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Abstract—Currently, research for osteoporosis examination 
using dental radiographic images is increasing rapidly. Many 
researchers have used various methods from subject data. It 
indicates that osteoporosis has become a widespread disease that 
should be studied more deeply. This study proposes a deep 
Convolutional Neural Network architecture as a texture feature 
of dental periapical radiograph for osteoporosis detection. The 
subject of this study is postmenopausal Javanese women aged 
over 40 and data measurement result of Bone Mineral Density. 
The proposed model is divided into stages: 1) stage image 
acquisition and RoI selection, 2) stage feature extraction and 
classification. Various experiments with the number of 
convolution layers (3 layers to 6 layers) and various input block 
sizes and other hyper parameters were used to get the best 
model. The best model is obtained when the input image size is 
greater than 100 and less than 150 and a five of convolution 
layer, as well as other hyper parameters, including epochs=100, 
dropout=0.5, learning rate=0.0001, batch size= 16 and loss 
function using Adam's optimization. Validation and testing 
accuracy achieved by the best model is 98.10%, and 92.50. The 
research shows that the bigger images provide additional 
information about trabecular patterns in normal, osteopenia and 
osteoporosis classes, so that the proposed method using deep 
convolutional neural network as textural feature of the periapical 
radiograph achieves a good performance for detection 
osteoporosis. 

Keywords—Osteoporosis; dental periapical radiograph; 
convolutional neural network; texture features; bone mineral 
density 

I. INTRODUCTION 
Osteoporosis is defined as a systemic skeletal disease 

characterized by low bone mass and micro-architectural 
deterioration of bone tissue [1]. Therefore, osteoporosis will 
increase the consequences of bone fragility and susceptibility 
to fracture, especially for those over 50 years of age. Once a 
fracture happens to someone with osteoporosis, life will be 
greatly affected due to disability to move and prolonged 

healing process. Finally, this reduces a person's quality of life 
and causes various economic and social problems [2]. 

For example, if the injured person works as a driver or as a 
labor worker, he might have to retire and find some disk-
related job that is not easy to obtain. In some other cases, the 
injured person might become severely disabled and require 
continuous assistance, which might burden his family. 
Therefore, preventative measures and early treatment of 
osteoporosis [3-4] are the best options to address these issues. 
Practical scientific and technological methods to support 
osteoporosis diagnosis, in this context, will provide much help 
to overcome the disease and reduce its negative impacts. 

The most accurate BMD examination and made the gold 
standard by World Health Organization (WHO) is using Dual 
Energy X-Ray Absorptiometry (DEXA). However, access to 
this method is still limited in many countries. BMD 
examination is often available in central hospitals only, and its 
cost is often too expensive for many people in rural areas. 
Furthermore, BMD is not able to reveal the internal structure 
of fractured bones [4-5]. Researchers, therefore, have 
attempted to develop alternative methods that are more 
practical and more widely accessible. Several studies have 
found that dental data demonstrate a high correlation with 
BMD measurements [6-16]. The data include panoramic and 
periapical radiographs. Besides that, of the use widespread of 
periapical radiographs in dental care for the elderly with 
increased life expectancy and the number of studies according 
to BMD estimates and screening for osteoporosis using 
periapical radiographs. It is expected to provide benefits, 
namely the architecture that has been produced can then be 
used as an architectural model in pre-train medical images for 
different cases specifically using medical images with the 
same characteristics, which tend to be low resolution. In 
addition, it can also help patients who perform dental checkup 
at the dentist to be given a referral to chiropractors for further 
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checkup, so that it can be detected early if you have 
osteoporosis. 

Periapical radiograph is a dental radiograph technique that 
can image four to five teeth and their respective areas on one 
intraoral X-ray films [7]. At a microstructure level, images of 
trabecular jaw bones often show visual patterns closely related 
to the general condition of other bones [8,10]. Dental data 
have therefore become promising sources to predict Bone 
Mineral Density (BMD) measurements accurately. Periapical 
radiographs, in particular, will become the focus of this 
research since these radiographs are much more affordable 
and generally are more available. Fig. 1 shows an example of 
a periapical radiograph of the mandible. 

The remaining part of this research is organized as follows. 
Section II explains some related work on osteoporosis 
detection using dental periapical radiograph, while Section III 
provides a more detailed description of the proposed method 
and training CNN’s. Section IV contains result and discussion 
of the proposed method, and Section V concludes the 
research. 

 
Fig. 1. Periapical Radiograph Image of the Mandibl. 

