
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

A Novel Secure Transposition Cipher Technique
using Arbitrary Zigzag Patterns

Basil Al-Kasasbeh
Faculty of Computer Studies, Arab Open University (AOU), Riyadh, Kingdom of Saudi Arabia

Abstract—Symmetric cipher cryptography is an efficient
technique for encrypting bits and letters to maintain secure
communication and data confidentiality. Compared to
asymmetric cipher cryptography, symmetric cipher has the speed
advantage required for various real-time applications. Yet, with
the distribution of micro-devices and the wider utilization of the
Internet of Things (IoT) and Wireless Sensor Network (WSN),
lightweight algorithms are required to operate on such devices.
This paper proposes a symmetric cipher based on a scheme
consisting of multiple zigzag patterns, a secret key of variable
length, and block data of variable size. The proposed system uses
transposition principles to generate various encryption patterns
with a particular initial point over a grid. The total number of
cells in the grid and its dimension are variable. Various patterns
can be created for the same grid, leading to different outcomes on
different grids. For a grid of n cells, a total of n! * (n-1!) total
patterns can be generated. This information is encapsulated in
the private key. Thus, the huge number of possible patterns and
the variation of the grid size, which are kept hidden, maintain the
security of the proposed technique. Moreover, variable padding
can be used; two paddings with different lengths lead to a
completely different output even with the same pattern and the
same inputs, which improves the security of the proposed system.

Keywords—Cryptography; symmetric cipher; block cipher;
transposition algorithms

I. INTRODUCTION
Data confidentiality can be ensured using both asymmetric

cipher and symmetric cipher. Symmetric cipher has the
advantage of low computational requirements compared to
asymmetric cipher cryptography, which is commonly used for
key exchange and authentication purposes [1]. Asymmetric
cipher is commonly referred to as public-key encryption [2].
On the other hand, the symmetric cipher is commonly referred
to as private-key encryption and has two main types: the block
cipher and the stream cipher. The stream cipher encrypts each
bit of the message with each key’s bit using operations, such as
the exclusive-or (XOR) [3].

On the other hand, block cipher uses substitutions and
transposition operations on an n-bits block, as illustrated in Fig.
1. Block cipher encrypts a data block of predetermined length
using private key principles. Both stream and block ciphers
have their applications, advantages, and disadvantages. The
stream cipher is fast and requires low computational power
compared to the block cipher. Block cipher is widespread and
is used in various other applications, such as stream cipher,
hash function, pseudorandom number generator, and message
authentication [4]. Besides, the block cipher is more secure
than the stream cipher, subject to the strength of the utilized

private key [5]. The security level of the block cipher algorithm
is evaluated based on the complexity, the performance, and its
strength against possible cryptanalyses, such as linear and
differential analysis and the homegrown crypto that is created
afterthought [4, 6, 7].

Block cipher algorithms use predefined block sizes. A
multiple of 8-bits block sizes is commonly utilized as
compatible with most processors. Besides, the large size is
avoided as it leads to padding, increasing computational
requirements. Similarly, small size blocks give more chances
for dictionary attacks on the ciphertext blocks to succeed [8].
For a variable-length message to be encrypted, the message is
first divided into blocks of the predetermined size, padded if
necessary to meet the required size. Then each block is
encrypted using the cipher algorithm with a private key.
Advanced algorithms for block cipher have been developed,
such as Advanced Encryption Standard (AES) and Data
Encryption Standard (DES), which are the most utilized
encryption algorithms worldwide [4, 9]. These algorithms
depend on mathematical operation and substituting the
plaintext bits and characters by other bits and characters; these
are called substitutional algorithms. Besides the substitution
cipher, another block cipher type is called transposition cipher,
such as rail fence and columnar. Compared to the substitution
cipher, the transposition cipher is faster, as it depends on
transposition shuffle rather than mathematical operations. Yet,
because the shuffle is limited and known in advance, and the
algorithms are operated on very small keys, the security of
these algorithms is weak. Surprisingly, vast number of the
existing substitutional algorithms has been solved by the
cryptanalysis [4, 5, 10, 11].

Message (mi)

Key (ki)

Cipher (Ci)

Stream Cipher

Encryption

Decryption

Algorithm

Message Block
(mi - mi+s)

Key

Cipher C

Block Cipher

Encryption

Decryption

Fig. 1. Stream Cipher vs. Block Cipher.

269 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

Fig. 2. Modern Cryptograph Directions.

