware is generated in large

numbers. Open Threat Exchange [1] is a platform for the
exchange of information related to computer security. The
reason for the high volume generation of malware is both from
the generation side, and end-use of it. Malware authors use tools
such as polymorphic and metamorphic engines. Metamorphic
engines can generate malware with minor modification of code.
It uses techniques such as register reassignment, NOP
instruction insertion, code transposition, the substitution of
machine-level opcode/instructions, dead code insertion, and
combinations of these techniques. Polymorphic engines can
generate malware with encryption, prepend data, append data,
and combinations of these techniques. The generated malware
exhibits the same behavior as old malware. However, this
generated malware can evade detection by antivirus software
based on the signature. The detection engine of many
antiviruses is based on the signature. Hence, databases of
signatures need a constant update for upcoming malware. On
the use side of malware, the number of software products has

increased over time. Ten top software products with
vulnerabilities are listed in Table I [2]. Software products with
vulnerabilities from the top ten vendors are listed in Table II [3].
These vulnerabilities are exploited for an attack using existing
or new malware. The software products are not limited to but
include Operating Systems (OS), Driver for hardware devices,
software applications, etc. The more a software product is used
and popular, the more attacks it may have. Hence, hackers need
more malware to attack the vulnerabilities. The vulnerabilities
in hardware, OS, application, firewalls, anti-virus products, etc.
may be by accident. The author [4] identifies three phases of the
life cycle of vulnerabilities. In the first phase, a product is
released in the market. The second phase starts when a
vulnerability is found in the software product. In the third phase,
the vulnerability has to be fixed by the developer and released
for the user of the software. The vulnerabilities can de
systematically discovered with needful tools. Knowing
vulnerabilities is not enough, the vulnerabilities have to be
proven by exploits, and attack software (malware). Machine
learning and deep learning methods are used for malware
detection and classification in research work these days.

TABLE I. TOP SOFTWARE VENDORS WITH VULNERABILITIES

SL
.
No
.

Vendor
Name

Number
of
Product
s

Number of
Vulnerabilitie
s

#Vulnerabilities/#Produc
ts

1 Microsof
t 655 8178 12

2 Oracle 938 8043 9

3 Google 124 6571 53

4 Debian 106 5697 54

5 Apple 139 5380 39

6 IBM 1314 5334 4

7 Cisco 5592 4137 1

8 Redhat 407 3984 10

9 Canonica
l 49 3075 63

10 Linux 23 2751 120

101 | P a g e
www.ijacsa.thesai.org

https://www.cvedetails.com/vendor/26/Microsoft.html
https://www.cvedetails.com/vendor/26/Microsoft.html
https://www.cvedetails.com/product-list/vendor_id-26/Microsoft.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/Microsoft.html
https://www.cvedetails.com/vendor/93/Oracle.html
https://www.cvedetails.com/product-list/vendor_id-93/Oracle.html
https://www.cvedetails.com/vulnerability-list/vendor_id-93/Oracle.html
https://www.cvedetails.com/vendor/1224/Google.html
https://www.cvedetails.com/product-list/vendor_id-1224/Google.html
https://www.cvedetails.com/vulnerability-list/vendor_id-1224/Google.html
https://www.cvedetails.com/vendor/23/Debian.html
https://www.cvedetails.com/product-list/vendor_id-23/Debian.html
https://www.cvedetails.com/vulnerability-list/vendor_id-23/Debian.html
https://www.cvedetails.com/vendor/49/Apple.html
https://www.cvedetails.com/product-list/vendor_id-49/Apple.html
https://www.cvedetails.com/vulnerability-list/vendor_id-49/Apple.html
https://www.cvedetails.com/vendor/14/IBM.html
https://www.cvedetails.com/product-list/vendor_id-14/IBM.html
https://www.cvedetails.com/vulnerability-list/vendor_id-14/IBM.html
https://www.cvedetails.com/vendor/16/Cisco.html
https://www.cvedetails.com/product-list/vendor_id-16/Cisco.html
https://www.cvedetails.com/vulnerability-list/vendor_id-16/Cisco.html
https://www.cvedetails.com/vendor/25/Redhat.html
https://www.cvedetails.com/product-list/vendor_id-25/Redhat.html
https://www.cvedetails.com/vulnerability-list/vendor_id-25/Redhat.html
https://www.cvedetails.com/vendor/4781/Canonical.html
https://www.cvedetails.com/vendor/4781/Canonical.html
https://www.cvedetails.com/product-list/vendor_id-4781/Canonical.html
https://www.cvedetails.com/vulnerability-list/vendor_id-4781/Canonical.html
https://www.cvedetails.com/vendor/33/Linux.html
https://www.cvedetails.com/product-list/vendor_id-33/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/Linux.html

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

TABLE II. TOP OPERATING SYSTEMS WITH VULNERABILITIES

Sl.
No. Product Name Vendor Name Product

Type
Number of
Vulnerabilities

1 Debian Linux Debian OS 5572
2 Android Google OS 3875
3 Ubuntu Linux Canonical OS 3036
4 Mac Os X Apple OS 2911
5 Linux Kernel Linux OS 2722
6 Fedora Fedoraproject OS 2538
7 iPhone OS Apple OS 2522
8 Windows 10 Microsoft OS 2459

9 Windows
Server 2016 Microsoft OS 2233

10 Windows 7 Microsoft OS 1954

The objective of this paper is to further improve the
effectiveness of the machine learning (ML) model based on
boosting algorithms such as LightGBM by overcoming the
wrong prediction, misclassification the ML model may have.
Good ML models are made general with feature engineering
and learning from a large dataset, to detect unknown malware.
There are many algorithms for ML models and many feature
engineering techniques to make the models effective that
resulting in increasing the accuracy of models.
Misclassification in the machine learning model is wrong
identification. For malware, the ML model may not identify
them and they are termed as a false negative. A false negative
detection can be very dangerous for any organization. As the
malware is not detected, it will be able to meet the objective of
the attacker despite all the security solutions applied. ML model
may also declare benign software as malware. Such occurrences
are termed false positives. A false positive detection causes
issues such as panic among users of the software,
inconveniences, non-use of software until a confirmed source
declares the software as benign. All machine learning models
have misclassification without exception.

