
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 1, 2022 

A Novel Secure Transposition Cipher Technique 
using Arbitrary Zigzag Patterns 

Basil Al-Kasasbeh 
Faculty of Computer Studies, Arab Open University (AOU), Riyadh, Kingdom of Saudi Arabia 

 
 

Abstract—Symmetric cipher cryptography is an efficient 
technique for encrypting bits and letters to maintain secure 
communication and data confidentiality. Compared to 
asymmetric cipher cryptography, symmetric cipher has the speed 
advantage required for various real-time applications. Yet, with 
the distribution of micro-devices and the wider utilization of the 
Internet of Things (IoT) and Wireless Sensor Network (WSN), 
lightweight algorithms are required to operate on such devices. 
This paper proposes a symmetric cipher based on a scheme 
consisting of multiple zigzag patterns, a secret key of variable 
length, and block data of variable size. The proposed system uses 
transposition principles to generate various encryption patterns 
with a particular initial point over a grid. The total number of 
cells in the grid and its dimension are variable. Various patterns 
can be created for the same grid, leading to different outcomes on 
different grids. For a grid of n cells, a total of n! * (n-1!) total 
patterns can be generated. This information is encapsulated in 
the private key. Thus, the huge number of possible patterns and 
the variation of the grid size, which are kept hidden, maintain the 
security of the proposed technique. Moreover, variable padding 
can be used; two paddings with different lengths lead to a 
completely different output even with the same pattern and the 
same inputs, which improves the security of the proposed system. 

Keywords—Cryptography; symmetric cipher; block cipher; 
transposition algorithms 

I. INTRODUCTION 
Data confidentiality can be ensured using both asymmetric 

cipher and symmetric cipher. Symmetric cipher has the 
advantage of low computational requirements compared to 
asymmetric cipher cryptography, which is commonly used for 
key exchange and authentication purposes [1]. Asymmetric 
cipher is commonly referred to as public-key encryption [2]. 
On the other hand, the symmetric cipher is commonly referred 
to as private-key encryption and has two main types: the block 
cipher and the stream cipher. The stream cipher encrypts each 
bit of the message with each key’s bit using operations, such as 
the exclusive-or (XOR) [3]. 

On the other hand, block cipher uses substitutions and 
transposition operations on an n-bits block, as illustrated in Fig. 
1. Block cipher encrypts a data block of predetermined length 
using private key principles. Both stream and block ciphers 
have their applications, advantages, and disadvantages. The 
stream cipher is fast and requires low computational power 
compared to the block cipher. Block cipher is widespread and 
is used in various other applications, such as stream cipher, 
hash function, pseudorandom number generator, and message 
authentication [4]. Besides, the block cipher is more secure 
than the stream cipher, subject to the strength of the utilized 

private key [5]. The security level of the block cipher algorithm 
is evaluated based on the complexity, the performance, and its 
strength against possible cryptanalyses, such as linear and 
differential analysis and the homegrown crypto that is created 
afterthought [4, 6, 7]. 

Block cipher algorithms use predefined block sizes. A 
multiple of 8-bits block sizes is commonly utilized as 
compatible with most processors. Besides, the large size is 
avoided as it leads to padding, increasing computational 
requirements. Similarly, small size blocks give more chances 
for dictionary attacks on the ciphertext blocks to succeed [8]. 
For a variable-length message to be encrypted, the message is 
first divided into blocks of the predetermined size, padded if 
necessary to meet the required size. Then each block is 
encrypted using the cipher algorithm with a private key. 
Advanced algorithms for block cipher have been developed, 
such as Advanced Encryption Standard (AES) and Data 
Encryption Standard (DES), which are the most utilized 
encryption algorithms worldwide [4, 9]. These algorithms 
depend on mathematical operation and substituting the 
plaintext bits and characters by other bits and characters; these 
are called substitutional algorithms. Besides the substitution 
cipher, another block cipher type is called transposition cipher, 
such as rail fence and columnar. Compared to the substitution 
cipher, the transposition cipher is faster, as it depends on 
transposition shuffle rather than mathematical operations. Yet, 
because the shuffle is limited and known in advance, and the 
algorithms are operated on very small keys, the security of 
these algorithms is weak. Surprisingly, vast number of the 
existing substitutional algorithms has been solved by the 
cryptanalysis [4, 5, 10, 11]. 

