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Abstract—Composites being the key ingredients of the 
manufacturing in the aerospace, aircraft, civil and related 
industries, it is quite important to check its quality and health 
during its manufacture or in service. The most commonly found 
problem in the CFRPs is debonding. As debonds are subsurface 
defects, the general methods are not quite effective and require 
destructive tests. The Optical Pulse Thermography (OPT) is a 
quite promising technology that is being used for detecting the 
debonds. However, the thermographic time sequences from the 
OPT system have a lot of noise and normally the defects 
information is not clear. For solving this problem, an improved 
tensor nuclear norm (I-TNN) decomposition is proposed in the 
concatenated feature space with multilayer tensor decomposition. 
The proposed algorithm utilizes the frontal slice of the tensor to 
define the TNN and the core singular matrix is further 
decomposed to utilize the information in the third mode of the 
tensor. The concatenation helps embed the low-rank and sparse 
data jointly for weak defect extraction. To show the efficacy and 
robustness of the algorithm experiments are conducted and 
comparisons are presented with other algorithms. 

Keywords—Improved tensor nuclear norm; low-rank 
decomposition; concatenated feature space; optical thermography 

I. INTRODUCTION 
For the task of extracting weak defect information in the 

thermal sequences of carbon fiber reinforced polymer (CFRP) 
debonds using the optical pulse thermography (OPT) based 
technology, post-image processing techniques are generally 
used. In [1], principal component analysis (PCA) is used along 
with the OPT for detecting the debonds in the CFRP. The PCA 
algorithms decompose the thermal sequence data into a low 
dimensional space using either the eigenvalue decomposition 
or the singular value decomposition (SVD). The algorithm 
provides reasonable results for detecting the debond defects in 
the CFRPs. In [2], another decomposition-based algorithm is 
proposed called the independent component analysis(ICA). 
The algorithm is similar to the PCA and provides reasonable 
results for detecting the debonds in CFRPs. In [3], the authors 
propose a polynomial-based decomposition algorithm called 
the thermal signal reconstruction (TSR). It works in the 
logarithmic domain and performs the polynomial fitting to 
extract the defect information in the thermal video sequences. 
The algorithm performs a little better than PCA and ICA 
however, it has a long-running time. In [4], [5], pulse phase 
thermography (PPT) is proposed. It employs an extension to 
the TSR algorithm in the frequency domain and extracts the 
amplitude and phase information for defect analysis. The PPT 
algorithm utilizes the Fourier Transform for extracting the 

defects information in the thermal sequences. In [6], [7], sparse 
principal component thermography (SPCT) is proposed for 
debonding detection in composites. This algorithm is an 
extension of the PCA algorithm. It induces sparsity into the 
algorithm. This algorithm works well for the flat shape 
specimen. In [8], feature embedding is proposed which uses the 
joint feature space for low-rank and sparse analysis. In [9], a 
tensor decomposition algorithm is proposed called the 
ensemble variational Bayes tensor factorization (EVBTF). It 
employs a multilayer architecture with tensor decomposition. 
The algorithm is used for detecting the debonds in the CFPR 
specimen using optical pulse thermography. The specimen 
under test was the flat rectangular shape CFRPs with debond 
defects at multiple depths and with multiple diameters. Another 
multilayer decomposition approach is proposed in [10] called a 
sparse mixture of Gaussian (S-MoG) for debond detection in 
composites. The algorithm provides reasonable results for the 
flat shape CFRP. Also, this algorithm is tested for the irregular 
shape CFRP V-shaped having debond defects at the elbow 
location. 

The problem with existing approaches and algorithm is that 
as the depth of the defect on the specimen increases or the 
diameter of the defect on the specimen decreases, the detection 
performance gets worse and the algorithms fail to detect the 
defects. Also, when the existing algorithms were tested on an 
irregular (V-Shape) specimen their performance is not good 
[10]. The time consumption that is the running time of the 
algorithms representing their computational efficiency is 
another problem that needs to be dealt with for meeting the 
requirements of the online NDT. 