Machine learning models to detect malware are many and
they also use feature importance as part of an algorithm to
identify top features. There are other methods for feature
importance using feature engineering such as Principal
Component Analysis (PCA), Redundant Feature Removal
(RFR), and Haar Wavelet Transform (HWT) [6] and Leave One
Feature Out importance (LOFO) method [7].

In this paper, a novel method is proposed to identify the
change in top features that contribute to the misdetection of
malware or future input sample that may be malware or benign
software to a trained ML model. In addition, to identify the
amount of contribution the top features are having for
misclassification of a future sample in consideration as input to
the ML model. Shapely values and visualization techniques are
used to achieve these objectives. Shapely values are from
classic game theory. Shapely values are used to find feature
importance in an ML model. Lundberg et al. [5] have used
Shapley value for explainable artificial intelligence. Hence,
Shapley values can identify the top features in an ML model.
The top features in an ML model based on LightGBM have

shapely values associated with them. These top features along
with their contribution to Shapley values are visualized using
decision plot, waterfall plot, and force plots. Further, this work
proposes to identify the false positive and false negative from
the test dataset part. Further, the work also associates
visualization with change in top features and amount of
contribution of top features. Having identified top features and
the amount of contribution of the top features for
misclassification, this work proposes the use of inductive
learning techniques to overcome the misclassification of future
samples. The present work aims to improve the effectiveness of
the ML model based on the LightGBM model. It can be used
for zero-day malware detection as well.

The gaps that this work addresses are highlighted as follows.

• These feature importance from algorithms and feature
engineering methods cannot associate the top features
for a new sample used for prediction by a trained
machine learning model.

• They cannot determine the amount of contribution of a
feature for a sample used for prediction by a trained
machine learning model. Hence, they cannot associate
the visualizations with the amount of contribution of a
feature for a new sample to be predicted by the machine
learning model.

• There remains always a doubt if the new sample under
test is part of high accuracy as published for the model
or part of misclassification as false negative or false
positive.

• The inductive method proposed in this work improves
the probability of prediction to a higher level.

• A novel approach as proposed in this work is not
available in the literature survey. Hence, this paper
opens new dimensions for increasing the probability of
effective detection of a new sample by a trained model.

Specific contributions in this study are:

• Use of Shapley values and visualization for
identification of top features for false negative (FN),
false positive (FP), true positive (TP), and true negative
(TN) categories of samples for LightGBM machine
learning models.

• Amount of contribution by top features for each
predicted category in Shapley values are identified. So
that the comparison for inductive learning is effective.

• Comparison of the features and amount of contributions
of features for samples with the test dataset part that may
be FP, FN, TP, and TN. Using the comparison to
identify the top features and their contribution for
misclassified FP and FN samples.

• Use of LightGBM, boosting algorithms, for effective
prediction of a future sample that may be malware or
benign software. The proposed inductive method will
avoid misclassification and improve the effectiveness of
the ML model.

102 | P a g e
www.ijacsa.thesai.org

https://www.cvedetails.com/product/36/Debian-Debian-Linux.html?vendor_id=23
https://www.cvedetails.com/vendor/23/Debian.html
https://www.cvedetails.com/vulnerability-list/vendor_id-23/product_id-36/Debian-Debian-Linux.html
https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
https://www.cvedetails.com/vendor/1224/Google.html
https://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-19997/Google-Android.html
https://www.cvedetails.com/product/20550/Canonical-Ubuntu-Linux.html?vendor_id=4781
https://www.cvedetails.com/vendor/4781/Canonical.html
https://www.cvedetails.com/vulnerability-list/vendor_id-4781/product_id-20550/Canonical-Ubuntu-Linux.html
https://www.cvedetails.com/product/156/Apple-Mac-Os-X.html?vendor_id=49
https://www.cvedetails.com/vendor/49/Apple.html
https://www.cvedetails.com/vulnerability-list/vendor_id-49/product_id-156/Apple-Mac-Os-X.html
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/vendor/33/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/Linux-Linux-Kernel.html
https://www.cvedetails.com/product/16334/Fedoraproject-Fedora.html?vendor_id=6924
https://www.cvedetails.com/vendor/6924/Fedoraproject.html
https://www.cvedetails.com/vulnerability-list/vendor_id-6924/product_id-16334/Fedoraproject-Fedora.html
https://www.cvedetails.com/vendor/49/Apple.html
https://www.cvedetails.com/vulnerability-list/vendor_id-49/product_id-15556/Apple-Iphone-Os.html
https://www.cvedetails.com/product/32238/Microsoft-Windows-10.html?vendor_id=26
https://www.cvedetails.com/vendor/26/Microsoft.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-32238/Microsoft-Windows-10.html
https://www.cvedetails.com/product/34965/Microsoft-Windows-Server-2016.html?vendor_id=26
https://www.cvedetails.com/product/34965/Microsoft-Windows-Server-2016.html?vendor_id=26
https://www.cvedetails.com/vendor/26/Microsoft.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-34965/Microsoft-Windows-Server-2016.html
https://www.cvedetails.com/product/17153/Microsoft-Windows-7.html?vendor_id=26
https://www.cvedetails.com/vendor/26/Microsoft.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-17153/Microsoft-Windows-7.html

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

This paper is organized with a literature survey in Section II,
followed by the methodology of malware detection and the use
of shapely values for visualization in Section III. The Dataset,
experimental setup, and results are outlined in Section IV. The
paper concludes in Section V with a conclusion and an
Appendix in Section VI.

II. LITERATURE SURVEY
Malware is like any software product. It has to be

distinguished from a benign software product. The methods
available to distinguish and detect the malware are broadly
categorized into static analysis, dynamic analysis, and hybrid
analysis.

A. Static Analysis
In static analysis, the malware is not executed. Features for

machine learning are extracted from the software without
running the software, the sample under consideration. It has the
advantage that the sample cannot infect the system used for
extraction of features. All the software, malware, shared
libraries required, and dynamic link libraries (DLL) have a
header. For windows, the header of the executable is termed
Portable Executable (PE) header. The features from the PE
header of windows executables can be extracted as explained in
[6][8]. In addition, features can be extracted using properties of
the executable file as an object and are termed file-related
features. File related features are not limited to but include a
histogram of bytes in executable, the entropy of complete file
entropy of various parts of files, strings embedded in the
executable, N-grams [9] from byte code, N-grams from
assembly code, N-grams from API calls, images of hex
bytecode of a file [10][11], images of hex bytecode of different
part of a file, etc. Many machine learning models and deep
learning models use features with different combinations
derived from static analysis[12]. However, malware authors use
methods such as obfuscation [13], encryption of various types
to evade feature extraction methods. The obfuscation and
encryption methods are many and may be categorized into
standard and non-standard (private). These shortcomings of
static analysis may be overcome by dynamic analysis [14].