Message (mi)

Key (ki)

Cipher (Ci)

Stream Cipher

Encryption

Decryption

Algorithm

Message Block 
(mi - mi+s)

Key 

Cipher C

Block Cipher

Encryption

Decryption

 
Fig. 1. Stream Cipher vs. Block Cipher. 
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Fig. 2. Modern Cryptograph Directions. 

Accordingly, various modern cipher techniques have been 
proposed to improve the security of the block cipher. Various 
ways have been followed to extend the existing algorithms. As 
illustrated in Fig. 2, these are 1) Proposing various encryption 
modes, in which the block ciphers are related to each other or 
related to randomly created vectors to increase the complexity 
of the generated cipher. 2) Combining various cipher 
algorithms to create a more secure system. 3) Combining 
cipher algorithms with optimization and compression 
algorithms. 4) Extending the cipher algorithms by increasing 
the size of the key or modifying their structure. Although these 
directions improve the security of the cipher algorithms, most 
of them have increased the computational requirements of the 
encryption and decryption process. The complexity of the 
modern techniques for data encryption leads to the 
inapplicability of these techniques to be utilized in most of the 
modern applications, such as real-time applications, sensor 
networks [12], and Internet-of-Things (IoT) [13], which 
demands secure yet highly performance encryption techniques 
[14]. 

Accordingly, this paper proposes a new technique for block 
cipher encryption. The proposed system follows different 
directions compared to these mentioned previously in 
improving the security of the symmetric cipher cryptography 
[15]. The goal of the proposed technique and the creative 
direction is to improve security while maintaining low 
encryption and decryption processes requirements. The 
proposed technique improves the security using different 
transposition zigzag patterns while solving one of the major 
transposition cipher problems: the limited possible shuffle 
operation of the cipher algorithm. Moreover, the proposed 
technique used variable grid size maintained secret in the 
private key, similar to the columnar algorithm. Thus, before the 
encryption is made available for the sender, various patterns 
are created and saved with their identification number in the 
system. These patterns are shared publically between the 
sender and the receiver. However, trying all these patterns is 
impossible for cryptanalysis because of the vast possible 
patterns. Then, the proposed system allows the sender to freely 
choose among different patterns and select the grid size on 

which the patterns are drawn. The size and the pattern form the 
private key of this cipher system. A variable-length massage 
can be divided into blocks of various lengths, padded if 
necessary to meet the required length. Each block is encrypted 
using different patterns and keys. 

II. LITERATURE REVIEW 
Transposition ciphers are implemented based on designed 

patterns to scramble the plaintext. Examples of some of the 
transposition ciphers are presented in Fig. 3. The rail fence 
used the number of rows as the key. Then, a grid is created 
with the specified number of rows and number of columns 
equal to the length of the message to be encrypted. The plain 
text is placed diagonally downwards on successive rails on an 
imaginary fence, followed by upwards moves as the movement 
reaches the grid’s last row. The letters are read row by row to 
create the ciphertext  [16]. In the columnar cipher, the key 
determines the number of columns and the columns’ order. 
Then, a grid is created with a specific number of columns and 
rows to accommodate all the letters in the message to be 
encrypted. The plain text is placed on the grid row by row and 
in order. Then, the columns are permutated based on the key. 
The letters are read column by column to create the ciphertext 
[16-19]. 

The route cipher is another grid-based transposition cipher 
with longer keys than the rail fence and columnar. The key 
represents the number of columns or rows and the patterns to 
read the letters in the grid. The plaintext is written in the grid 
row by row and in order. Then, the ciphertext is produced by 
reading the grid upwards or downwards clockwise or zigzag 
patterns up and down. Double or multiple columnar ciphers are 
used to improve the security of the single columnar cipher. The 
same key can be applied, or other keys are required in multiple 
rounds of the columnar cipher process [18]. Myszkowski is a 
variation of the columnar cipher with a key of repeated letters 
that are given the same order. Accordingly, columns with 
unique numbers are read downward, and columns with 
recurring numbers are transcribed left to right. Disrupted 
transposition is another grid-based cipher with irregular spaces 
added between the plaintext letters. Overall, various 
transposition ciphers have been proposed. These transposition 
ciphers depend on a grid to scramble the plaintext. Yet, the 
problem of these ciphers is the limited patterns with a small 
key space that can be discovered in the cryptanalysis processes 
that are searching the keyspace [20]. 