In this paper, we solve the task of debonding detection in 
CFRP composites using optical thermography by using the 
concatenated feature space where the sparse data, low-rank 
data, and reconstructed data are used in a joint concatenated 
matrix. Further, the eigendecomposition is used to represent 
this joint feature space. It helps embed the sparse and low-rank 
data in single feature space for optimization. Further, this is 
solved by an improved tensor nuclear norm (I-TNN) based 
core singular matrix utilization tensor decomposition 
framework. This utilization allows exploiting the tensor data in 
its third mode which is not fully utilized [11] and helps 
decrease the computational cost of the overall algorithm due to 
faster convergence. The I-TNN with core matrix 
decomposition helps extract the weak debond defect 
information. The proposed approach is compared with general 
and state-of-the-art optical pulse thermography-based NDT 
algorithms. The experiment is carried out with two different 
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CFRP specimens with a flat and irregular shape having 
multiple debond defects with multiple depths and diameters. 
The results reflect the efficacy of the proposed algorithm in 
detecting the weak and noisy defect information from the 
irregular shape CFRP specimen with less computation time 
where other algorithms fail. 

The rest of the paper is organized as; Section 2 presents the 
related work; Section 3 presents the proposed algorithm. 
Section 4 gives information about the experiment setup and 
specimen. Section 5 presents results and discussion. Section 6 
concludes the paper. 

II. RELATED WORK 
The algorithms used for the debond detection in CFRP 

using optical thermography can be classified as post-processing 
techniques that are used to enhance the defect contrast and 
resolution and to remove the unwanted background noise from 
the thermal sequences. The debonds are the subsurface defects 
with varying depths and diameters that are difficult to detect by 
using only optical thermography due to uneven heating and 
thermal noise present in the thermal video sequences. To 
remove this thermal noise such that the defects are visible in 
the thermal sequences, post-image processing techniques are 
used. However, by using these techniques the debond defects 
with small depth and larger diameters are easily detected, but 
the debond defects with higher depth and smaller diameter are 
still a challenge. Further, if these debonds are on irregular 
shape specimens such as elbows and joints, the debond 
detection problem becomes much more severe. Some of the 
recent methods and techniques to cater to this problem are 
discussed below. 

In [15], the authors proposed a new excitation method 
based on the laser thermal excitation for the debonding defect 
detection in the concrete specimen reinforced by fiber plastics. 
The authors validate their approach by providing numerical 
results and feasibility studies. In [16], the authors proposed a 
deep learning-based thermal image segmentation approach to 
quantify the debond defects in CFRP using optical 
thermography. The authors present a temporal and spatial deep 
network by integrating the cross-network learning strategy. 
The probability of detection is carried out as a quantitative 
measure in comparison with other algorithms and experiment 
results are presented for different CFRPs with debond defects. 
In [17], the authors present the wavelet feature-based thermal 
image segmentation for detecting debond defects in the CFRP 
using optical thermography. The PCA-based features are 
extracted from the thermal images which are further processed 
using the Gaussian Low Pass filtering in the wavelet domain. 
The F-score based comparison is presented with other recent 
algorithms. In [18], the authors propose a sparse low-rank 
matrix decomposition method for debond detection in CFRP. 
A joint decomposition is proposed with iterative sparse 
modeling. The visual results along with F-score based results 
are presented to prove the efficacy of the proposed model. In 
[19], the authors present a comparative study of extracting 
subsurface defects in thermal patterns. The non-negative 
matrix factorization methods are used and compared on the 
thermal data and results are presented in terms of detection 
accuracies. In [20], the authors present a comparison of tensor-

based defect detection using the eddy current thermography. 
The importance of using tensor-based algorithms is 
highlighted. Further matrix and tensor decomposition-based 
algorithms are also compared. In [21], the authors propose a 
method of defect depth estimation in a CFRP specimen with 
flat bottom holes using pulsed thermography. The analysis is 
presented to characterize the defect depth with regard to 
specimen thickness and defect size. In [22], the authors 
propose an automated defect detection method in thermal 
sequences using important frame selection, feature extraction, 
and image segmentation to detect the defect size. In [23], the 
authors propose a Levenberg-Marquardt algorithm to remove 
the uneven heating noise in thermal sequences. A comparison 
is also presented with the existing algorithms in terms of noise 
removal and image resolution. In [24], the authors propose an 
image segmentation algorithm using artificial intelligence and 
fuzzy clustering for defect detection in thermal sequences. 
Experimental analysis is carried out to show the efficacy of the 
proposed model. 