Authors in [15] convert the sample file to images and extract
features using the trained CNN model. The extracted features
are plotted using t-Distributed Stochastic Neighbor to identify
the cluster of malware. Subsequently, they make N-grams with
n values 1 to 5 using the API call sequence for six types of
malware actions. The malware actions are creating or
modifying files, hooking on to system services, getting
information for loading the DLL, etc. The N-grams are used
with eight types of distance measurement to make a similarity
matrix using four types of kernel functions with the Support
Vector Method (SVM). Distance measurements used in this
work are Cosine, Bray-Curtis, Canberra, Manhattan,
Chebyshev, Euclidean, Hamming distance, and Correlation for
feature extraction. This technique may handle malware with a
known packing method, as they can be unpacked to process and
get features but will have a deficiency in handling packed
malware with unknown packing methods.

Yousefi-Azar et al in [15] extract static features of a sample,
malware, or benign software, using term frequency based on

natural language processing. Extracted features are used with
the deep learning model and Extreme Learning Machine (ETM)
for malware detection. Backpropagation results in large feature
space which increases computation complexity. The authors
multiply term frequency with a random projection matrix to
reduce the computation complexity. Balanced android dataset
Drebin and Dexshare and windows executables from 2016 are
used as a dataset. Windows executables from 2017 are tested as
zero-day malware to achieve an accuracy of 95.5%.

The authors [16] collect malware samples that are used for
attacks in financial institutions in Brazil, affecting cyber users
for over 6 years. They use static analysis to extract features
from PE header of collected samples and use Multilayer Layer
Perceptron, K-nearest neighbor (KNN), Random Forest (RF),
and Support Vector Machine (SVM) classifiers to detect
malware. Further, they identify the family of malware using the
t-Distributed Stochastic Neighbor Embedding (SNE) method.
Concept drift of ML model is detected using Drift Detection
Method (DDM) and Early Drift Detection Method (EDDM) to
detect drift in the malware samples over time. The authors
visualize and relate the new malware families coming over time
using confirmation and warning indicated by the drift methods.
They conclude that a warning indication by drift methods
implies a degradation of ML models and a confirmation
indication by drift method implies that the ML model needs to
be updated.

B. Dynamic Analysis
In dynamic analysis, the malware is executed in a protected

environment, and the behaviors, actions of malware are
observed. In a normal environment, the sample will infect the
system and will affect the future normal use of the system.
Hence, a protected environment is used to avoid infection of the
system conducting the malware test. The actions and behaviors
of malware are not limited to but include adding, deleting, and
modifying related changes in the file name, registry, processes,
communication in the network, system configuration, etc.
Features are derived with these changes and used in machine
learning models with various algorithms. The dynamic analysis
method is very expensive in terms of time to execute malware,
computing resources, and trained manpower required. Besides,
the malware authors employ techniques to avoid malware
detection. One of the techniques employed by the malware
author is to detect the virtual environment required for running
the malware. If the virtual environment is detected, they switch
off the behavior of malware and act as benign software. Another
technique used by malware authors is to connect to the
command and control center owned by them and download the
malware at a later time to take control of the target machine. If
the network is not available in virtual environment, the sample
acts as benign software. Hence, trained persons are required to
note this behavior of malware. The hybrid analysis is used to
overcome these shortcomings of dynamic analysis.

Robert et al. [17] use a large dataset of malware with a
Malheur tool to know the behavior of samples. Malheur tool
executes the samples and generates a report. Needful
information such as DLLs imported, API used as the callback
are extracted from the report to understand the actions, behavior
of malware with help of domain experts. Domain experts make
rules and rules are externalized to the malware detection

103 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

module. Authors believe malware will exhibit its behavior as
per framed rule and that can be detected. However, new types of
malware may not exhibit behavior as per rules framed, because
that malware was not part of the dataset used. Hence, this
unknown malware will not be detected.

Binayak et al. [18] create a knowledge database of In-
memory processes based on the use of Dynamic Link Library
(DLL) sequences using TF-IDF (Term Frequency-Inverse
Document Frequency) and multinomial logistic regression
based learning approach. The suspected process from malware
uses a different DLL than of system DLL. This knowledge
database is compared with DLL sequences used by In-memory
processes to identify suspected, unwanted processes and
malware.

C. Hybrid Analysis
Hybrid analysis combines static and dynamic analysis to

overcome their shortcoming. Lifan Xu et al. [19] extract both
static and dynamic features from android malware dataset and
represent the features as vector. Advance features are derived
using deep learning, a Deep Neural Network (DNN) using both
the original static and dynamic feature vector sets. The
advanced and original features are concatenated as new vectors
as input to the DNN that modifies with multiple different kernel
to detect malware. The combined hybrid analysis has
shortcomings as in dynamic analysis or static analysis.

Sethi et al. [20] use feature from both static analysis and
dynamic analysis on PHP, pdf, exe files. For dynamic analysis,
the authors use a Cuckoo sandbox. Cuckoo sandbox is a virtual
environment to run executable. It gives an analysis report of
actions and behavior of the file executed. J48, SMO, and
Random Forest machine learning algorithms are applied in the
WEKA tool with the combined feature extracted using static
and dynamic analysis. They achieved 100% accuracy with J48.

The literature survey gives different methods of improving
the accuracy and other performance parameters of the machine
learning model by feature engineering for malware detection.
However, they do not give insight into the top features and
contribution of each feature for a new sample by a trained
machine learning model. Hence, there is a gap in research that
can give insight into the top features and their contribution in
the prediction of an unseen sample by machine learning model.
This work is an effort to fill the gap.