Various modern techniques were proposed by modifying 
the transposition cipher algorithm. Sokouti, Sokouti [21] added 
8-bits padding to each 8-bits in the message, structured these 
bits in a binary tree, and traversed this tree using an in-order 
traversal algorithm. However, such complex processes increase 
the complexity of the transposition cipher. Twum, Hayfron-
Acquah [22] extended columnar cipher with a modified 
Rubik’s cube puzzle with a higher level of security as the cube 
represents a 3-dimensional instead of the 2-dimensional space 
utilized in the original columnar cipher. The number of such 
modified algorithms is enormous. Block cipher surveys were 
presented by Surya and Diviya [23], Albermany and 
Radihamade [10], and Mandal [24]. 
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Fig. 3. Example Transposition Ciphers. 

Lasry, Kopal [18] extended columnar cipher with a two-
phases hill-climbing algorithm in combining cipher algorithms 
with optimization. The main goal of the developed algorithm is 
to increase the size of the key to improve the security of the 
cipher. Hill climbing is an optimization algorithm that starts 
with a random solution and iteratively finds optimal. With 
columnar cipher, hill climbing is used to swap columns and 
increase the adjacency score of the resulting cipher. Various 
other schemes combined cipher algorithms with optimization 
algorithms, such as genetic algorithm (GA) [25, 26]. Using the 
Fibonacci code algorithm, Siregar, Fadlina [19] integrated 
columnar cipher and data compression. The columnar output is 
input to the Fibonacci algorithm, which produces the final 
ciphertext. 

Encryption modes describe how the blocks of a single 
message are related to each other to improve the security of the 
message. The electronic codebook (ECB) encryption mode for 
block cipher encrypts each block individually. The advantages 
of this mode are the ability of out-of-order decrypting, non-
propagation of errors between blocks, speed, and parallelism. 
Yet, as the same key is utilized, the same input plaintext 
produces the same cipher, which is deterministic and can be 
attacked through traffic analysis [4]. To overcome this 
limitation, several encryption modes have been developed; 
these are cipher block chaining (CBC), cipher feedback (CFB), 
output feedback (OFB), and counter (CTR) mode [11]. These 
modes operated based on the concept of using extra data 
besides plaintext and the key for creating probabilistic 
encryption. CBC encrypts the first block together with a 
randomly initialized vector. The vector is combined with plain 
text before the encryption process. The ciphertext is then used 
with the second block in place of the random vector, and the 
output is used with the third block and so on. In CFB, the 
random vector is encrypted and combined with plaintext, 
which emulates the self-synchronizing stream cipher. OFB is 
similar to CFB except that the encrypted vector is sent to the 
next block instead of the ciphertext, similar to the synchronous 
stream cipher concept. CTR mode initializes a unique vector 
for each block, encrypts the vector then combines the output 

with the plaintext to produce the ciphertext [27]. These modes 
aim to scramble the output, avoid repeated patterns, and 
provide semantic security, to prevent inference of any 
information from the ciphertext under an unknown key [4, 11]. 
Yet, these modes create various disadvantages, mainly related 
to the computational power and the required processing time. 
Generally, these modes have been developed with substitution 
encryption in mind. Although these modes applied for 
transposition, less attention has been given to this encryption 
scheme, mainly because of the limitation related to its weak 
security, resulting from the weakness of their keys, and the 
limited variation of the transposition shuffle [28-30]. 

In the integration direction, Srikantaswamy and Phaneendra 
[31] integrated columnar transposition cipher with Caesar 
substitution cipher. The secret key is generated randomly based 
on a selected seed value. Then, Caesar cipher is implemented 
with alphabets, symbols, and numbers as an extension to the 
original version that uses alphabets only. Finally, columnar is 
implemented using a randomly selected number of columns. 
Kester [17] integrated columnar transposition cipher with 
Vigenere substitution cipher. Columnar is implemented using a 
randomly selected number of columns. The generated 
ciphertext is then used as the key for encrypting the plaintext 
using the Vigenere cipher. Dar [16] integrated columnar 
cipher, Caesar cipher, and rail fence cipher to improve the 
security of the ciphertext. The aforementioned cipher 
algorithms are implemented in order; as such, the output of the 
columnar is used as input to Caesar, and the output of Caesar is 
used as input to the rail fence, which produces the final 
ciphertext. 