II. RELATED WORK 
Several studies have been carried out to examine 

osteoporosis using periapical radiographs. In [8] has made one 
of attempts to predict bone mass from such radiographs. Data 
and the corresponding labels (BMD measurements) are 
collected from 60 postmenopausal women aged over 40. This 
research extracts and combines visual features such as areas, 
lengths, and peripheries of “bright” blobs, numbers of 
terminal/branch points, and clinical data such as ages, body 
sizes, and calcium intakes. The overall number of pixels in the 
RoI divides that of black pixels results in the visual features of 
the trabecular area. The total amount of pixels in the external of 
the trabeculae in the binary images displays the periphery. In 
other words, it represents a proportion of the entire area of the 
trabeculae or the entire area of RoI. The skeletonized image 
computes the complete area of the skeletonized trabeculae 
(total amount of black pixels), the number of terminal points 
(free ends, that is, black pixels with only one neighboring black 
pixel), and the number of branch points (crossing points, that 
is, black pixels with three or more neighboring black pixels). 
These are used to represent the percentage of trabecular length, 
area and perimeter. Classification and regression tree analysis 
(CART) uses patients in groups of normal or low bone mass 
categories. It is evident from the CART analysis of clinical and 
radiographic features that the main element to categorize 
patients as having normal or low bone mass were age (±42.5 
years) and the number of terminal points as a function of the 
periphery (±0.09). This algorithm conscientiously 

distinguished 22 normal patients by BMD (specificity = 100%) 
and 31 patients with low bone mass (sensitivity = 81%). The 
total accuracy was 88.33%. A denomination of the 
corresponding predicted and actual bone category, the 
weighted kappa index, was 0.76. To identify women with low 
BMD, trabecular morphology analysis was an alternative. 
Another research [9] was also conducted displaying the 
combination of upper and lower jaw radiographs from 505 
postmenopausal women aged 45–70 years. Dense, sparse or 
mixed trabecular patterns were identified by five observers. 
The gradings were integrated into a single averaged observer 
score per jaw in which the RoI can be identified on each by 
scanned radiographs. The RoIs compounded with image 
analysis software measured 25 photographs' characteristics. 
Pearson correlation and multiple linear regressions, which were 
used in identifying the averaged observer score, showed that 14 
image features were significantly correlated with the observer 
judgment for the two jaws. Other features, which give details 
of osteoporotic patients with fewer but bigger marrow spaces 
than controls, are less compatible with the sparseness of the 
trabecular pattern than a rather crude measure for a structure 
such as the average grey value. To sum up, the human concept 
of sparseness is emanated more from average grey values of 
the RoI than from geometric details within the RoI. In [11], the 
bone mass prediction on porosities, connectivity, and 
orientations of porous was shown in trabecular images and a 
combination of the anthropometric features (weight, height, 
age, body mass index). While a decision tree was used to select 
the feature, a backpropagation artificial neural network was 
used for classification. By combining age, weight, height, body 
mass index and features of trabecular morphology interdental 
bone, identifying postmenopausal women with low bone mass 
are much easier. In this study, however, age is considered one 
of the biggest contributors to loss of bone mass. Porosity, the 
oblique porous, and the vertical porous are crucial porous 
features. This study distinguishes anthropometric and 
radiographic features, which then is analyzed individually. 
Both anthropometric features and the radiographic features 
have high accuracy with 80.33% and 87.04%, respectively. 
This work has been extended further [12] that combine data 
from periapical and panoramic radiographs. Furthermore in 
[13], a method for osteoporosis identification based on the 
validated trabecular area was presented on digital dental 
radiographic images. The image RoI of the validated trabecular 
area on the images should be obtained through a sequence of 
morphological operations, which is then evaluated using the 
Dice similarity method. In analyzing osteoporosis, a mineral 
density is estimated using dual X-ray absorptiometry in two 
areas and by extracting RoI through statistical features 
(deviation, entropy, homogeneity, and correlation). Feature 
extraction and feature selection are used to analyze the four 
features. The selection process applies the C4.5 feature 
selection method. Subsequently, to estimate the existence of 
osteoporosis, a multilayer perceptron of statistical texture 
analysis is employed. 0.8924. is obtained as the result of the 
average dice similarity coefficient for all of RoIs. The most 
suitable method in this proposed study, achieving an accuracy 
of 87.87%, is a multilayer perceptron classifier. 