III. METHODOLOGY

A. Shapley Value and Feature Importance
The machine learning model should be both interpretable

and accurate. Interpretation of ML model based on decision tree
may be based on decision path, heuristic value to features, and
model-agnostic. In this work, Shapley value is used for making
the ML model interpretable. A local explanation is assigning a
numeric measure, credit, to each input feature that constitutes a
machine learning model based on a decision tree. These local
explanations are combined to represent a global structure that
represents an ML model based on a decision tree or an
ensemble of decision trees. The ensemble of decision trees may
be based on a bagging algorithm such as Random Forest or
boosting algorithm such as LightGBM. The global explanation

of the ML model continues to retain the local faithfulness as in
local explanation. Shapely values from game theory satisfy
simultaneously local accuracy, consistency, and missingness
three properties required for credit score to a feature in an ML
model. The credit score, Shapley values, are computed by one
feature at a time into the output function of the model with
some condition as in Eq. (1). Lundberg et al. [5] follow the
causal do-notation formulation. It justifies use of the Shapley
additive explanation (SHAP) interaction values as a richer type
of local explanation and feature perturbation formulation.

𝑓𝑥(𝑆) = 𝐸[𝑓(𝑋)|𝑑𝑜(𝑋𝑠 = 𝑥𝑠)] (1)

S = Set of features to condition on

X = A random variable from M input features of model

x = input vector for the current prediction for the model

Lundberg et al. [5] give TreeExplainer, an explanation
method for ML models based on tree, that enables optimal local
explanations based on shapley values from classic game theory.
Classic Shapley values are ways to measure feature importance.
It is optimal and maintains natural properties from cooperative
game theory. Exact computation of these values is NP-hard
problem. Hence, they have approximate computation. Authors
have developed an algorithm for decision tree categories of
algorithms that computes local explanations with theoretical
guarantees of local accuracy and consistency in polynomial
time with Shapley values. Local explanations are also used to
capture feature interactions in a theoretically grounded way. S is
the set of features in Eq. (1) to condition on and refers to
features of a specific tree in the ensemble of trees in the
boosting LightGBM machine learning model. We can find the
SHAP value for each feature, x in Eq. (1), in a tree using the
TreeExplainer and add for all the features, X in Eq. (1), in the
tree under consideration to match with the tree. This can be
applied to all the trees in the model one by one. Finally, we find
the contribution of a feature for the ensemble of trees by the
TreeExplainer. By knowing the contribution of all features in an
ML model, it provides valuable insight into top features for
each prediction.

B. Malware Detection Model
All samples in the dataset are from windows executable.

The features are derived from the PE header of the samples and
as properties of a file. Each window executable contains a PE
header that is explained in [6] [8] [21]. The PE header can be
extracted using a python program using "Library for
Instrumenting Executable Files" (LIEF) a library in python. The
extracted features are listed in detail in Appendix A. PE header
consists of DOS header, file header, NT header, section header,
optional header, and many directories such as Import
directories, Resource directory, Export directory, and Exception
directory. Import directories list Dynamic Link Libraries (DLL)
loaded by the executable and Application Program Interfaces
(APIs) used by executables. Resource directory lists the
information required by executable such as icons, bitmaps,
strings, menus, dialogs, configuration files, version information,
etc. Exception directory lists exception handling information.
Features extracted are listed in Appendix A. Some of the
features are described here. File header of PE header gives
features such as timestamp, vsize, has_debug, has_relocations,

104 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

has_signature, has_tls, has_symbol, imports, Machine1-
Machine10 listed in Appendix A. Machine representing, type of
processor required, in the file header part of PE header is hashed
and put into one of ten bins and named as Machine1 -
Machine10. Features that are hashed and put in several bins are
named like this. Section header and optional header give section
name, section size, section characteristics, and start and end
byte contents of each section. The section name is a string. It is
hashed and put into 1 of 50 bins. This gives us feature
entry_name1 - entry_name50 listed in Appendix A. Section
size, section virtual size, and section characteristics values are
hashed and put into 1 of 50 bins. These operations give us
features Sec_size_1 – sec_size_50, sec_vsize1 - sec_vsize50,
sec_char1 - sec_char50 listed in Appendix A. Entropy of
content of each section in the sample is hashed and put in to 1 of
50 bins. This gives us features sec_entropy_1 - sec_entropy_50
listed in Appendix A.

DLL in an import directory and the name of an API in the
DLL are concatenated to make a string. The string is hashed and
put into one of 1280 bins. This gives us the feature Imp1-
Imp1280 listed in Appendix A. Function name in the export
directory is hashes and out into one of 128 bins. This gives us
feature exp1-exp128 listed in Appendix A. File-related
information used to derive features are histogram of bytes,
strings, and entropy of hex values in each sample. The byte
value in the sample can be 0-255. A histogram is count of value
of the byte in each sample. The count of the value of a byte is
put into the respective bin H1-H256 to represent the feature
listed in Appendix A. Strings in a sample give very important,
insightful information used by malware. Strings reveal created
and modified filenames and registry related information. Strings
may also reveal IP addresses used by malware authors for
communication, command and control center URLs, signature
of malware authors and groups. All strings of size five-character
or more are extracted, hashed, and put in one of 104 bins. This
gives us features Str1 - Str104 listed in Appendix A. The
encryption and packing methods increase the entropy, disorder
of bytes in samples. Entropy is computed as the method
described by [8]. In this method, a block size of 2048 bytes is
extracted and counts of bytes are put in 16x16 bins. These
operations of making a block of 2048 bytes with windows of
1024 bytes and putting in 16x16 bins are repeated for the entire
content of a sample. This gives us features Ben1-Ben256 listed
in Appendix A. Both the PE header and file-related information
give 2351 features. Dataset consists of malware and benign
samples and belongs to January 2017 time period.

Gradient Boosting Decision Tree (GBDT) LightGBM ML
algorithms are selected for experiments in this work. The ML
algorithm is selected for the following advantages.

• Feature importance of the ML model can be extracted
after training of the model.

• Faster training and prediction

• Ease of computation

Fig. 1. System Block Diagram for Top Feature and their Contribution from

Shapley Diagrams for Misclassification and Inductive Learning.