Accordingly, various modern cipher techniques have been
proposed to improve the security of the block cipher. Various
ways have been followed to extend the existing algorithms. As
illustrated in Fig. 2, these are 1) Proposing various encryption
modes, in which the block ciphers are related to each other or
related to randomly created vectors to increase the complexity
of the generated cipher. 2) Combining various cipher
algorithms to create a more secure system. 3) Combining
cipher algorithms with optimization and compression
algorithms. 4) Extending the cipher algorithms by increasing
the size of the key or modifying their structure. Although these
directions improve the security of the cipher algorithms, most
of them have increased the computational requirements of the
encryption and decryption process. The complexity of the
modern techniques for data encryption leads to the
inapplicability of these techniques to be utilized in most of the
modern applications, such as real-time applications, sensor
networks [12], and Internet-of-Things (IoT) [13], which
demands secure yet highly performance encryption techniques
[14].

Accordingly, this paper proposes a new technique for block
cipher encryption. The proposed system follows different
directions compared to these mentioned previously in
improving the security of the symmetric cipher cryptography
[15]. The goal of the proposed technique and the creative
direction is to improve security while maintaining low
encryption and decryption processes requirements. The
proposed technique improves the security using different
transposition zigzag patterns while solving one of the major
transposition cipher problems: the limited possible shuffle
operation of the cipher algorithm. Moreover, the proposed
technique used variable grid size maintained secret in the
private key, similar to the columnar algorithm. Thus, before the
encryption is made available for the sender, various patterns
are created and saved with their identification number in the
system. These patterns are shared publically between the
sender and the receiver. However, trying all these patterns is
impossible for cryptanalysis because of the vast possible
patterns. Then, the proposed system allows the sender to freely
choose among different patterns and select the grid size on

which the patterns are drawn. The size and the pattern form the
private key of this cipher system. A variable-length massage
can be divided into blocks of various lengths, padded if
necessary to meet the required length. Each block is encrypted
using different patterns and keys.

II. LITERATURE REVIEW
Transposition ciphers are implemented based on designed

patterns to scramble the plaintext. Examples of some of the
transposition ciphers are presented in Fig. 3. The rail fence
used the number of rows as the key. Then, a grid is created
with the specified number of rows and number of columns
equal to the length of the message to be encrypted. The plain
text is placed diagonally downwards on successive rails on an
imaginary fence, followed by upwards moves as the movement
reaches the grid’s last row. The letters are read row by row to
create the ciphertext [16]. In the columnar cipher, the key
determines the number of columns and the columns’ order.
Then, a grid is created with a specific number of columns and
rows to accommodate all the letters in the message to be
encrypted. The plain text is placed on the grid row by row and
in order. Then, the columns are permutated based on the key.
The letters are read column by column to create the ciphertext
[16-19].

The route cipher is another grid-based transposition cipher
with longer keys than the rail fence and columnar. The key
represents the number of columns or rows and the patterns to
read the letters in the grid. The plaintext is written in the grid
row by row and in order. Then, the ciphertext is produced by
reading the grid upwards or downwards clockwise or zigzag
patterns up and down. Double or multiple columnar ciphers are
used to improve the security of the single columnar cipher. The
same key can be applied, or other keys are required in multiple
rounds of the columnar cipher process [18]. Myszkowski is a
variation of the columnar cipher with a key of repeated letters
that are given the same order. Accordingly, columns with
unique numbers are read downward, and columns with
recurring numbers are transcribed left to right. Disrupted
transposition is another grid-based cipher with irregular spaces
added between the plaintext letters. Overall, various
transposition ciphers have been proposed. These transposition
ciphers depend on a grid to scramble the plaintext. Yet, the
problem of these ciphers is the limited patterns with a small
key space that can be discovered in the cryptanalysis processes
that are searching the keyspace [20].

Various modern techniques were proposed by modifying
the transposition cipher algorithm. Sokouti, Sokouti [21] added
8-bits padding to each 8-bits in the message, structured these
bits in a binary tree, and traversed this tree using an in-order
traversal algorithm. However, such complex processes increase
the complexity of the transposition cipher. Twum, Hayfron-
Acquah [22] extended columnar cipher with a modified
Rubik’s cube puzzle with a higher level of security as the cube
represents a 3-dimensional instead of the 2-dimensional space
utilized in the original columnar cipher. The number of such
modified algorithms is enormous. Block cipher surveys were
presented by Surya and Diviya [23], Albermany and
Radihamade [10], and Mandal [24].

•Cipher Keys Incease Size

•Cipher Algorithms Combine

•Cipher Algorithms Extend

•Compression and
Optimization Algorithms Integrate

270 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

Cipher (Ci) = EFUOO XTRT EE OSNS PTLTR MXIAU AE RP

E X A M P L E

O
S
N
S

T E X T F
R I L L U
T R A T I O

P U R P O
E

Key 3276451

E X E P L M A
F
U
O
O

T T X E
R O L L I
T S T I A R

N R P U P
E S

Permutated Columns

Plaintext = Example text for illustration purpose
Key = “Keyword”

Columnar Cipher

Cipher (Ci) = REAFNI CLE

Plaintext = Rail fence
Key = 4

R E
A F N

I C
L E

Rows = 4

Rail Fence Cipher

Fig. 3. Example Transposition Ciphers.