A study on the analysis of the mandibular trabecular 
structure in postmenopausal women using periapical 
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radiographs was conducted by [14]. The mandibular trabecular 
structure parameter used was the thickness of the trabeculae 
compared with the results of BMD DXA measurements in the 
lumbar (spine) and femoral (hip) areas. Determine the RoI 
manually with a size 0f 100pixels x 100pixels with a position 
2mm from the apical edge of the left and right posterior parts 
of the lower jaw (mandible). Measurement of trabecular 
thickness using slice geometry features, namely bone area 
fraction size by dividing the number of pixels classified as 
bone by the total pixel area in RoI and trabecular thickness 2D 
is the average trabecular width in RoI. These two parameters 
were correlated with femoral and lumbar BMD values. Then 
the measurement results with statistical analysis showed a 
statistically significant difference between the normal group 
and the osteoporosis group compared to the normal group and 
the osteopenia group, so it can be said that thinning of the 
trabecular structure is more clearly seen in postmenopausal 
women with osteoporosis, with bone quality that can be 
detected earlier using the trabecular thickness parameter. 

Although several methods have been proposed to examine 
osteoporosis using dental periapical radiographs, the methods 
generally rely on morphological analysis and geometric 
features of the images [8–14]. Only a little work has been 
conducted to investigate the effectiveness of texture features 
such as [15-16] that employed features derived from the Gray 
Level Co-occurrence Matrix (GLCM). However, the 
employed features are considered to be handcrafted, which 
might be suboptimal for the given problem. Therefore, the 
facts mentioned above have suggested further investigation on 
the use of texture features, particularly those that are directly 
learned from data. This research proposes deep learning in the 
analysis of texture features for the prediction of osteoporosis. 
Deep learning has worked effectively in many areas, including 
computer vision, hyperspectral image processing, medical 
image analysis [17], and natural language processing  include 
in tuning for hyperparameters online [18]. Compared to 
conventional methods such as support vector regressors and 
multi-layer perceptron, based on feature, deep learning has 
some advantages, such as working on two-dimensional data 
directly, less susceptibility to local optimal, and the ability to 
learn texture features from data [19]. The other advantages of 
DCNN are transferability connections and sparse connections. 
The transferability connections are certain layers of network 
architecture that can reproduce weights for different tasks. 
Sparse connections are infrequent connections that can reduce 
redundant connectivity, thereby reducing computing costs 
[21]. 

One particular model of a deep learning is convolutional 
neural network or also called deep convolutional neural 
network (DCNN). Since 2012, DCNN [17-20] has been led to 
a series of breakthroughs for image classification [22]. Deep 
learning-based computer-aided diagnosis for breast cancer [23] 
and lung cancer [24] has been applied in radiology. In addition, 
there are many other studies that use DCNN to detect or 
classify diseases, such as [25]  comparing the performance of 
three CNN models (models VGG19, Resnet50v2 and 
Densenet201) with X-rays data sets of patients with COVID-
19, pneumonia, and tuberculosis with a large number of data 
sets. 

By considering several capabilities and advantages of 
DCNN, our contributions are: 

• We designed and determined the best DCNN 
configuration model to extract in-depth features from 
dental periapical radiograph images from multiple 
image block sizes and multiple convolution layers with 
varying hyper parameter. 

• The result of DCNN architecture or configuration can 
be used to detect osteoporosis disease. 

Measured the effectiveness of the best model by 
conducting trials using data from previous researchers to 
achieve state-of-the-art performance for the detection or 
classification of osteoporosis using dental periapical 
radiograph. 

III. METHOD 
This study proposes a deep Convolutional Neural Network 

architecture as a texture feature of dental periapical 
radiographs that can be used for osteoporosis detection. An 
extensive examination of the network is conducted to obtain 
the optimal network configuration and hyperparameters, 
which include input image size, number of kernels, filter 
kernel size, dropout value, and learning rate value. The system 
results will be compared with results of BMD measurements 
in the femur and lumbar areas using DXA. 

The proposed model is broadly divided into two stages, 
namely the training stage and the testing stage. Each stage 
consists of several processes, namely, image acquisition and 
RoI selection, feature extraction and classification (see Fig. 2). 