The system block diagram for this work is shown in Fig. 1.
LightGBM boosting machine learning algorithm in the sklearn
library is used to train the ML model. A trained model can
predict the samples in the test dataset and correct detection of
samples in true positive (TP), malware, and true negative (TN)
benign software categories. Misclassified samples such as false
positive (FP), benign software detected as malware, and false
negative (FN), malware detected as benign software categories
can also be identified. Nine to twenty five top features among
the 2351 features can be identified for samples in TP, TN, FP,
FN categories using diagrams such as waterfall plots, decision
plots, and force plots. These diagrams show the amount of
contribution by each top feature in Shapley values. Shapley
values give a local explanation of top features with global
structure as per ML model prediction for a sample. Changes in
the top few features and their contribution to Shapley value for
TP, TN, FP, and FN is compared. The comparison identifies a
change in top features and their contribution for FP, FN also.
This insight can be used as inductive learning to identify other
samples which may have been misclassified and for future
unknown samples without labels. Having found the
misclassified samples by trained ML classifier, correct
classification or malware detection can be performed. This leads
to an increase in the performance of the trained ML model. One
has to be very careful in this comparison and inductive learning
with an unknown sample that does not have a label. Top
features and their contribution in Shapley value for the
unknown sample should match top features and their
contribution in Shapley value for with known TP and TN
samples also.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset
The dataset in the proposed system is derived from [21]. It

has Malware data from December-2006 to December 2017.
The dataset from December 2006 to December 2016 contains
only the malware and no benign entries and the reason for
exclusion. Fig. 2 shows the exclusions, filter and pre-process
used on the dataset to get the sub dataset used in this
experiment. Dataset part from January 2017 is used in this
proposed system. The unidentified entries are without labels in
the dataset and are excluded for malware detection and
analysis. The unidentified entries in the dataset may be
malware or cleanware. The dataset consists of 32761 malware
and 17186 benign software that appeared in January-2017. The
details of the derived dataset are in Table III.

105 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

Fig. 2. Filter and Process the Database for the Experiments.

TABLE III. DATASET USED IN THIS WORK

SL No. Samples label appeared
1 28606 Unidentified 2017-01
2 17180 Benign 2017-01
3 32761 Malware 2017-01

Each entry in the dataset has 2351 features. These features
are from PE headers, sections of windows executable, systems
APIs used in the executable, exported API from the executable,
and file related properties. File related properties include
Histogram of the complete executable in 256 bins, Byte entropy
of executable file hashed into 256 bins and strings in 104 bins.
The executable here means both the malware and cleanware.
These features are defined in Appendix A and are used in the
various diagrams in this paper. These features’ names help
identify exact features that are contributing to the detection of
malware and the amount of contribution in the detection of
malware or cleanware.

B. Experimental Setup
Intel(R) Core(TM) i5-7200U CPU @ 2.50 GHz, 2701 MHz,

2 Core(s), and 4 Logical Processor(s) with 8 GB Ram is used as
computing resource in this work.

C. Malware Detection with LightGBM
Dataset is divided into a training set and testing set in the

ratio of 70% and 30%. The model is trained with the training set
and tested with the testing set. The results of this are in row 1 of
Table IV. It has performance data for Accuracy, Precision,
Recall, F1-score, and confusion matrix parameters in terms of
false negative (FN), false positive (FP), true positive (TP), and
true negative (TN).

30% of the dataset is separated for the testing of the
LightGBM model. The samples in the test dataset are identified
in false negative (FN), false positive (FP), true positive (TP),
and true negative (TN) categories. It is interesting to explore
how the top features and other features contribute to FP, FN,
TP, and TN samples by the LightGBM algorithm. Waterfall
plot, decision plot, and force plot are drawn with Shapley
values.

TABLE IV. PERFORMANCE OF LIGHTGBM MODEL WITH ZERO-DAY
MALWARE

Accur
acy TP F

P
F
N TN precis

ion
rec
all

f1-
score

supp
ort

D1-
Test 98.483 552

0
15
0

10
0

107
11 0.99 0.9

9 0.99 1081
1

D1 99.389 169
98

18
2

12
3

326
38 0.99 1 1 3276

1

Fig. 3. Waterfall Plot of True Positive Sample in a Dataset with Shapley

Values for each Feature.

Fig. 3 shows the waterfall plot for a true positive in the
dataset. The Shapley value sum features to 5.378. The waterfall
plot adds the contribution of each feature and also shows the top
features with their contribution leading to the decision.
Although the total contribution of 2342 features; lowest bar, in
figure is significant compared to any top feature. In additional
analysis, the feature importance of LightGBM showed only 588
features contributed to the model. Other 1763 features do not
have any contribution to malware detection. Hence, many
features in 2342 features have zero contribution. Kumar et al.
[22] identified that 276 features among 2351 only contributed to
prediction in the XGBoost model with 600k samples of training
dataset from [21]. The remaining 2075 features have zero
contribution to the model.

These figures help us to identify top features contributing to
decision at leaf note with LightGBM algorithm.

Fig. 4 is displays the decision plot for a true positive entry in
the dataset and shows how the top features contribute to make
the decision. The decision plot adds the contribution of each
feature and draws the line that takes it to make a decision. It has
the same TOP features as in Fig. 3. The waterfall plot adds the
contribution of all the features but does not show the graph that
leads to a decision as in the decision plot.

Fig. 4. Decision Plot of True Positive Sample in Dataset with Shapley

Values for each Feature.

106 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

The decision plot can be for more number of samples. Fig. 5
shows the decision plot for the first ten samples in the dataset.
The value that shows negative from zero in blue color are
benign and the values that are on the right side of two, the
purple color vertical line, in the graph are malware. The seven
samples, pink color, with the specific features as shown are the
malware and three samples are benign. The objective of these
figures is to display how the features are contributing to
decision with use of the LightGBM model. The label of samples
is verified with the prediction of each sample with the
LightGBM GBDT algorithm for all the 10 samples. It matches
as given in the decision plot.

Fig. 6 shows the force plot for a true positive sample in the
dataset in the Shapley values. The force plot shows how each of
the feature is contributing in the positive direction from the left
side with red color and other features that contribute negatively
to scale value down and finally the value set near 5.38 for
Shapley values. The top three features that contribute to the
decision are named. The meaning of these features can be
referred at Appendix A. The force plot cannot display the name
of many features as in the decision plot. The top three features
are the same as in Fig. 3 and Fig. 4.

Fig. 7 shows the force plot for the first 10 samples of the
dataset in Shapley values. This figure is like rotating Fig. 6
clockwise and stacking the ten force plot of the figure in the x-
axis. The count of the sample is seen at the top with numbers 0,
1, 9. The Y-axis displays the Shapley value for samples. The
Shapley values for sample 2 are different from another sample.
This change in Shapley value for each sample in the dataset is
visible. It is possible to change the parameters in x-axis and y-
axis from a drop down menu and analyze the top features for a
sample. Amount of contribution top features make to the
decision using the LightGBM algorithm can be observed.

Fig. 5. Decision Plot of First 10 Samples in Dataset with Shapley Values for

each Feature.