III. PROPOSED METHODOLOGY 
First, given the thermographic video sequences 𝒳 ∈

ℜ𝑛1×𝑛2×𝑛3, where (𝑛1,𝑛2) are the spatial resolution and 𝑛3 is 
the frame number. In tensor-based terminology, this is a three-
way tensor [11], [12]. We propose a multilayer joint 
decomposition structure [9], [10] of low-rank (𝐿) and sparse 
components (𝐶) as; 

𝒳1 = ℒ1 + 𝒞1              (1) 

For the second layer; 

𝒳2 = ℒ2 + 𝒞2 + 𝑓1(𝒳1)             (2) 

For the 𝑛𝑡ℎ layer; 

𝒳𝑛 = ℒ𝑛 + 𝒞𝑛 + 𝑓𝑛−1(𝒳𝑛−1)            (3) 

where 𝑓𝑛(𝑋𝑛) is the activation used for the multilayer data 
modeling. To extract the defect information we propose the 
following optimization problem [11], [12]; 

minℒ,𝒞‖ℒ𝑛‖∗ + 𝜕‖𝒞𝑛‖1 𝑠. 𝑡 𝒳𝑛 = ℒ𝑛 + 𝒞𝑛           (4) 

where ‖. ‖∗  represents the tensor nuclear norm, 𝜕  is the 
regularizing parameter and ‖. ‖1 is the 𝑙1 norm. The problem in 
(4) is solved in the concatenated feature space using two steps. 
In the first step, the low-rank term is solved in the other step 
the sparse term is solved. Given the thermographic sequences 
and initializations a concatenated Eigen matrix decomposition 
is proposed as; 

𝒀𝑛 = �
𝑿𝑛

𝑿𝑛 − 𝑪𝑛−1
𝑪𝑛−1

�             (5) 

Where 𝑛  is the layer number 𝑋 = 𝛽(𝒳)  is the tensor to 
matrix transformation and 𝒳 = 𝛽−1(𝑋)  is matrix to tensor 
transformation, same is used for 𝐶 𝑎𝑛𝑑 𝒞 . By joint 
concatenation of the low-rank and the sparse data, two benefits 
are obtained. First, we retain the original features of the 
thermographic sequences which helps prevent the estimated 
low-rank features to deviate from the original. Further, the 
residual data and sparse data allow us to embed the sparse 
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component into low-rank modeling which significantly helps to 
extract the weak defect information. It should be noted here, 
that this concatenation firstly occurs in the matrix feature space 
and the low-rank and sparse modeling is solved in the tensor 
feature space. This tensor-matrix sparse low-rank 
decomposition enables us to utilize both tools simultaneously. 
The problem in (5) is solved using a simple 
eigendecomposition as; 

𝒀𝑛 = 𝑼𝜞𝑽𝑇                (6) 

Where 𝑈 and 𝑉 are the left and right Eigen matrices and 𝛤 
is the diagonal matrix containing the eigenvalues. The first six 
principal components are selected after the decomposition. 
Based on the repeated experimental analysis the first six 
components contain the most useful low-rank information 
namely. 

Here 𝑠𝑣𝑡𝜕1(𝑆̅)  is the singular value thresholding for the 
matrix, 𝑠𝑡ℎ(𝒴)  is the soft thresholding for tensor [11] and 
𝑡 − 𝑠𝑣𝑡2

𝜌
(𝐿�) represents the tensor singular value thresholding 

for the tensor [12]. For the parameters we set 𝜕1 = 1
�𝑛𝑚𝑎𝑥

, 
𝑛𝑚𝑎𝑥 = max (min(𝑛1,𝑛2) ,𝑛3) . Here (𝑛1,𝑛2,𝑛3)  are the 
frames and rows and columns of core tensor respectively. 
𝜕 = 1

�max (𝑛1,𝑛2)𝑛3
, 𝜌 = 1.1 and the stopping condition is set as; 

‖ℒ𝑘+1 − ℒ𝑘‖ ≤ 𝜀 , 𝜀 = 1𝑒 − 5  based on our experimental 
analysis. For other applications, the parameters can be tuned 
accordingly. 