 
Fig. 2. Proposed Method for Osteoporosis Detection. 
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A. Image Acquisition and RoIs Selection 
We used a dental X-ray device to obtain digital periapical 

radiographs of mandibular anterior teeth of 31 
postmenopausal women aged over 40 years old. This research 
makes use of the Villa Sistemi device with an electrical 
specification of 70 kVp/8 mA that uses photostimulable 
phosphorus plates (PSP) as image receptors. All periapical 
radiographs were processed from the Radiology Department, 
Prof. Soedomo Dental Hospital of Universitas Gadjah Mada 
using the DBSWin4.5 (Dürr Dental, Bietigheim-Bissingen) to 
produce digital grayscale images in the JPG format. All 
images are assessed for quality assurance by a dentist (Fig.3). 

 
Fig. 3. Periapical Radiograph of the Mandible (a) Normal, (b) Osteopenia, 

and (c) Osteoporosis. 

Regions of interests (RoIs) are then selected semi-
manually from the images to obtain the most appropriate parts 
for further processing. The selection procedure marks the 
upper left corner of the trabecular area then moves to the 
lower right to form the maximal square that can be extracted 
from the images. so that RoIs is obtained with various sizes, at 
least 250x250 pixels Assuming that trabecular areas' sizes do 
not vary significantly across people, all the extracted RoIs are 
resized to a standard size of 250 x 250 pixels. It can be 
considered as a normalization step favoured by subsequent 
processes. Fig. 4 shows the RoIs selection process as well as 
the resized images. The resized RoIs are divided further into 
overlapping blocks (with 10 pixels overlap), each of which 
will become an input to a convolutional neural network. This 
process is called augmentation. 

 
Fig. 4. RoIs Selection and Resizing  (a) Normal, (b) Osteopenia and (c) 

Osteoporosis. 

B. Features Extraction and Classification 
Feature extraction and classification is performed using a 

deep convolutional neural network (CNN) which takes image 
blocks as input and produces a prediction class as output. The 
prediction class in this study consisted of normal (N), 
osteopenia (Oa), and osteoporosis (Os) which was a further 

decrease in the bone mass of the examined subjects. The deep 
CNN configuration used is shown in Fig. 5 or details can be 
seen in Table I. The deep CNN configuration consists of five 
building blocks, namely convolution layer, activation layer, 
pooling layer, fully connected layer, and soft-max layer. The 
first convolution layer uses a kernel size of 5x5, while the 
second to fifth convolution layers use a 3x3 kernel size. While 
in the pooling layer, all layers use a 2x2 kernel. 

The Deep CNN configuration showed at Fig. 5 and Table I 
is the best model from the results of experiments that have 
been carried out on each block size and convolution layer size, 
activation layer, pooling layer including number of the kernel 
used (6, 16, 32, 64, 128) and the filter kernel size for each 
convolution layer as well as several parameters such as 
learning rate value, dropout value and number of epochs (as 
shown in Fig. 6-9 and Table II-III). 

CNN's themselves are inspired by a neuro-biological 
process in which connectivity patterns between neurons 
resemble the visual cortex model [26] and [27]. CNN's work 
on two-dimensional data of multiple depths and operate in a 
layer-by-layer order [28]. 

Convolution layers serve to extract features from an input 
image (edges, corners, or crosses) using responses to some 
special character presenting in the input. Activation layers 
determine "relevant" convolutional kernels. The layers 
produce stacks of feature maps, each of which parts within the 
produced feature maps to be used in subsequent processing. 
Relevant parts, in this case, will be "active" after passing 
through the activation function, which is the rectified linear 
units (ReLU). 

The ReLU layer is an activation function obtained through 
the equation. 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)       (1) 

Where x is the input to the neuron and the transfer function 
is finely approximated to the rectifier into an analytic function. 

Pooling layers help the network avoid overfitting by 
reducing some network parameters and the respective 
computations. The pooling layers work as a non-linear down-
sampling process that divides outputs of activation layers into 
subregions and collects maximum values from the subregions. 
From an n x n input, with n represented of size of image and k 
represented from size of kernel, a pooling layer will produce 
an �𝒏

𝒌
� 𝒙 �𝒏

𝑘
� output. 