As noted, these extended techniques rely on more 
processing rounds and complex calculation and transposition to 
secure the data. Yet, those techniques cannot be applied for 
micro-devices with limited resources or real-time applications 
requiring rapid encryption-decryption processes [32]. 
Accordingly, this research proposed a strong security technique 
resulting from the possible variation with low processing 
requirements. 

III. THE PROPOSED SYSTEM 
The proposed technique relies on predefined zigzag 

patterns drawn on a two-dimensional grid and can be extended 
to three-dimensional as required. The patterns can be created 
manually, as illustrated in Fig. 4, or automatically using graph-
based search, or randomly depending on the application and 
the device. In a typical implementation of the proposed 
techniques, these patterns are made publically available and 
exchanged between the sender and the receiver. Yet, to make 
the system secure, the number of these patterns should be large 
enough to avoid brute-force solving of the ciphertext. 
Moreover, some patterns can be made secret and shared only 
between the sender and the receiver. 

Besides, these patterns are saved in the sender and receiver 
devices in two arrays, one for the x-axis and the other for the y-
axis, as illustrated in Fig. 5. If a three-dimensional cube is 
utilized, another array is used for the z-axis.  Such 
representation requires low memory and can be traversed with 
O(n) complexity, where n is the size of the grid. The vast 
number of possible patterns maintains security. For a grid of n 
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cells, a total of (n!) can be generated. Moreover, given that n is 
variable, (n! * (n-1!)) total patterns can be generated if n is 
hidden. The value of n can be made invisible as the proposed 
technique allows for arbitrary padding at the end of the 
message before and after encryption. For example, for a 
message of length 6, 720 (6!) patterns are drawn on a grid of 
size 6 (2*3). Yet, after encryption padding, the message can 
appear of size 9, for example. Thus, for cryptanalysis to try all 
possible patterns, all patterns of the grid of sizes {9, 8, .., 1} 
should be examined. 

 
Fig. 4. Zigzag Patterns Examples. 

 
Fig. 5. Example of Array Representation of a Zigzag Pattern. 

A. Pattern Generation 
The pattern by which the transposition processes are 

implemented can be created in two forms and three ways. The 
zigzag patterns, which do not include any line-crossing, can be 
generated either manually or using graph-based techniques, as 
listed in Table I. 

TABLE I. PATTERNS LIST OF THE PROPOSED TECHNIQUE 

Pattern Type Generated Mechanism Advantages 

Non-crossing 
Zigzag  Manual Visually interpreted and 

verifiable.    

Returnable Pattern   
Graph Traversal (In-
order, pre-order, and 
post-order) 

Visually interpreted and 
verifiable and created 
automatically    

Crossing-Line 
Pattern  Manual or Randomly Easily created with wide 

varieties   

The line-crossing patterns can be created manually but 
preferably using random number generation. The grid size and 
the initial cell s are determined to generate a manual pattern. 
Then, the pattern is created following zigzag directions visiting 
all the cells once and terminating the traversing at the arbitrary 
final cell, e. The coordinates of the cells are preserved in the 
arrays based on the traversing order. Each pattern is saved with 
a unique identifier to reference between the sender and the 
receiver. Besides, a generated pattern can be kept secret and 
exchanged with the private key because the pattern can be 
represented as two arrays in a two-dimensional grid. Although 
the zigzag patterns required manual attention to avoid line-
crossing, these zigzag patterns can be generated using a graph 
representation of the grid and graph traversals mechanisms, 
such as in-order, pre-order, and post-order, as illustrated in 
Fig. 6. Nevertheless, as illustrated in Fig. 7, line-crossing 
patterns do not affect the security of the proposed technique. 
Instead, such line-crossing patterns allow for random patterns 
without the need for human attention or graph representation 
and traversals. 

 
Fig. 6. The Graph Representation for a Zigzag Pattern Generation. 

 
Fig. 7. Crossing-Line Pattern. 