𝒴𝑛 = 𝛽−1((𝑼𝜞𝑽𝑇)1 𝑡𝑜 6)             (7) 

A. Improved TNN with Core Tensor Decomposition 
Let 𝒜 = 𝒰 ∗ 𝒮 ∗ 𝒱∗ be the tensor singular decomposition 

(t-svd) of 𝒜 ∈ ℜ𝑛1×𝑛2×𝑛3 . The tensor nuclear norm of 𝒜  is 
given as [12]; 

‖𝒜‖∗ ≔ < 𝒮, ℐ > =  ∑ 𝒮(𝑖, 𝑖, 1)𝑟
𝑖=1             (8) 

Where 𝑟 = 𝑟𝑎𝑛𝑘𝑡(𝒜) is the tensor tubal rank, 𝒮, ℐ  is the 
singular value and identity tensor. To utilize the information in 
the third mode of the tensor svd we use the core singular 
matrix decomposition. The related operators are 𝑺� = 𝛽(𝒮) and 
𝒮 = 𝛽−1(𝑺�), where 𝛽 and 𝛽−1 are the transforms between the 
core tensor 𝒮 ∈ ℜ𝑛1×𝑛2×𝑛3 and core matrix 𝑆̅ ∈ ℜ𝑛×𝑛3, where 
𝑛 = min (𝑛1,𝑛2). 

Further, the most significant components of this core tensor 
are found by approximating very few significant singular 
values. The core singular matrix approximation of the I-TNN 
rank is given as; 

𝑟𝑎𝑛𝑘𝑖(𝒜) = [𝑟𝑎𝑛𝑘(𝑺�), 𝑟𝑎𝑛𝑘𝑡(𝒜)]𝑇           (9) 

Based on the above rank the I-TNN with core matrix 
approximation is given as; 

‖𝒜‖∗ = ‖𝑺�‖∗ + 𝛾 ∑ 𝒮(𝑖, 𝑖, 1)𝑟
𝑖=1            (10) 

Where 𝛾  is the balancing term. Based on the improved 
tensor nuclear norm and core matrix decomposition the 
problem in (4) can be solved iteratively using ADMM [13] for 
each layer. 

ℒ𝑘+1 = arg minℒ  ‖ℒ‖∗ + 𝜌
2
�ℒ − 𝒴 + 𝒞𝑘 −

𝒟𝑘
𝜌
�
𝐹

2
         (11) 

𝒞𝑘+1 = arg min𝒞  𝜕‖𝒞‖1 + 𝜌
2
�ℒ𝑘+1 − 𝒴 + 𝒞 − 𝒟𝑘

𝜌
�
𝐹

2
       (12) 

𝒟𝑘+1 = 𝒟𝑘 + 𝜌(𝒴 − ℒ𝑘+1 − 𝒞𝑘+1)          (13) 

Where 𝜌 > 0  is the augmented lagrangian penalty 
parameter, 𝒟 is the dual variable, 𝑘 is the iteration number. For 
the problem in (11), it is solved using ADMM [13] in two 
steps. The first step solves the core matrix problem and the 
other. 

step solves the tensor nuclear norm problem. The 
optimization model for the two-step problem can be formulated 
as [11]. 

𝑳�𝑘+1 = arg min𝛽(𝒮)‖𝛽(𝒮)‖∗ + 1
2𝜕1

�𝒯 − 𝒴 + 𝒞𝑘 −
𝒟𝑘
𝜌
�
𝐹

2
  (14) 

Where 𝛿1 is the regularizing parameter and 𝒮 is from the t-
svd and 𝒯 is a temporary variable. The tensor with a low-rank 
core matrix can be given as; 

𝒵𝑘+1 = 𝒰 ∗ 𝛽−1(𝑳�𝑘+1) ∗ 𝒱𝑇          (15) 

The other step minimized the tensor nuclear norm as 
follows; 

ℒ𝑘+1 = arg  minℒ‖ℒ‖∗ + 𝜌
4
‖ℒ − 𝒵𝑘+1‖𝐹2           (16) 

The details are given in the Table I. 