 
Fig. 5. Architectural Model of CNN for Osteoporosis Detection. 
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TABLE I. CONFIGURATION MODEL OF CNN FOR OSTEOPOROSIS 
DETECTION 

LAYER TYPE INPUT 
SIZE 

NUMB
ER OF 
KERN
EL 

FILTE
R 
KERN
EL 
SIZE 

OUTPU
T 
SHAPE 

Input layer input 140x140
x1 -   140x140

x1 

Conv. layer 
1 

convolution 140x140
x1 6 5x5 136x136

x6 

activation 136x136
x6 6  

136x136
x6 

max pooling  136x136
x6 6 2x2 68x68x6 

Conv. layer 
2 

convolution 68x68x6 16 3x3 66x66x1
6 

activation 66x66x1
6 16  

66x66x1
6 

max pooling 66x66x1
6 16 2x2 33x33x1

6 

Conv. layer 
3 

convolution 33x33x1
6 32 3x3 33x33x3

2 

activation 33x33x3
2 32  

33x33x3
2 

max pooling 33x33x3
2 32 2x2 16x16x3

2 

Conv. layer 
4 

convolution 16x16x3
2 64 3x3 16x16x6

4 

activation 16x16x6
4 64  

16x16x6
4 

max pooling 16x16x6
4 64 2x2 8x8x64 

Conv. layer 
5 

convolution 8x8x64 128 3x3 8x8x128 

activation 8x8x128 128  8x8x128 

max pooling 8x8x128 128 2x2 4x4x128 

  Dropout 0.5 4x4x128    4x4x128 

FCNN flatten 4x4x128     2048 

  dense128 128     128 

  activation 
(ReLU) 128     128 

  Dropout 0.5 128     128 

  dense3 3     3 

output 
softmax 

activation 
(softmax) 3     3 

In CNN's, a convolution layer is normally tied with an 
activation layer and a pooling layer (showed Fig. 5). This 
bundle is repeated several times to produce a "thick" stack of 
down-sampled feature maps at the end of the sequence. Fully 
connected layers take the vectorized (flattened) form of this 

stack and are also tied with some activation layers to produce 
output vectors. The lengths of these vectors are normally equal 
to the number of prediction classes. Values within these 
vectors are converted into probability values by SoftMax 
layers at the end of CNN's. The output layer present in the last 
layer of CNN to the normalized exponential function or soft-
max is a generalization of the logical function of a k-
dimensioned z vector into a k-dimensioned σ(z) vector with a 
real number value between [0, 1]. The SoftMax function is 
written in the following equation (2): 

𝜎:𝑅𝑘 → [0,1]𝐾   (2) 

𝜎(𝑍) = 𝑒𝑍𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 for j=1, …, K 

where σ is softmax notation symbol, z is a vector of the 
inputs to the output layer, K is dimensions of vector z, and j is 
the index of the output unit. Table I shows the specifications 
of the model configuration. 

C. Training of CNNs 
To build the proposed system, data are collected from 

postmenopausal Javanese women aged over 40 years. A total 
of 31 subjects have agreed to participate in the research and 
have signed informed consent. Ethical clearance has also been 
obtained from the ethics and advocacy unit of the Faculty of 
Dentistry of Universitas Gadjah Mada (UGM) with the 
number: 0061/KKEP/FKG-UGM/EC/2019. Some criteria are 
used to exclude subjects from the research. These include 
suffering from cancer with bone metastases, kidney failure, 
metabolic diseases (hyperparathyroidism, 
hypoparathyroidism, osteomalacia, renal osteodystrophy, and 
osteogenesis imperfecta), and taking drugs that affect bone 
metabolism. 

After dental periapical radiographs are acquired from the 
Radiology Department, Prof. Soedomo Dental Hospital of 
Universitas Gadjah Mada, the women went for bone density 
examination at the Radiology Department of Dr Sardjito 
Hospital Indonesia. Periapical radiographs used in this 
research have gone through an assessment process to ensure 
their quality. As for bone density estimation, a lunar prodigy 
primo DEXA densitometer (GE Lunar Corporation, Madison, 
WI, USA) is used to scan the subjects' spine and femur 
regions at an exposure of 42 µGy for 1.27 minutes. Bone 
density values were converted into T-scores to determine 
osteoporosis, osteopenia, or normal. These categories were 
then used as the labels for the collected periapical radiographs. 
The conversion was conducted using the standard procedure 
specified by the World Health Organization (WHO). Based on 
BMD measurements of 13 subjects, three subjects were 
classified as normal, six subjects were classified as osteopenia, 
and four subjects were classified as osteoporosis. 

Training is carried out by varying sizes of image blocks (as 
input), numbers of convolution layers, the use of dropout 
layers, and sizes of kernels. The max function is used in the 
pooling layers with sizes of kernels of 2x2 and strides of 2. 
Overlapping blocks are extracted from the collected images 
and are augmented by applying small random rotation, 
scaling, and vertical flip. This process produces thousands of 
image blocks that are further divided into a training set and 
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test set. The training set contains 80% of the overall data, 
while the test set contains the remaining 20% of the data. 
Table II, shows a summary (minimum, average, and 
maximum) of training and validation accuracy on 26 CNN 
models from 3 to 6 layers for each image size. 