Fig. 6. Force Plot of True Positive in Dataset with Shapley Values for each

Feature.

Fig. 7. Force Plot of First 10 Samples in Dataset with Shapley Value for

each Feature.

Fig. 8 displays a waterfall plot for a false positive sample
from the test dataset part of the dataset. The advantages of
waterfall plots are:

• Top 9 features contributing to predicting the sample as a
false positive.

• In the Shapley scale, it starts at 2.0 and adds up to 3.589
with the top 9 features contributing in both positive and
negative directions.

• The contribution of the remaining 2342 features for the
sample is +0.2, much less than the top five features.

Fig. 8. Waterfall Plot of a False Positive Sample in Dataset in Shapley Value

for each Feature.

107 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

Fig. 9 reveals the force plot for a false positive sample in the
test dataset from dataset. The top features are RX_sec_num,
C_char1, and has_debug from the PE header. The contribution
of RX_sec_num is the highest among all the features. The top
features for false positive in Fig. 9 are very different from the
top features of malware (true positive) in Fig. 3. In addition, the
final Shapley value for the sample is down to -0.09 in Fig. 9
compared to 5.38 in Fig. 3 for malware. The start point is very
low at less than -6 in Fig. 9 compared to the start point at -1 in
Fig. 3.

Fig. 10 presents a waterfall plot for a False Negative
sample in the test dataset from the dataset in the Shapley value.
All the advantages as explained for a false positive sample can
be observed. In addition, features that are making the sample
false positive and false negative can be compared. There is no
contribution of the RX_sec_num, H129 feature in the false
negative sample as in the false positive sample. The
contribution of feature C_char4 is there in false negative but
not in false positive.

Fig. 11 shows the force plot for a False Negative (FN)
sample in the test dataset in Shapley values.

Fig. 9. Force Plot of a False Positive Sample in Dataset in Shapley Value for

each Feature.

Fig. 10. Waterfall Plot of a False Negative Sample in Dataset in Shapley

Value for each Feature.

Fig. 11. Force Plot of a False Negative Sample in Dataset in Shapley Value

for each Feature.

Fig. 12 shows the waterfall plot for the True negative
sample in test dataset in Shapley value. Fig. 13 gives the force
plot for the True negative (TN) sample in the test dataset in
Shapley value.

The top features of waterfall plots in Shapley value from
Fig. 3, Fig. 8, Fig. 10, Fig. 12 for in FP, FN, TP, and TN
samples respectively in test dataset of the dataset are compared
in Table V. Top features are listed in the features column. For a
sample in each category in false positive, false negative, true
positive and true negative, it identifies the presence of a feature
as “Y” and no presence as “N”. Further, it identifies the topmost
feature, with the value among the top feature with a “T” in each
category. The probability value contributed by each feature is
identified in respective columns. This table helps to conclude
that there is disjoint set of features for each category samples in
FP, FN, TP, and TN. The topmost feature for the FN sample is
has_debug and is present in FP and TP. The topmost feature for
FP is Rx_sec_num and contributes very low value in other
categories of samples.

The contribution of the remaining 2342 features is lowered
significantly for FP and FN. For TP the value is +ve .42, for TN
the value is negative -.03.

These comparisons can identify the misclassified FP and FN
samples and improve the efficiency of the ML model by correct
classification for an unknown sample. Few insightful rules that
can be formed are as follows:

• The malware sample with a high contribution of
Imp321, H33, C_char1, and str43 may be a FP sample.

• The Malware sample with the highest contribution by
Rx_sec_num among all the features will be a FN
sample.

Fig. 12. Waterfall Plot of a True Negative Sample in dataset in Shapley Value

for each Feature.

Fig. 13. Force Plot of a True Negative Sample in the Dataset in Shapley

Value for each Feature.

108 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

TABLE V. FEATURES AND THEIR CONTRIBUTION IN FALSE POSITIVE,
FALSE NEGATIVE, TRUE POSITIVE, TRUE NEGATIVE PREDICTION BY

LIGHTGBM MODEL

S
L
no

Features False
Positive

False
Negative

True
Positive

True
Negative

1 C_char1 Y,+0.81 Y, 0.73 Y,0.61 Y, –2.25

2 C_char4 N Y, -0.65 Y, -0.45 Y, - 1.08

3 Machine6 N N N Y, -1.27

4 Subsystem9 0.18 N N Y, -1.0

5 Rx_sec_nu
m Y, +0.95 N Y, 0.36 0.24

6 has_debug Y, +0.48 Y, -0.88 Y, 0.61 -0.5

7 sec_size43 Sec_size44
= -0.17 Y, 0.31 0.24,

sec_char38 N

8 H129 Y, -0.37

Y, H33 =
-0.28
H67=0.2
6

Y, -0.35 -0.28

9 Imp370
Y, -0.32
imp857=0.1
6

N Imp31=0.2
9 N

10 sec_char38 N N 0.23 N

11 Str43 N -0.25 N str104=0.1
8

12 imports N N N -0.48

13 Ben255 N
-0.26,
BEn253=
-0.24

N N

14 Other 2342
features 0.2 Y,-0.67 Y, 1.72 Y, -2.04

D. k-Fold Cross-Validation
Cross-validation with k=10 is performed for less biased and

less optimistic accuracy value for the LightGBM model. The
test dataset is used for this 10-fold cross-validation test. The
results of cross-validation are tabulated in Table VI.

TABLE VI. TEN K FOLD CROSS-VALIDATION FOR THE TEST DATASET

Sl. no Accuracy

1 0.97938144

2 0.9836165

3 0.97936893

4 0.9848301

5 0.97451456

6 0.97815534

7 0.97512136

8 0.97936893

9 0.9836165

10 0.97815534

E. Comparison with other Malware Detection Works
This work is compared with other malware detection works

in Table VII. This work achieves higher accuracy with datasets
compared toYousefi-Azar et al. and comparable accuracy with
Venkatraman et al. and Alazab et al. Jung et al [24] take 333
malware files with .swf extension into the test dataset from
2007-2015 for zero-day malware to get 51–100 % accuracy.
Alazab et al. [25] get marginal higher accuracy of 98.6
compared to 98.49%. Shafiq et al. have a small size dataset and
give the model performance at 99.2 Area under curve (AUC)
that cannot be compared with accuracy.