Lasry, Kopal [18] extended columnar cipher with a two-
phases hill-climbing algorithm in combining cipher algorithms
with optimization. The main goal of the developed algorithm is
to increase the size of the key to improve the security of the
cipher. Hill climbing is an optimization algorithm that starts
with a random solution and iteratively finds optimal. With
columnar cipher, hill climbing is used to swap columns and
increase the adjacency score of the resulting cipher. Various
other schemes combined cipher algorithms with optimization
algorithms, such as genetic algorithm (GA) [25, 26]. Using the
Fibonacci code algorithm, Siregar, Fadlina [19] integrated
columnar cipher and data compression. The columnar output is
input to the Fibonacci algorithm, which produces the final
ciphertext.

Encryption modes describe how the blocks of a single
message are related to each other to improve the security of the
message. The electronic codebook (ECB) encryption mode for
block cipher encrypts each block individually. The advantages
of this mode are the ability of out-of-order decrypting, non-
propagation of errors between blocks, speed, and parallelism.
Yet, as the same key is utilized, the same input plaintext
produces the same cipher, which is deterministic and can be
attacked through traffic analysis [4]. To overcome this
limitation, several encryption modes have been developed;
these are cipher block chaining (CBC), cipher feedback (CFB),
output feedback (OFB), and counter (CTR) mode [11]. These
modes operated based on the concept of using extra data
besides plaintext and the key for creating probabilistic
encryption. CBC encrypts the first block together with a
randomly initialized vector. The vector is combined with plain
text before the encryption process. The ciphertext is then used
with the second block in place of the random vector, and the
output is used with the third block and so on. In CFB, the
random vector is encrypted and combined with plaintext,
which emulates the self-synchronizing stream cipher. OFB is
similar to CFB except that the encrypted vector is sent to the
next block instead of the ciphertext, similar to the synchronous
stream cipher concept. CTR mode initializes a unique vector
for each block, encrypts the vector then combines the output

with the plaintext to produce the ciphertext [27]. These modes
aim to scramble the output, avoid repeated patterns, and
provide semantic security, to prevent inference of any
information from the ciphertext under an unknown key [4, 11].
Yet, these modes create various disadvantages, mainly related
to the computational power and the required processing time.
Generally, these modes have been developed with substitution
encryption in mind. Although these modes applied for
transposition, less attention has been given to this encryption
scheme, mainly because of the limitation related to its weak
security, resulting from the weakness of their keys, and the
limited variation of the transposition shuffle [28-30].

In the integration direction, Srikantaswamy and Phaneendra
[31] integrated columnar transposition cipher with Caesar
substitution cipher. The secret key is generated randomly based
on a selected seed value. Then, Caesar cipher is implemented
with alphabets, symbols, and numbers as an extension to the
original version that uses alphabets only. Finally, columnar is
implemented using a randomly selected number of columns.
Kester [17] integrated columnar transposition cipher with
Vigenere substitution cipher. Columnar is implemented using a
randomly selected number of columns. The generated
ciphertext is then used as the key for encrypting the plaintext
using the Vigenere cipher. Dar [16] integrated columnar
cipher, Caesar cipher, and rail fence cipher to improve the
security of the ciphertext. The aforementioned cipher
algorithms are implemented in order; as such, the output of the
columnar is used as input to Caesar, and the output of Caesar is
used as input to the rail fence, which produces the final
ciphertext.

As noted, these extended techniques rely on more
processing rounds and complex calculation and transposition to
secure the data. Yet, those techniques cannot be applied for
micro-devices with limited resources or real-time applications
requiring rapid encryption-decryption processes [32].
Accordingly, this research proposed a strong security technique
resulting from the possible variation with low processing
requirements.

III. THE PROPOSED SYSTEM
The proposed technique relies on predefined zigzag

patterns drawn on a two-dimensional grid and can be extended
to three-dimensional as required. The patterns can be created
manually, as illustrated in Fig. 4, or automatically using graph-
based search, or randomly depending on the application and
the device. In a typical implementation of the proposed
techniques, these patterns are made publically available and
exchanged between the sender and the receiver. Yet, to make
the system secure, the number of these patterns should be large
enough to avoid brute-force solving of the ciphertext.
Moreover, some patterns can be made secret and shared only
between the sender and the receiver.