IV. EXPERIMENTS AND RESULT 

A. Experiments Models 
This section presents the experiments of the proposed 

model for osteoporosis detection. The first part of the 
experiment investigates the optimal configurations of CNNs. 
For this purpose, we evaluate different sizes of image blocks, 
namely 40x40, 50x50, 60x60, …, 150x150 pixel. CNN's are 
built with 3 and 4 convolutional layers, and when the sizes of 
image blocks are greater than 100x100 pixel, the networks are 
also built with 5 and 6 convolutional layers. Two sizes of 
convolution kernels are applied during the experiments, i.e. 
3x3 and 5x5. The strides of the convolution kernels are fixed 
to 2, and padding is used to maintain the inputs' original sizes 
during the convolution. Besides, in the 5th convolution layer 
block, a dropout layer of 0.5 is added. To facilitate 
classification by providing rules for removing or keeping 
neurons with probability values between 0 and 1, and the 
value of the learning rate used = 0.0001. See Tables II (A)-
(D), Table III and Fig. 6 to Fig. 8 summarizes performance of 
CNNs with the different configurations. 

TABLE II. TRAINING ACCURACY AND VALIDATION ON 26 CNN MODELS 
FOR EACH BLOCK SIZE 

(A) THREE LAYERS 

block size 
(pixel) 

size of CNN layer 

three layers (consists six models) 

Minimum Average Maximum  

Train Valid Train Valid Train Valid 

40x40 0.713 0.647 0.812 0.683 0.895 0.711 

50x50 0.794 0.653 0.876 0.698 0.908 0.717 

60x60 0.860 0.660 0.897 0.699 0.928 0.730 

70x70 0.867 0.663 0.9025 0.701 0.931 0.740 

80x80 0.880 0.664 0.913 0.687 0.939 0.713 

90x90 0.903 0.668 0.935 0.705 0.961 0.738 

100x100 0.911 0.656 0.858 0.679 0.954 0.697 

110x110 0.881 0.624 0.858 0.529 0.974 0.723 

120x120 0.929 0.712 0.950 0.731 0.962 0.742 

130x130 0.914 0.730 0.942 0.746 0.973 0.771 

140x140 0.909 0.764 0.951 0.800 0.969 0.816 

150x150 0.919 0.798 0.958 0.814 0.977 0.833 

(B) FOUR LAYERS 

block size 
(pixel) 

size of CNN layer 

four layers (consists six models) 

Minimum Average Maximum  

Train Valid Train Valid Train Valid 

40x40 0.704 0.633 0.791 0.670 0.916 0.772 

50x50 0.886 0.674 0.912 0.517 0.945 0.742 

60x60 0.907 0.684 0.941 0.710 0.960 0.735 

70x70 0.907 0.684 0.941 0.710 0.960 0.735 

80x80 0.896 0.700 0.948 0.736 0.979 0.757 

90x90 0.932 0.707 0.957 0.743 0.979 0.782 

100x100 0.945 0.697 0.961 0.738 0.979 0.818 

110x110 0.934 0.705 0.957 0.738 0.975 0.759 

120x120 0.931 0.710 0.954 0.736 0.976 0.763 

130x130 0.944 0.751 0.959 0.778 0.981 0.823 

140x140 0.942 0.785 0.962 0.885 0.987 0.882 

150x150 0.935 0.834 0.957 0.863 0.985 0.892 

(C) FIVE LAYERS 

block size 
(pixel) 

Size of CNN Layer 

five layers (consists seven models) 

Minimum Average Maximum  

Train Valid Train Valid Train Valid 

40x40 0.772 0.658 0.863 0.703 0.915 0.725 

50x50 0.880 0.668 0.907 0.691 0.930 0.749 

60x60 0.923 0.693 0.942 0.723 0.967 0.772 

70x70 0.923 0.693 0.946 0.728 0.967 0.798 

80x80 0.961 0.744 0.970 0.777 0.981 0.837 

90x90 0.962 0.758 0.970 0.782 0.981 0.846 

100x100 0.956 0.771 0.973 0.812 0.981 0.866 

110x110 0.968 0.742 0.976 0.808 0.986 0.918 

120x120 0.959 0.754 0.973 0.813 0.985 0.903 

130x130 0.966 0.824 0.976 0.856 0.985 0.89 

140x140 0.968 0.856 0.978 0.885 0.998 0.956 

150x150 0.925 0.841 0.967 0.889 0.984 0.916 
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(D) SIX LAYERS 

block size 
(pixel) 