TABLE I. MULTILAYER ADMM FOR I-TNN WITH CORE MATRIX 
DECOMPOSITION 

Input: Tensor data 𝒳 ∈ ℜ𝑛1×𝑛2×𝑛3 
Initialization: Given 𝜌,𝜕1, 𝜕,ℒ = 0,𝒞 = 0,𝒟 = 0 
For each layer 𝑛 solve; 
1. Solve the concatenated problem in (5) by (7) to get 𝒴 
2. While not converged do: 

3. Compute [𝒰,𝒮,𝒱] = 𝑡 − 𝑠𝑣𝑑(𝒴 − 𝒞 + 𝒟
𝜌

)  

4. Update 𝑺� ≔ 𝛽(𝒮) 
5. Compute 𝑳�: = 𝑠𝑣𝑡𝜕1(𝑺�) 

6. Update 𝒵: = 𝛽−1(𝑳�) 
7. Update ℒ̅ ≔ 𝒰 ∗ 𝒵 ∗ 𝒱𝑇 
8. Update ℒ: = 𝑡 − 𝑠𝑣𝑡2

𝜌
(ℒ̅) 

9. Compute 𝒞: = 𝑠𝑡ℎ𝜕
𝜌

(𝒴 − ℒ + 𝒟
𝜌

) 

10. Update 𝒟 ≔ 𝒟 + 𝜌(𝒴 − ℒ − 𝒞) 
11. End while 
Output: ℒ𝑛,𝒞𝑛 ,𝒟𝑛  

IV. EXPERIMENTAL SETUP AND SPECIMEN DETAILS 
Regarding the experimental setup, the OPT system 

available at our lab can be seen in Fig. 1. In the OPT system, 
halogen lamps are used as an excitation source to induce heat 
into the specimen. A 𝑍𝑌 − 𝐵 type excitation source is used at 
the back of the halogen lamps with model 𝐼𝑇𝐸𝐶𝐻 − 𝐼𝑇6726𝐺. 
This model supports an adjustable power source that can be 
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tuned up to 3𝑘𝑊. In our experiments, we set the power of the 
excitation source to 2𝑘𝑊. The experiments are conducted in 
the reflection mode configuration [14]. The 85𝑐𝑚 distance is 
selected between the lamps and the specimen. To capture the 
thermographs of the sample an infrared camera is used model 
𝐴655𝑠𝑐. The output resolution of the infrared camera is set to 
640 × 480 per frame. The infrared camera used has a thermal 
sensitivity of 0.05°𝐶. Further, a sampling frequency of 50𝐻𝑧 
is selected for our experiments. 

To validate the proposed model, two different CFRP 
specimen is selected. The CFRP specimen was obtained from 
the Chengdu Aircraft Design Institute of the China Aviation 
Industry. The obtained specimen is similar to the ones used in 
the design and manufacturing of aircraft and related 
components. The first specimen has a rectangular shape and a 
flat surface. The second sample is like a 𝑉 shape with joints 
and edges. Both the specimen have debonded defects created 

by inducing the Teflon inserts at various depths and different 
diameters. The detailed information about the specimen shape 
and defects can be found in Table II. 

 
Fig. 1. The Optical Pulse Thermography System. 

TABLE II. INFORMATION ABOUT THE CFRP SPECIMEN 

Number Defect Profile Dimension(mm) Defect Information(mm) Picture 

1 

 

250×250×24.2 
Depth:1, 2 
Diameter:2,4,6,8,10,12,16,

20 

 
 

3 

 

100×100×80 
Depth:1.5,1.75,2,2.25,2.5,2

.75 
Diameter:9, 10 

 

V. RESULTS AND DISCUSSION 
In this section, the results are presented from the 

experiments. The visual results along with the F-score [9] and 
computation time are presented. The experiments are carried 
out using the optical pulse thermography system shown in 
Fig. 1. The repeated experiments were carried out to collect the 
thermographic sequences used. The reflection mode 
configuration is used with the standard camera, excitation 
source, and specimen distance given in [9]. The algorithms 
used in competition with the proposed algorithm are PPT [4], 
TSR [3], SPCT [6], EVBTF [9], and S-MoG [10]. The F-score 
and computation time results are given in Table III. The 
proposed algorithm was run up to four layers and the third 
layer results were found to be clear with better resolution and 
contrast for detecting the debond defects. 