Besides, these patterns are saved in the sender and receiver
devices in two arrays, one for the x-axis and the other for the y-
axis, as illustrated in Fig. 5. If a three-dimensional cube is
utilized, another array is used for the z-axis. Such
representation requires low memory and can be traversed with
O(n) complexity, where n is the size of the grid. The vast
number of possible patterns maintains security. For a grid of n

271 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

cells, a total of (n!) can be generated. Moreover, given that n is
variable, (n! * (n-1!)) total patterns can be generated if n is
hidden. The value of n can be made invisible as the proposed
technique allows for arbitrary padding at the end of the
message before and after encryption. For example, for a
message of length 6, 720 (6!) patterns are drawn on a grid of
size 6 (2*3). Yet, after encryption padding, the message can
appear of size 9, for example. Thus, for cryptanalysis to try all
possible patterns, all patterns of the grid of sizes {9, 8, .., 1}
should be examined.

Fig. 4. Zigzag Patterns Examples.

Fig. 5. Example of Array Representation of a Zigzag Pattern.

A. Pattern Generation
The pattern by which the transposition processes are

implemented can be created in two forms and three ways. The
zigzag patterns, which do not include any line-crossing, can be
generated either manually or using graph-based techniques, as
listed in Table I.

TABLE I. PATTERNS LIST OF THE PROPOSED TECHNIQUE

Pattern Type Generated Mechanism Advantages

Non-crossing
Zigzag Manual Visually interpreted and

verifiable.

Returnable Pattern
Graph Traversal (In-
order, pre-order, and
post-order)

Visually interpreted and
verifiable and created
automatically

Crossing-Line
Pattern Manual or Randomly Easily created with wide

varieties

The line-crossing patterns can be created manually but
preferably using random number generation. The grid size and
the initial cell s are determined to generate a manual pattern.
Then, the pattern is created following zigzag directions visiting
all the cells once and terminating the traversing at the arbitrary
final cell, e. The coordinates of the cells are preserved in the
arrays based on the traversing order. Each pattern is saved with
a unique identifier to reference between the sender and the
receiver. Besides, a generated pattern can be kept secret and
exchanged with the private key because the pattern can be
represented as two arrays in a two-dimensional grid. Although
the zigzag patterns required manual attention to avoid line-
crossing, these zigzag patterns can be generated using a graph
representation of the grid and graph traversals mechanisms,
such as in-order, pre-order, and post-order, as illustrated in
Fig. 6. Nevertheless, as illustrated in Fig. 7, line-crossing
patterns do not affect the security of the proposed technique.
Instead, such line-crossing patterns allow for random patterns
without the need for human attention or graph representation
and traversals.

Fig. 6. The Graph Representation for a Zigzag Pattern Generation.

Fig. 7. Crossing-Line Pattern.

B. Secret Key Value
The secret or the private key of the proposed technique is

represented with an integer value, which can be converted into
binary as required. The private key of the proposed cipher
technique referred to the grid size, the pattern to be utilized,
and the padding options. There are two options for determining

Grid-size: 6* 6, Indexing-Scheme: [1..6,
1..6]

x-array: [3, 3, 3, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2,
2, 3, 3, 3, 4, 5, 6, 6, 5, 4, 4, 4, 4, 4, 5, 6, 6, 6,

6, 5, 5, 5]
y-array: [3, 2, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 5,
4, 4, 5, 6, 6, 6, 6, 5, 5, 5, 4, 3, 2, 1, 1, 1, 2, 3,

Connected Graph Representation

s

e

……………………

Grid-size: 5* 5, Indexing-Scheme:
[1..5, 1..5]

x-array: [3, 3, 3, 4, 5, 5, 5, 5, 5, 4, 3,

2, 1, 1, 2, 3, 4, 4, 4, 2, 2, 1, 1, 1, 2]
y-array: [3, 2, 1, 1, 1, 2, 3, 4, 5, 5, 5,

5, 5, 4, 4, 4, 4, 3, 2, 2, 3, 3, 2, 1, 1]

272 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

the pattern, either a secret pattern embedded into the private
key or the unique identifier of a public pattern. A secret pattern
can be identified as starting by -1 value. The public pattern is
identified with a unique positive identifier. The identifier can
be of any length to continuously add patterns without limits.
There are also two padding options to improve the security of
the proposed technique, as listed in Table II. Table II lists the
private key components in the proposed technique with
examples.

TABLE II. PRIVATE KEY COMPONENTS OF THE PROPOSED TECHNIQUE

Components Description Example

Length

Four digits: The first digit
indicates using public (0) or
secret pattern (1). The next
two digits indicated the
length of the pattern (either
length of the identifier or
length of the included
pattern). The next digit
indicates whether padding is
done before (0) or after
encoding (1). If no padding
occurs, then this digit can
take any value.