Size of CNN Layer 

six layers (consists seven models) 

Minimum Average Maximum  

Train Valid Train Valid Train Valid 

40x40 

not available 

50x50 

60x60 

70x70 

80x80 

90x90 

100x100 

110x110 

120x120 

130x130 

140x140 0.769 0.698 0.944 0.816 0.985 0.869 

150x150 0.461 0.462 0.902 0.815 0.989 0.918 

Based on 26 CNN models that have been trained (see 
Tables II(A)–(D), it is known that in the experiment with five 
layers and an image block size of 140x140, the minimum, 
average, and maximum values are higher than the number of 
convolution layers and other image blocks (see red text in 
Table IIC). This means that the configuration of five layers, 
the image block size of 140x140, and some hyper parameters 
as in table I are the best models of the 26 existing models. The 
best CNN model means a model that can differentiate 
trabecular patterns in the normal class, osteopenia, and 
osteoporosis. 

Fig. 6-8 also shows experimental results in finding the best 
model. 

Fig. 6 is a graph of the image blocks size against the 
accuracy of each convolutional layers. From Fig. 6, it is 
known that the larger the image blocks size (input blocks size 
greater than 100), the accuracy tends to increase, especially on 
the five-layer and four-layer CNN. Indicates that the image 
blocks size greater than 100 provides additional information 
on osteoporosis examination. 

 
Fig. 6. Graph Accuracy Vs Input Size Graph with Kernel Size 3x3. 

In Fig. 7, it is known that a CNN with five layers and an 
image size greater than and equal to 100 indicates increased 
accuracy. 

 
Fig. 7. Graph Accuracy Vs Number of Layers. 

Fig. 8 shows the effect of the Dropout (DO) value on 
accuracy, the DO value = 0.5 has a better training and 
validation accuracy. 

  
Fig. 8. Graph Accuracy Vs Dropout. 

The following Table III shows the experimental results of 
the best model from the input image size of 40x40 pixels to 
150x150 pixels with epoch = 20. And look (highlight) the best 
of accuracy is at 140x140 pixels. 

TABLE III. TRAINING ACCURACY AND VALIDATION ON THE BEST 
MODELS FOR EACH BLOCK SIZE WITH EPOH = 20 

Block Size 
Accuracy Loss 

training validasi Training Validation 

40x40 0.865 0.713 0.293 0.746 

50x50 0.908 0.749 0.207 0.690 

60x60 0.929 0.772 0.163 0.722 

70x70 0.949 0.798 0.120 0.653 

80x80 0.970 0.837 0.072 0.526 

90x90 0.970 0.846 0.071 0.462 

100x100 0.956 0.866 0.106 0.373 

110x110 0.976 0.918 0.057 0.180 

120x120 0.974 0.903 0.066 0.224 

130x130 0.966 0.890 0.079 0.290 

140x140 0.977 0.956 0.056 0.091 

150x150 0.973 0.916 0.064 0.227 
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B. Training Models 
The total number of training data is 40,755 images, 32,617 

images for training, and 4069 images for validations. The 
dimension of the image input on this model is 140 × 140 
pixels. The batch size is 16, the learning rate value is 0.0001, 
DO=0.5 and number of epoch = 100. Then the loss function 
uses Adam optimization. 

Training is executed on a computer with specifications 
processor Intel Core i7-7500U processor specifications, 8 GB 
RAM, GPU: NVIDIA GeForce GTX 840, Windows 10 
operating system, Python 3.7 Programming Language with an 
editor spyder (python3.7). 

Fig. 9(a)-(b) shows the trend accuracy and loss of the 
training process and the validation of the best models (using 
architecture and configuration in Fig. 5 or Table I) 

Research on osteoporosis examination using dental 
periapical radiograph images has been carried out with a 
satisfactory level of accuracy and can represent a computer-
aided diagnosis system. Besides, it can enrich the extraction of 
textural features, which is currently known for the 
examination of osteoporosis with dental periapical radiograph 
images, which previously mostly using morphological 
features. 

 
(a) 

 
(b) 

Fig. 9. (a) Graph the Accuracy of the Training and Validation Process of the 
Best Model, (b) Graph the Loss of the Training and Validation Process of the 

Best Model. 