The defect detection results from the algorithms in 
comparison are given in a tabular form shown in Fig. 2. All the 
results for both specimens can be seen in Fig. 2. Fig. 2(Row 1) 
shows the comparative results for specimen 1. It is a 
rectangular-shaped specimen having a flat surface and 10 
debond defects. The depths of the debonds are 
( 1mm and 2mm ) with varying diameter sizes. All the 
algorithms are run on a single computer to avoid any unfair 
processing advantage. From Fig. 2 (Row 1) it can be seen that 
most of the algorithms can detect at most 9 out of 10 defects. 
However, the strong noise is still present which limits the 
performance of algorithms in the scenario when the 
information about the defects is unknown. The proposed 
algorithm gives reasonable results with a reduction in noise and 
improvement in the resolution contrast of the specimen. The 
proposed algorithm can detect all defects where other 
algorithms fail. 
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 PPT [4] TSR [3] SPCT [6] EVBTF [9] S-MoG [10] Proposed 

1 

      

2 

     

 

Fig. 2. The Comparative Analysis of different Algorithms. 

TABLE III. COMPARATIVE RESULTS F-SCORE (LEFT) AND TIME TAKEN (RIGHT IN SECONDS) 

Specimen Number PPT [4] TSR [3] SPCT [6] EVBTF [9] S-MoG [10] Proposed 

1 0.94 135 0.94 271 0.94 40 0.94 1342 0.94 173 1 26 

2 0.75 146 0.88 601 0.88 43 0.75 753 0.88 125 1 6 

Average 0.84 140 0.91 436 0.91 41 0.84 1046 0.91 149 1 16 

Fig. 2(Row 2) shows the results for the second specimen. It 
has a V shape with an irregular surface. It is a more challenging 
specimen with defect depths ranging from 
(1.5, 1.75, 2, 2.25, 2.5, 2.75)mm.  Here, the defect diameters 
are(9 and 10)mm. It can be seen from Fig. 2(Row 2) that 
almost all algorithms fail to detect the debond defects. The 
strong noise is present and the resolution of the defects is quite 
poor. The proposed algorithm can detect all the defects with 
reasonable noise reduction and acceptable resolution. As the 
proposed algorithm utilizes a multilayer structure, the results in 
Fig. 2 are obtained by two layers of the algorithm. This layer 
number is selected based on the experimental analysis with 
multiple experiments on different data. However, due to the 
concatenated feature space where low-rank, sparse, and raw 
data are decomposed using a single feature space further 
layering does not significantly improve the results but in turn, 
incurs the additional computation cost. From the visual results, 
it can be argued that the proposed I-TNN with core matrix 
decomposition using a concatenated feature space in a 
multilayer architecture can detect smaller and deeper debond 
defects using OPT-NDT. 

Table III shows the F-score and computation time results. 
For both specimens, the results are averaged in the last row of 
the Table III. On average, the PPT [4] and EVBTF [9] 
algorithms have the detection efficiency of 84% with 140sec 
and 1046sec as the average computation time. The TSR [3], 
SPCT [6] and S-MoG [10] algorithms have the 91  average 
percent of defect detection. Their running times are 
436sec, 41 sec and 149sec respectively. The proposed model 
has 100% defect detection accuracy for the specimen under 
test. Using the concatenated feature space a simple eigen 
decomposition is carried out and only 6  principal eigen 
components are selected which help significantly in reducing 
the computation time enhancing the resolution of defects by 
multilayer I-TNN core matrix decomposition approach. The 
average computation time taken by the proposed model is 
16sec. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, a joint concatenation of the low-rank and 

sparse features is proposed. The I-TNN algorithm with core 
matrix-tensor decomposition in multilayer architecture is 
proposed for iteratively solving the feature space. The 
proposed approach is used for detecting the debond defects in 
the CFRP specimen using optical pulse thermography. By 
multi-layering, the low-rank and sparse components in a 
concatenated feature space help boost the convergence, 
eliminating the noise and detecting the debond defects with 
small diameter and varying depth. The comparative analysis 
with general OPT-NDT and other low-rank sparse and tensor 
modeling algorithms proves the debond detection capability of 
the proposed algorithm. 

The possible future extensions of this work will be the 
testing of this work on several new and different CFRP 
specimens. Further, the proposed algorithm can be tested and 
validated on the eddy current thermography data, microwave 
thermography data, and other thermography data. Further apart 
from the debond detection the algorithm can also be used for 
other defects using as delaminations and crack in CFRP and 
other metal structures. 
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