They use more than three times malware compared to
benign software for training and testing. They do not define
ways to determine unknown malware. [6] Use only one tenth of
benign software compared to malware. This highly unbalanced
dataset lowers the probability of false positives. They consider
zero-day malware as one which does not match known
signature or unknown malware.

TABLE VII. COMPARISON WITH OTHER ZERO-DAY MALWARE WORKS

Paper Method Sample/Dataset Result/
Accuracy

This work Boosting algorithms:
LightGBM

Dataset Details in
Table III 98.49

Yousefi-
Azar et al.
[15]

NLP and the term
frequency
tf-simhasing: term
frequency of sample
multiple with rand
projection matrix

Android:Drebin,
DexShare
Windows PE files:
Training:11983
Malware, 8912 Benign
(2016)
Testing: 12127
Malware, 11983

97.33

Venkatraman
et al. [23]

Malware files to
image as input to
pre-trained CNN to
get features,
Apply SVM with
SMO-Normalized
Polynomial

52k samples 98.6%

Jung et al.
[24]

API call sequence
features Use Deep
Feed-forward NN,
RNN

Malicious .swf files
333
Benign .swf files 333

51% to
100%

Alazab et al.
[25]

NB, kNN, 4 kernels
with SMO. SMO–
PolyKernel, SMO –
Puk, SMO-
Normalized, and
SMO- RBF
Backpropagation J48
and Neural Networks
Algorithm

66703 samples with
51223 Malware and
15480 Benign
software

98.6

Shafiq et al.
[6]

Ripper, Ibk and
SVM-SMO classifier

1447 Benign software
8892 + 5586 = 14478
malware

99.2% g
AUC

109 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

V. CONCLUSION
In this work, a boosting machine model based on

LightGBM is enhanced using Shapely value to build an
effective and robust machine learning model. Features derived
by static analysis of malware and benign samples in the dataset
are used to build the LightGBM boosting machine learning
model. Datasets from Jan 2017 for malware is used for training
and prediction. Waterfall plots, Decision plots and Force plots
based on Shapley value helped identify the top few features.
The Waterfall plots demonstrated a change in features and their
contribution for a sample from different categories of samples
as insight into the ML model. Table V compared the top
features contributed to misclassified samples. The top feature
for samples that is detected as false positive, false negative
samples by trained models is analyzed and inductive learning
rules are made. The inductive learning rules can be applied to
unknown, unlabeled samples to avoid misclassification into FP
and FN and to ensure correct detection. These top features and
their contribution may be used to overcome the
misclassification of malware. The cross-validation with the test
dataset is 98.48 at maximum and 97.45 at minimum.

The work can be further extended to analyze change in
features and to derive inductive learning rules for
misclassification by other ML models for false positive and
false negative cases to ensure correct prediction. The Shapley
values for a feature may be mapped to the probability score of
the ML model. This will help to correlate the Shapley value to
probability value for a feature as local explanation and as a
whole for a sample at global explanation (structure). Large
datasets may be used to make a robust ML model and analyze
reasons for misclassification for various families of malware
such as ransomware, rootkit, Trojan horse, etc.

REFERENCES
[1] “AlienVault - Open Threat Exchange.” https://otx.alienvault.com/

(accessed Dec. 29, 2021).
[2] “Top 50 products having highest number of cve security vulnerabilities.”

https://www.cvedetails.com/top-50-products.php (accessed Dec. 29,
2021).

[3] “Top 50 Vendors By Total Number Of ‘Distinct’ Vulnerabilities.”
https://www.cvedetails.com/top-50-vendors.php (accessed Dec. 29,
2021).

[4] H. Pohl, “Zero-Day and Less-Than-Zero-Day Vulnerabilities and
Exploits,” 2008.

[5] S. M. Lundberg et al., “From local explanations to global understanding
with explainable AI for trees,” Nature Machine Intelligence, vol. 2, no.
1, pp. 56–67, 2020, doi: 10.1038/s42256-019-0138-9.

[6] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq, “A Framework for
Efficient Mining of Structural Information to Detect Zero-Day
Malicious Portable Executables,” no. October, 2015.

[7] S. A. Roseline, S. Geetha, and S. Member, “High Performance Android
Malware Detection System using Gradient Boosting based Static Feature
Selection and Classifier Paradigm,” pp. 1–25.

[8] Stamp, Mark, Mamoun Alazab, and Andrii Shalaginov. Malware
Analysis Using Artificial Intelligence and Deep Learning. Springer,
2021.

[9] J. Saxe and K. Berlin, “Deep neural network based malware detection
using two dimensional binary program features,” 2015 10th
International Conference on Malicious and Unwanted Software,
MALWARE 2015, pp. 11–20, 2016, doi:
10.1109/MALWARE.2015.7413680.

[10] S. A. Roseline, S. Geetha, S. Kadry, and Y. Nam, “Intelligent Vision-
Based Malware Detection and Classification Using Deep Random Forest
Paradigm,” IEEE Access, vol. 8, pp. 206303–206324, 2020, doi:
10.1109/ACCESS.2020.3036491.

[11] J. Hemalatha, S. A. Roseline, S. Geetha, S. Kadry, and R. Damaševičius,
“An efficient densenet ‐ based deep learning model for Malware
detection,” MDPI Entropy, vol. 23, no. 3, pp. 1–23, 2021, doi:
10.3390/e23030344.

[12] S. K. J. Rizvi, W. Aslam, M. Shahzad, S. Saleem, and M. M. Fraz,
“PROUD-MAL: static analysis-based progressive framework for deep
unsupervised malware classification of windows portable executable,”
Complex & Intelligent Systems, Oct. 2021, doi: 10.1007/s40747-021-
00560-1.

[13] D. Mafaz, “Generic Packing Detection Using Several Complexity
Analysis for Accurate Malware Detection,” International Journal of
Advanced Computer Science and Applications, vol. 5, no. 1, pp. 7–14,
2014, doi: 10.14569/ijacsa.2014.050102.

[14] M. Tang and Q. Qian, “Dynamic API call sequence visualisation for
malware classification,” IET Information Security, vol. 13, no. 4, pp.
367–377, 2019, doi: 10.1049/iet-ifs.2018.5268.

[15] M. Yousefi-Azar, L. G. C. Hamey, V. Varadharajan, and S. Chen,
“Malytics: A malware detection scheme,” IEEE Access, vol. 6, pp.
49418–49431, 2018, doi: 10.1109/ACCESS.2018.2864871.