B. Secret Key Value 
The secret or the private key of the proposed technique is 

represented with an integer value, which can be converted into 
binary as required. The private key of the proposed cipher 
technique referred to the grid size, the pattern to be utilized, 
and the padding options. There are two options for determining 

Grid-size: 6* 6, Indexing-Scheme: [1..6, 
1..6] 

 
x-array: [3, 3, 3, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 
2, 3, 3, 3, 4, 5, 6, 6, 5, 4, 4, 4, 4, 4, 5, 6, 6, 6, 

6, 5, 5, 5] 
y-array: [3, 2, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 5, 
4, 4, 5, 6, 6, 6, 6, 5, 5, 5, 4, 3, 2, 1, 1, 1, 2, 3, 

Connected Graph Representation 
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Grid-size: 5* 5, Indexing-Scheme: 
[1..5, 1..5] 

 
x-array: [3, 3, 3, 4, 5, 5, 5, 5, 5, 4, 3, 

2, 1, 1, 2, 3, 4, 4, 4, 2, 2, 1, 1, 1, 2] 
y-array: [3, 2, 1, 1, 1, 2, 3, 4, 5, 5, 5, 

5, 5, 4, 4, 4, 4, 3, 2, 2, 3, 3, 2, 1, 1] 
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the pattern, either a secret pattern embedded into the private 
key or the unique identifier of a public pattern. A secret pattern 
can be identified as starting by -1 value. The public pattern is 
identified with a unique positive identifier. The identifier can 
be of any length to continuously add patterns without limits. 
There are also two padding options to improve the security of 
the proposed technique, as listed in Table II. Table II lists the 
private key components in the proposed technique with 
examples. 

TABLE II. PRIVATE KEY COMPONENTS OF THE PROPOSED TECHNIQUE 

Components Description Example 

Length 

Four digits: The first digit 
indicates using public (0) or 
secret pattern (1). The next 
two digits indicated the 
length of the pattern (either 
length of the identifier or 
length of the included 
pattern). The next digit 
indicates whether padding is 
done before (0) or after 
encoding (1). If no padding 
occurs, then this digit can 
take any value.  

0160  using 
public pattern 
identified by 16 
digits with padding 
implemented 
before encrypting 

Grid size  4-digits for the two-
dimensional  

0610  six rows 
and ten columns 

Pa
tte

rn
 

Public 
Identifier 

Variable number of digits for 
the unique identifier 

Can be any 
number 

Secret 
Pattern  

Two concatenated arrays of 
size equal to the grid size 
(identified by the size field 
in the pattern) 

21211212  two 
concatenated 
arrays [2121] and 
[1212] that 
describe a pattern 
over 2*2 grid 

Pa
dd

in
g 

Before 
encoding 

Two digits to indicate the 
length of the padding at the 
end of the grid 

05  padding of 
length 5 

After 
encoding  

Two digits to indicate the 
length of the padding at the 
end of the ciphertext 

04  padding of 
length 4 

Example Keys  

1501|0505|33345555543211234442211123211123455555444432233211|06 

A secret pattern consists of 50 digits of the secret pattern or a 5x5 grid with 
six digits padding before encrypting 

0101|0505|0125214578|06 

A public pattern has an identity consisting of 10 digits with the same 
specification as the previous one 

C. Encryption 
The encryption process is implemented based on the 

specifications stated in the secret key. First, the grid is created 
based on the predetermined dimensions, utilizing the secret key 
components. The plain text components are placed inside the 
grid based on the pattern represented by the x-array and the y-
array. The ciphertext is produced by reading the grid row by 
row as the grid is filled. If padding is implemented before 
encoding, then the padded code (either 0’s in case of 
encrypting binaries or X’s in the case of encrypting letters) is 
considered in the last row(s) of the created grid. For example, 

if a 3x3 grid is utilized with two padding bits before encoding, 
then the value of the cells {(2,3), (3,3)}, will be zeros, and 
these cells will not be filled with the components of the 
plaintext as will be explained. If padding is implemented after 
the encoding, the padded code is attached after the ciphertext is 
produced. Algorithm 1 presents the encryption process. The 
significance of the padding is that, even with the same pattern 
and the same inputs, different pad lengths for the before 
encoding padding leads to a completely different output. 

Algorithm 1: Encryption 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Input: mb, K (cols, rows, xs [], ys [], beforePadding, afterPadding) 
Output: cb 
Grid [][]:= Create-Grid (cols, rows) 
xPadding [],yPadding []:= IdentifyPaddingCells(beforePadding) 
For-Each x,y in xs, ys 
      IF (x,y ∈ xPadding , yPadding) 
             Grid [x,y] := 0 
      ELSE   
             Grid [x,y] := mbi, i++ 
For-Each c in Grid  
       cbi : = c 
 IF  (afterPadding > 0)  
       Concatenate (cb, pad) 

Notations:  
mb, cb: message block and the cipher block, respectively 
k: private key 
cols, rows: number of columns, and rows as determined by the private key, 
respectively 
xs, ys: the x-array and y-array of the pattern, respectively.  
beforePadding, afterPadding: length of the padding before and after 
encryption, respectively.  