0160 using
public pattern
identified by 16
digits with padding
implemented
before encrypting

Grid size 4-digits for the two-
dimensional

0610 six rows
and ten columns

Pa
tte

rn

Public
Identifier

Variable number of digits for
the unique identifier

Can be any
number

Secret
Pattern

Two concatenated arrays of
size equal to the grid size
(identified by the size field
in the pattern)

21211212 two
concatenated
arrays [2121] and
[1212] that
describe a pattern
over 2*2 grid

Pa
dd

in
g

Before
encoding

Two digits to indicate the
length of the padding at the
end of the grid

05 padding of
length 5

After
encoding

Two digits to indicate the
length of the padding at the
end of the ciphertext

04 padding of
length 4

Example Keys

1501|0505|33345555543211234442211123211123455555444432233211|06

A secret pattern consists of 50 digits of the secret pattern or a 5x5 grid with
six digits padding before encrypting

0101|0505|0125214578|06

A public pattern has an identity consisting of 10 digits with the same
specification as the previous one

C. Encryption
The encryption process is implemented based on the

specifications stated in the secret key. First, the grid is created
based on the predetermined dimensions, utilizing the secret key
components. The plain text components are placed inside the
grid based on the pattern represented by the x-array and the y-
array. The ciphertext is produced by reading the grid row by
row as the grid is filled. If padding is implemented before
encoding, then the padded code (either 0’s in case of
encrypting binaries or X’s in the case of encrypting letters) is
considered in the last row(s) of the created grid. For example,

if a 3x3 grid is utilized with two padding bits before encoding,
then the value of the cells {(2,3), (3,3)}, will be zeros, and
these cells will not be filled with the components of the
plaintext as will be explained. If padding is implemented after
the encoding, the padded code is attached after the ciphertext is
produced. Algorithm 1 presents the encryption process. The
significance of the padding is that, even with the same pattern
and the same inputs, different pad lengths for the before
encoding padding leads to a completely different output.

Algorithm 1: Encryption

1
2
3
4
5
6
7
8
9
10
11
12
13

Input: mb, K (cols, rows, xs [], ys [], beforePadding, afterPadding)
Output: cb
Grid [][]:= Create-Grid (cols, rows)
xPadding [],yPadding []:= IdentifyPaddingCells(beforePadding)
For-Each x,y in xs, ys
 IF (x,y ∈ xPadding , yPadding)
 Grid [x,y] := 0
 ELSE
 Grid [x,y] := mbi, i++
For-Each c in Grid
 cbi : = c
 IF (afterPadding > 0)
 Concatenate (cb, pad)

Notations:
mb, cb: message block and the cipher block, respectively
k: private key
cols, rows: number of columns, and rows as determined by the private key,
respectively
xs, ys: the x-array and y-array of the pattern, respectively.
beforePadding, afterPadding: length of the padding before and after
encryption, respectively.

As given in Algorithm 1, line 3 created the grid used by the
encryption. The padded cells used before encryption are
identified based on their numbers, as the last cells in the grid,
as given in line 4. Lines 5-9 fill the grid following the pattern
with the message (lines 8-9) or with padding (lines 6-7) if the
pattern comes across the padding cell. Lines 10-11 create the
ciphertext by reading the grid row by row. Finally, lines 12-13
concatenate after encryption pads if it exists as determined in
the key.

D. Decryption
The grid is created based on the predetermined dimensions

after receiving the encrypted message (bit sequence or letter
sequence) at the receiver side. The grid is filled in a row by
row manner, similar to how the sender created the ciphertext in
the last stage. Then, to retrieve the plaintext, the receiver will
implement the same pattern as utilized in the receiver side, but
this time to read the cells and reproduce the message. The
padded code cells are skipped while reading the grid
components if padding is implemented before encoding. At the
same time, if padding is implemented after encoding, the last
components of the received ciphertext will be removed.
Algorithm 2 presents the decryption process.

Algorithm 2 represents opposite operations. Line 3 created
the grid. After encryption pads are removed, then in lines 5-6.
Then, the grid is filled in lines 7-8. Lines 5-9 read the grid
following the pattern and filling the message (lines 12-13) or
skip padding (lines 10-11) if the pattern crosses the padding
cell.

273 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

Algorithm 2: Decryption

1
2
3
4
5
6
7
8
9
10
11
12
13

Input: cb, K (cols, rows, xs [], ys [], beforePadding, afterPadding)
Output: mb
Grid [][]:= Create-Grid (cols, rows)
xPadding [],yPadding []:= IdentifyPaddingCells(beforePadding)
IF (afterPadding > 0)
 Eliminate (cb, pad)
For-Each c in Grid
 cbi : = c
For-Each x,y in xs, ys
 IF (x,y ∈ xPadding , yPadding)
 continue
 ELSE
 mbi := Grid [x,y], i++

Notations:
mb, cb: message block and the cipher block, respectively
k: private key
cols, rows: number of columns, and rows as determined by the private key,
respectively
xs, ys: the x-array and y-array of the pattern, respectively.
beforePadding, afterPadding: length of the padding before and after
encryption, respectively.