[16] F. Ceschin, F. Pinage, M. Castilho, D. Menotti, L. S. Oliveira, and A.
Gregio, “The Need for Speed: An Analysis of Brazilian Malware
Classifers,” IEEE Security and Privacy, vol. 16, no. 6, pp. 31–41, 2019,
doi: 10.1109/MSEC.2018.2875369.

[17] R. Gove, J. Saxe, S. Gold, A. Long, G. B. I. Labs, and Z. Piper, “SEEM:
A scalable visualization for comparing multiple large sets of attributes
for malware analysis,” ACM International Conference Proceeding
Series, vol. 10-Novembe, pp. 72–79, 2014, doi:
10.1145/2671491.2671496.

[18] B. Panda and S. N. Tripathy, “Detection of Anomalous In-Memory
Process based on DLL Sequence,” International Journal of Advanced
Computer Science and Applications, vol. 11, no. 10, pp. 185–194, 2020,
doi: 10.14569/IJACSA.2020.0111025.

[19] L. Xu, D. Zhang, N. Jayasena, and J. Cavazos, “HADM: Hybrid
Analysis for Detection of Malware,” Lecture Notes in Networks and
Systems, vol. 16, pp. 702–724, 2018, doi: 10.1007/978-3-319-56991-
8_51.

[20] K. Sethi, B. K. Tripathy, S. K. Chaudhary, and P. Bera, “A Novel
Malware Analysis for Malware Detection and Classification using
Machine Learning Algorithms,” ACM International Conference
Proceeding Series, pp. 107–116, Oct. 2017, doi:
10.1145/3136825.3136883.

[21] H. S. Anderson and P. Roth, “EMBER: An Open Dataset for Training
Static PE Malware Machine Learning Models,” 2018.

[22] Kumar, Rajesh; Geetha S, “Malware classification using XGboost-
Gradient Boosted Decision Tree,” Advances in Science, Technology and
Engineering Systems Journal, Sep. 2020, doi: 10.25046/aj050566.

[23] S. Venkatraman and M. Alazab, “Use of Data Visualisation for Zero-
Day Malware Detection,” Security and Communication Networks, vol.
2018, 2018, doi: 10.1155/2018/1728303.

[24] W. Jung and S. Kim, “Poster : Deep Learning for Zero-day Flash
Malware Detection,” In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), pp. 2–3, 2015.

[25] M. Alazab, S. Venkatraman, P. Watters, and M. Alazab, “Zero-day
malware detection based on supervised learning algorithms of API call
signatures,” Conferences in Research and Practice in Information
Technology Series, vol. 121, no. June 2014, pp. 171–182, 2010.

APPENDIX A
Bn1-Bn256: The entropy of executable for a window size of 2048 bytes is

computed for the joint distribution of byte value and put into 16x16 bins. This is
repeated for a step size of 1024 for the full file.

C_char1 - C_char10: Characteristics of the sample from PE file header to
indicate if the file is DLL, Executable, systems file, etc. The value is hashed and
put into one of the ten bins.

110 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

dll_c1 – dll_c10: The DLL characteristics value from the optional header of
PE for the sample is hashed put into one of the ten bins.

entry_name1 - entry_name50: The name of each section in the PE header of
the sample is hashed and put into one of the fifty bins.

exp1 – esp128: The exported APIs in the sample are hashed and put into
one of the 128 bins.

Exports: Flag interpreted by LIEF, a python package, indicating the
executable exports API in the data directory of PE header.

Imp1 – Imp1280: The DLL names and imported APIs in the DLL are
hashed and put into one of the 1280 bins.

H1-H256: Byte count of hex value 0x00 to 0xFF of benign software,
malware is put their respective bin. These counts are further normalized with the
file size.\

has_debug: A flag in the characteristics field of file header in PE header of
the sample, indicating debug information for the sample.

has_relocations: A flag in the characteristics field to indicate relocation
sections, relocation directory.

has_resources: A flag in the characteristics field to indicate a resource
section, a resource data directory.

has_signature: A flag in the characteristics field to indicate digital signature
related information.

has_tls: A flag in the characteristics field to indicate tls section, tls data
directory.

has_symbol: A flag in the characteristics field to indicate debug section with
symbols.

Imports: Flag interpreted by LIEF, a python package, indicating the
executable has imports of API from DLL.

Machine1-Machine10: It indicates hardware architecture 32/64 bit,
processor for executable. The values are hashed and put in to one of the ten bins.

Magic1 – Magic10: Magic value from optional header of PE for the sample
is hashed and put in to one of the ten bins.

num_of_sec_morethan0: Number of sections in section part of PE header
which has content and size greater than 0 size.

Num_sec_noname: Number of sections in section part of PE header which
are without a name. Generally, the name of a section is .text, .rdata, .data etc.

RX_sec_num: Number of sections in section part of PE header which has
read and execute permission.

Sec_size_1 – sec_size_50: The size of each section in the PE header of the
sample is hash and put in to one of the fifty bins.

sec_entropy_1 -- sec_entropy_50: The entropy of each section in the PE
header of the sample is computed, hashed, and put into one of the fifty bins.

sec_vsize1 -- sec_vsize50: The memory size of each section in the PE
header of the sample is hashed and put in to one of the fifty bins.

sec_char1 - sec_char50: The characteristics of each section in the PE header
of the sample is hashed and put in to one of the fifty bins.

Size: Size of executable.

Str1-Str104: Five or more printable characters in the samples are hashed in
to 104 bins. These strings include URLs starting with HTTP: HTTPS: registry
keys starting with HKEYS, paths in systems such as c: /, file name, malware
author’s messages, etc.

Subsystem1 – Subsystem10: Subsystem value from optional header of PE
header of the sample. The values are hashed and put in to one of the ten bins.

timestamp: Date, the timestamp of a sample.

Vsize: virtual size of executable in memory.

W_sec_num: Number of section in section part of PE header which has
write permission.

111 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Literature Survey
	A. Static Analysis
	B. Dynamic Analysis
	C. Hybrid Analysis

	III. Methodology
	A. Shapley Value and Feature Importance
	B. Malware Detection Model

	IV. Experimental Results and Analysis
	A. Dataset
	B. Experimental Setup
	C. Malware Detection with LightGBM
	D. k-Fold Cross-Validation
	E. Comparison with other Malware Detection Works

	V. Conclusion
	Appendix A