As given in Algorithm 1, line 3 created the grid used by the 
encryption. The padded cells used before encryption are 
identified based on their numbers, as the last cells in the grid, 
as given in line 4. Lines 5-9 fill the grid following the pattern 
with the message (lines 8-9) or with padding (lines 6-7) if the 
pattern comes across the padding cell. Lines 10-11 create the 
ciphertext by reading the grid row by row. Finally, lines 12-13 
concatenate after encryption pads if it exists as determined in 
the key. 

D. Decryption 
The grid is created based on the predetermined dimensions 

after receiving the encrypted message (bit sequence or letter 
sequence) at the receiver side. The grid is filled in a row by 
row manner, similar to how the sender created the ciphertext in 
the last stage. Then, to retrieve the plaintext, the receiver will 
implement the same pattern as utilized in the receiver side, but 
this time to read the cells and reproduce the message. The 
padded code cells are skipped while reading the grid 
components if padding is implemented before encoding. At the 
same time, if padding is implemented after encoding, the last 
components of the received ciphertext will be removed. 
Algorithm 2 presents the decryption process. 

Algorithm 2 represents opposite operations. Line 3 created 
the grid. After encryption pads are removed, then in lines 5-6.  
Then, the grid is filled in lines 7-8. Lines 5-9 read the grid 
following the pattern and filling the message (lines 12-13) or 
skip padding (lines 10-11) if the pattern crosses the padding 
cell. 
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Algorithm 2: Decryption 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Input:  cb, K (cols, rows, xs [], ys [], beforePadding, afterPadding) 
Output: mb 
Grid [][]:= Create-Grid (cols, rows) 
xPadding [],yPadding []:= IdentifyPaddingCells(beforePadding) 
IF  (afterPadding > 0)  
      Eliminate (cb, pad) 
For-Each c in Grid  
      cbi : = c 
For-Each x,y in xs, ys 
      IF (x,y ∈ xPadding , yPadding) 
             continue 
      ELSE   
             mbi := Grid [x,y], i++ 

Notations:  
mb, cb: message block and the cipher block, respectively 
k: private key 
cols, rows: number of columns, and rows as determined by the private key, 
respectively 
xs, ys: the x-array and y-array of the pattern, respectively.  
beforePadding, afterPadding: length of the padding before and after 
encryption, respectively. 

E. Multiple Encryption-Decryption 
Multiple patterns can be used with the same block with 

multiple rounds while considering the computational 
requirements at the sender and the receiver, as given in Fig. 8. 
Accordingly, multiple private keys are required for such a 
purpose. Nevertheless, multiple rounds can be done with the 
same key, as each round will contribute to the scrambling of 
the input. 

Encryption

Key 1, 2, .. 

OutputInput 

Encryption

Message

Decryption

Key 1, 2, .. 

OutputInput 

Decryption

CipherCipher Message

 
Fig. 8. Multiple Encryption-decryption. 

IV. EXAMPLES 
An example of encrypting and decrypting a plaintext 

represented using a binary code and a private key, which 
specify the size of the grid and the pattern, is given in Fig. 9. A 
single block is encrypted and decrypted using the given key in 
the example. The rest of the blocks can be encrypted and 
decrypted in the same way if the same key is utilized. 
Otherwise, different grid-size and different patterns are 
utilized. 

 
Fig. 9. Example of Binary Encrypting and Decrypting. 

 
Fig. 10. Example of Letters Encrypting and Decrypting . 

As shown in Fig. 10, the second example represents the 
encrypting and decrypting of letters and numbers. The process 
is identical to the previous examples. Using different keys 
leads to using different grid sizes, different patterns, and 
different encoding padding. The letters in the example can be 
encrypted directly as given in the example or converted into 
binary code and encrypted bit-wise. 

As given in Fig. 11, the third example represents the 
encrypting and decrypting of binary code before encoding 
padding. As noted, the results were contributing to more 
scrambling of the message. 

 
Fig. 11. Example of Binary Encrypting and Decrypting with Padding. 