E. Multiple Encryption-Decryption
Multiple patterns can be used with the same block with

multiple rounds while considering the computational
requirements at the sender and the receiver, as given in Fig. 8.
Accordingly, multiple private keys are required for such a
purpose. Nevertheless, multiple rounds can be done with the
same key, as each round will contribute to the scrambling of
the input.

Encryption

Key 1, 2, ..

OutputInput

Encryption

Message

Decryption

Key 1, 2, ..

OutputInput

Decryption

CipherCipher Message

Fig. 8. Multiple Encryption-decryption.

IV. EXAMPLES
An example of encrypting and decrypting a plaintext

represented using a binary code and a private key, which
specify the size of the grid and the pattern, is given in Fig. 9. A
single block is encrypted and decrypted using the given key in
the example. The rest of the blocks can be encrypted and
decrypted in the same way if the same key is utilized.
Otherwise, different grid-size and different patterns are
utilized.

Fig. 9. Example of Binary Encrypting and Decrypting.

Fig. 10. Example of Letters Encrypting and Decrypting .

As shown in Fig. 10, the second example represents the
encrypting and decrypting of letters and numbers. The process
is identical to the previous examples. Using different keys
leads to using different grid sizes, different patterns, and
different encoding padding. The letters in the example can be
encrypted directly as given in the example or converted into
binary code and encrypted bit-wise.

As given in Fig. 11, the third example represents the
encrypting and decrypting of binary code before encoding
padding. As noted, the results were contributing to more
scrambling of the message.

Fig. 11. Example of Binary Encrypting and Decrypting with Padding.

V. SECURITY CONCERNS
Unlike the substitution cipher, attacks on transposition

cipher do not depend on linear and differential cryptanalysis
[33, 34]. Instead, the attacks on transposition cipher depend on
guessing the key with statistical analysis of the n-gram of the
language [35]. In such a process, the optimization algorithms
reduce the time required by the brute-force approach.
Accordingly, there are two strength issues to defeat such
cryptanalysis: increasing the keyspace and increasing the
possibilities of the transposition and scrambling processes. In
the proposed technique, the key size has been increased to
variable size, given that the size can be encapsulated into the
private key itself. Although the size of the block can reveal
much about the grid possibilities, using padding in two ways
increases the block’s size and leads to variable block size.
Accordingly, padding the text with long pads are preferable to
increase the security of the proposed technique. Moreover, as
the encryption patterns are hidden in the private key, it is hard
to implement all possible patterns to discover the correct one.
Semantic security is granted in the proposed technique as it
cannot infer any information from the ciphertext under an
unknown key. To summarize, the security of the proposed
technique can be listed as given in Table III.

The proposed system’s validation is implemented based on
various texts encrypted with random keys and with reference to
the frequency distribution graph of the standard English letter,
as illustrated in Fig. 12. This validation assumes that the

Key: 0101|0606|2025214515|00
Message:

100111001011010001010001011110100111
Cipher:

110110100111101110000010110100101010

Key: 0091|0505|145786952|00
Message:

ABCDEFGHIJKLMOPQRSTUVWXYZ
Cipher:

VWABCUXYZDTSRQELMNPEKJIHG

Key: 0100|0606|2025214515|11
Message:

ABCDEFGHIJKLMOPQRSTUVWXYZ
Cipher:

EDCRSTFGBQZUIHAPYVKLMOXWK

274 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

attacker captures the ciphertext without knowing the key.
Accordingly, the attacker implements frequency distribution to
analyze the captured ciphertext. An example of this graph is
given in Fig. 13(a). The attacker then compares the frequency
distribution graph with the Standard English Letter. Matching
is then implemented by shifting the distribution graph to match
the distribution graph of the English letters. As given in
Fig. 13(b), the matching can be found by shifting the ciphertext
graph by 3 letters. Shifting has been determined as the letter
“E” is the most frequent in English, while letter H is the most
frequent letter of the ciphertext graph, as it has been used in
padding. Yet, the plaintext was not obtained as the reverse
shifting is implemented. Accordingly, frequency analysis of
1000 different samples and shifting is determined by matching
the frequency graph of each sample with the letter “E”. The
obtained results after shifting did not match any input text of
these samples.

TABLE III. STRENGTH ASPECTS OF THE PROPOSED TECHNIQUE

Strength Aspect Description

Vast patterns The number of patterns that can be created is large

Variable grid size Using padding, the actual size of the grid is hidden

Long key The key length can be large with patterns included or
long pattern identity

Hidden pattern Secret patterns make the process of breaking the
cipher harder

Fig. 12. Standard English Text Frequency.

(a) Example Frequency Graph.

(b) Example Frequency Graph after Shifting.
Fig. 13. Frequency Analysis of Ciphertext.