C. Testing Models 
We use 4,069 images as sample test data. Model 

performance measured using four performance measures 
parameters, namely Precision, Recall, F1 score and Accuracy. 
The Precision, Recall, F1 score, and Accuracy values of the 
best model testing result see Table IV. 

TABLE IV. OSTEOPOROSIS – TESTING REPORT 

 Precision Recall F1 Score 
Normal 0.88 0.88 0.88 

Osteopenia 0.84 0.98 0.93 

Osteoporosis 0.83 1.00 0.91 

Accuracy 0.92 

Macro avg 0.97 0.97 0.97 

Weighted avg 0.85 0.92 0.90 

Table V shows a comparison of the performance of the 
osteoporosis examination between the proposed methods and 
those of other previous researchers. In the testing process 
using datasets from previous researchers [11], the dataset 
Augmented first so that the amount of data used in the testing 
process is proportional to the amount of data used in this 
research. 

When compared to previous related work, our method has 
the highest validation accuracy and testing accuracy, with a 
validation accuracy of 98.10% and a testing accuracy of 
92.50%. 

230 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 1, 2022 

TABLE V. PERFORMANCE COMPARISON OF EXAMINATION OSTEOPOROSIS 

Parameters 
Authors 

Licks etc. (2010) [8] Sela etc. (2015) [11] This Research 
 

                  Subject Women over 40 years age Women over 40 years age Women over 40 years age 

Number of training data 60 (22 normal and Osteopenia, 38 
osteoporosis) 

54 (11 normal, 22 Osteopenia, 21 osteo-
porosis) 

13(3 normal, 6 osteopenia, 4 osteoporosis) 
augmented: 
32,617 (7,527 normal, 15,054 osteopenia, 
10,036 0steoporosis) 

Number of testing data 60 (22 normal and Osteopenia, 38 
osteoporosis) 

54 (11 normal, 22 Osteopenia, 21 osteo-
porosis) 
Augmented: 
4,069 (939 normal, 1,878 osteopenia 1,252 
osteoporosis) 

4,069 (939 normal, 1,878 osteopenia 1,252 
osteoporosis) 

Gold- standard 
(Classtarget) 

Lumbar/Fe-moral BMD DXA 
(Normal, osteopenia/os-
teoporosis 

Lumbar/Fe-moral BMD DXA (Normal, 
osteopenia, osteo-porosis 

Lumbar/Fe-moral BMD DXA (Normal, 
osteopenia, osteoporosis 

Type of Feature extraction 

Analysis of morphological (The 
trabecular area, the periphery, a 
proportion trabecular length, area, 
and perimeter (M1-M14) 

Analysis morphological (porosity, the size 
of porosity and orientation of porous) Texture feature (feature map CNN) 

Method of Classification  Classification and Regression 
Tree Analysis (CART) C45 (3,6,9-fold validation) Fully Connected Neural Network (FCNN) 

Accuracy 88.33% 86.67% 98.10% 

Accuracy from joint of 
number of testing data  
[11] and this research 

- - 96.10% 

Accuracy from of number 
testing data [11] - - 92.50% 

V. CONCLUSION 
As shown in Table I, the highest validation accuracy is 

achieved when the block size is 140x140, the number of 
convolution layers is 5, and the size of the convolution kernel 
is 5x5 for the first layer and 3x3 for the other layers. It can 
then be concluded that the bigger the image block, the higher 
the validation accuracy. This tells us that bigger images 
provide additional information that helps discriminate 
trabecular patterns in normal, osteopenia, and osteoporosis 
classes. The improvement in accuracy, though, does not 
change much when the block size is increased from 140x140 
to 150x150. This indicates that 140x140 has provided most of 
the information required by CNNs to distinguish osteoporosis. 
The training and validation accuracy achieved by the best 
model is 99.50% and 98.10%, respectively, while the loss of 
training and validation is 1.30% and 5.40%. Then the testing 
accuracy is 92.50%. 

VI. FUTURE WORK 
For this reason, research on osteoporosis examination 

using dental periapical radiograph images can continue to be 
carried out, considering that research for osteoporosis 
examination using dental periapical radiograph images is still 
rarely used compared to dental panoramic images.  This study 
can be developed by adding a process to increase the 

resolution of dental periapical radiographs that tend to be a 
low resolution at the pre-processing stage and applying the 
automatic ROI selection method [29]. 

Further, it can also increase the number of data collections 
for normal and osteoporosis classes and can use variations in 
the image of the trabecular bone area of the left and right 
posterior mandibles. 
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