V. SECURITY CONCERNS 
Unlike the substitution cipher, attacks on transposition 

cipher do not depend on linear and differential cryptanalysis 
[33, 34]. Instead, the attacks on transposition cipher depend on 
guessing the key with statistical analysis of the n-gram of the 
language [35]. In such a process, the optimization algorithms 
reduce the time required by the brute-force approach. 
Accordingly, there are two strength issues to defeat such 
cryptanalysis: increasing the keyspace and increasing the 
possibilities of the transposition and scrambling processes. In 
the proposed technique, the key size has been increased to 
variable size, given that the size can be encapsulated into the 
private key itself. Although the size of the block can reveal 
much about the grid possibilities, using padding in two ways 
increases the block’s size and leads to variable block size. 
Accordingly, padding the text with long pads are preferable to 
increase the security of the proposed technique. Moreover, as 
the encryption patterns are hidden in the private key, it is hard 
to implement all possible patterns to discover the correct one. 
Semantic security is granted in the proposed technique as it 
cannot infer any information from the ciphertext under an 
unknown key. To summarize, the security of the proposed 
technique can be listed as given in Table III. 

The proposed system’s validation is implemented based on 
various texts encrypted with random keys and with reference to 
the frequency distribution graph of the standard English letter, 
as illustrated in Fig. 12. This validation assumes that the 

Key: 0101|0606|2025214515|00 
Message: 

100111001011010001010001011110100111 
Cipher:   

110110100111101110000010110100101010 
 

Key: 0091|0505|145786952|00 
Message: 

ABCDEFGHIJKLMOPQRSTUVWXYZ 
Cipher:    

VWABCUXYZDTSRQELMNPEKJIHG 

Key: 0100|0606|2025214515|11 
Message: 

ABCDEFGHIJKLMOPQRSTUVWXYZ 
Cipher:    

EDCRSTFGBQZUIHAPYVKLMOXWK 
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attacker captures the ciphertext without knowing the key. 
Accordingly, the attacker implements frequency distribution to 
analyze the captured ciphertext. An example of this graph is 
given in Fig. 13(a). The attacker then compares the frequency 
distribution graph with the Standard English Letter. Matching 
is then implemented by shifting the distribution graph to match 
the distribution graph of the English letters. As given in 
Fig. 13(b), the matching can be found by shifting the ciphertext 
graph by 3 letters. Shifting has been determined as the letter 
“E” is the most frequent in English, while letter H is the most 
frequent letter of the ciphertext graph, as it has been used in 
padding. Yet, the plaintext was not obtained as the reverse 
shifting is implemented. Accordingly, frequency analysis of 
1000 different samples and shifting is determined by matching 
the frequency graph of each sample with the letter “E”. The 
obtained results after shifting did not match any input text of 
these samples. 

TABLE III. STRENGTH ASPECTS OF THE PROPOSED TECHNIQUE 

Strength Aspect Description 

Vast patterns The number of patterns that can be created is large 

Variable grid size Using padding, the actual size of the grid is hidden  

Long key  The key length can be large with patterns included or 
long pattern identity 

Hidden pattern  Secret patterns make the process of breaking the 
cipher harder 

 
Fig. 12. Standard English Text Frequency. 

 
(a) Example Frequency Graph. 

 
(b) Example Frequency Graph after Shifting. 
Fig. 13. Frequency Analysis of Ciphertext. 

VI. CONCLUSION 
In this paper, a technique for a transposition block cipher is 

proposed based on arbitrary grid size, initial point, and 
arbitrary zigzag patterns. The proposed technique improves the 
security of the ciphertext by scrambling the letters or the bits of 
the plaintext in an unpredicted manner. The time and memory 
requirements of the proposed technique are maintained as low 
as possible to cope with the requirements of currently utilized 
micro-devices and real-time applications. Accordingly, the 
proposed technique is of O (n) complexity, where n is the 
grid’s size. High security is maintained using a large key, data 
block of variable size with vast possible patterns. To defeat the 
cryptanalysis, the block size is increased using padding in two 
ways. Two similar paddings, yet with different lengths, lead to 
a completely different output even with the same pattern and 
the same inputs, which improves the security of the proposed 
system. Accordingly, hiding the patterns, the block size, and 
the padding in the private key makes it is hard to implement all 
possible patterns to discover the correct one. The frequency 
analysis implemented proves the security of the proposed 
technique. 
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