VI. CONCLUSION
In this paper, a technique for a transposition block cipher is

proposed based on arbitrary grid size, initial point, and
arbitrary zigzag patterns. The proposed technique improves the
security of the ciphertext by scrambling the letters or the bits of
the plaintext in an unpredicted manner. The time and memory
requirements of the proposed technique are maintained as low
as possible to cope with the requirements of currently utilized
micro-devices and real-time applications. Accordingly, the
proposed technique is of O (n) complexity, where n is the
grid’s size. High security is maintained using a large key, data
block of variable size with vast possible patterns. To defeat the
cryptanalysis, the block size is increased using padding in two
ways. Two similar paddings, yet with different lengths, lead to
a completely different output even with the same pattern and
the same inputs, which improves the security of the proposed
system. Accordingly, hiding the patterns, the block size, and
the padding in the private key makes it is hard to implement all
possible patterns to discover the correct one. The frequency
analysis implemented proves the security of the proposed
technique.

ACKNOWLEDGMENT
The author would like to thank Arab Open University-KSA

and Oracle-KSA for supporting this study.
REFERENCES

[1] N. Li, "Research on Diffie-Hellman key exchange protocol," 2nd
International Conference on Computer Engineering and Technology,
Chengdu, China, 2010, pp. 634-637.

[2] M.R. Joshi and R.A. Karkade, "Network security with cryptography,"
International Journal of Computer Science and Mobile Computing, vol.
4(1), 2015, pp. 201-204.

[3] M. U. Bokhari, S. Alam, and F.S. Masoodi, "Cryptanalysis techniques
for stream cipher: a survey," International Journal of Computer
Applications, vol. 60(9), 2012.

[4] D. Bujari, and E. Aribas, "Comparative analysis of block cipher modes
of operation," International Advanced Researches & Engineering
Congress, Osmaniye, Turkey, 2017, pp. 1-4.

[5] Valea, E., et al., Stream vs block ciphers for scan encryption.
Microelectronics Journal, 2019. 86: p. 65-76.

[6] S. Rani and H. Kaur, "Technical review on symmetric and asymmetric
cryptography algorithms," International Journal of Advanced Research
in Computer Science, vol. 8(4), 2017.

8.
20

%

1.
50

%

2.
80

%

4.
30

%

13
%

2.

20
%

2%

6.

10
%

7%

0.

15
%

0.

77
%

 4%

2.
50

%

6.
70

%

7.
50

%

1.
90

%

0.
10

%

6%

6.
30

%
 9.

10
%

2.

80
%

0.

98
%

2.

40
%

0.

15
%

2%

0.

07
%

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

STANDARD FREQUENCY

1
2

3
4

6
9 9

11

5
1 1

9 9
0

6
9 9 9

8
5

1
9 9

8
5

1

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

EXAMPLE FREQUENCY

4
6

9 9
11

5

1 1
9 9

0
6

9 9 9
8

5
1

9 9
8

5
1 1

2
3

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

SHIFTED FREQUENCY

275 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

[7] A.G. Khan, S. Basharat, and M.U. Riaz, "Analysis of asymmetric
cryptography in information security based on computational study to
ensure confidentiality during information exchange," International
Journal of Scientific & Engineering Research, vol. 9(10), 2018, pp. 992-
999.

[8] G. Singh, A. K. Singla, and K. S. Sandha., "Superiority of blowfish
algorithm in wireless networks," International Journal of Computer
Applications, vol. 44(11), 2012, pp. 23-26.

[9] S. Singh, S.K. Maakar, and S. Kumar, "A performance analysis of DES
and RSA cryptography," International Journal of Emerging Trends &
Technology in Computer Science (IJETTCS), vol. 2(3), 2013, pp. 418-
423.

[10] S. Albermany, and F. Radihamade, "Survey: block cipher methods," Int.
J. Adv. Res. Technol, vol. 5(11), 2016, pp. 11-22.

[11] P. Sharma and R. Purohit, "Performance evaluation of symmetric block
cipher RC6 with ECB and CBC operation modes," International
Conference on Intelligent Data Communication Technologies and
Internet of Things, Coimbatore, India, 2018, pp. 134-140.

[12] W. Mazurczyk, " VoIP steganography and its detection—a survey,"
ACM Computing Surveys (CSUR), vol. 46(2), 2013, pp. 1-21.

[13] P. Asghari, A.M. Rahmani, and H.H.S. Javadi, "Internet of Things
applications: A systematic review," Computer Networks, vol. 148, 2019,
pp. 241-261.

[14] S. Wachter, "Normative challenges of identification in the Internet of
Things: Privacy, profiling, discrimination, and the GDPR," Computer
law & security review, vol. 34(3), 2018, pp. 436-449.

[15] M. A. Hossain, M. B. Hossain, M. S. Uddin, and S. M. Imtiaz,
"Performance analysis of different cryptography algorithms,"
International Journal of Advanced Research in Computer Science and
Software Engineering, vol. 6(3), 2016, pp. 659-665.

[16] J.A. Dar, "Enhancing the data security of simple columnar transposition
cipher by caesar cipher and rail fence cipher technique," International
Journal of Computer Science & Engineering Technology (IJCSET), vol.
5(11), 2014, pp. 1054-1061.

[17] Q. A. Kester, "A hybrid cryptosystem based on vigenere cipher and
columnar transposition cipher," International Journal of Advanced
Technology and Engineering Research (IJATER), vol. 3(11), 2013, pp.
141-147.

[18] G. Lasry, N. Kopal, and A. Wacker, "Cryptanalysis of columnar
transposition cipher with long keys," Cryptologia, vol. 40(4), 2016, pp.
374-398.

[19] S. R. Siregar, F. Fadlina, and S.D. Nasution, "Enhancing data security of
columnar transposition cipher by fibonacci codes algorithm," Third
Workshop on Multidisciplinary and Its Applications, WMA-3, Medan,
Indonesia, 2019, pp. 1-10.

[20] A. Bhowmic, and M. Geetha, "Enhancing resistance of hill cipher using
columnar and Myszkowski transposition," International Journal of
Computer Sciences and Engineering, vol. 3(2), 2015, pp. 20-25.

[21] M. Sokouti, B. Sokouti, and S. Pashazadeh, "An approach in improving
transposition cipher system," Indian Journal of Science and Technology,
vol. 2(8), 2009, pp. 9-15.

[22] F. Twum, J. Hayfron-Acquah, and W. Morgan-Darko, "A proposed
enhanced transposition cipher algorithm based on rubik’s cube
transformations," International Journal of Computer Applications, vol.
182(35), 2019. pp. 18-26.

[23] E. Surya, and C. Diviya, "A survey on symmetric key encryption
algorithms," International Journal of Computer Science &
Communication Networks, vol. 2(4), 2012. pp. 475-477.

[24] P.C. Mandal, "Evaluation of performance of the symmetric key
algorithms: des, 3des, aes and blowfish". Journal of Global Research in
Computer Science, vol. 3(8), 2012, pp. 67-70.

[25] E. A. M. Eliáš, "Evolutionary computation in cryptanalysis of classical
ciphers," Tatra Mt. Math. Publ, vol. 70, 2017, pp. 179-197.

[26] S. Picek, and D. Jakobovic, "Evolutionary computation and machine
learning in cryptology," Genetic and Evolutionary Computation
Conference Companion, Cancún, Mexico, 2020, pp. 1147-1173.

[27] K.K. Pandey, V. Rangari, and S. Kumar, "An enhanced symmetric key
cryptography algorithm to improve data security," International Journal
of Computer Applications, vol. 74, 2013, pp. 0975 – 8887.

[28] O. Omolara, A. Oludare, and S. Abdulahi, "Developing a modified
Hybrid Caesar cipher and Vigenere cipher for secure data
communication," Computer Engineering and Intelligent Systems, vol.
5(5), 2014.

[29] P. Singh, and P. Shende, "Symmetric key cryptography: current trends",
International Journal of Computer Science and Mobile Computing, vol.
3(2), 2014, pp. 410-415.

[30] X. Yi, R. Paulet, and E. Bertino, "Homomorphic encryption,"
Homomorphic Encryption and Applications, 2014, pp. 27-46.

[31] S. Srikantaswamy, S. and D.H. Phaneendra, "Improved Caesar cipher
with random number generation technique and multistage encryption,"
International Journal on Cryptography and Information Security (IJCIS),
vol. 2(4), 2012, pp. 39-49.

[32] R. Rejani, and D.V. Krishnan, "Study of symmetric key cryptography
algorithms," International Journal of Computer Techniques, vol. 2(2),
2015, pp. 45-50.

[33] L. Keliher, "Refined analysis of bounds related to linear and differential
cryptanalysis for the AES," International Conference on Advanced
Encryption Standard, Bonn, Germany, 2004, pp. 42-57.

[34] L. R. Knudsen, "Block Ciphers—a survey," State of the art in applied
cryptography, Berlin, Heidelberg, 1998, pp. 18-48.

[35] A. M. Kadhim, "Diagnosis of some cipher systems. journal of baghdad
college of economic sciences university, vol. 4, 2013.

276 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Literature Review
	III. The Proposed System
	A. Pattern Generation
	B. Secret Key Value
	C. Encryption
	D. Decryption
	E. Multiple Encryption-Decryption

	IV. Examples
	V. Security Concerns
	VI. Conclusion
	Acknowledgment
	References

