
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

343 | P a g e
www.ijacsa.thesai.org

Snowball Framework for Web Service Composition

in SOA Applications

Mohamed Elkholy1

Computer Engineering Department

Pharos University in Alexandria

Alexandria, Egypt

Youcef Baghdadi2

Department of Computer Science

Sultan Qaboos University

Muscat, Oman

Marwa Marzouk3

Information Technology Department

Matroh University

Matroh, Egypt

Abstract—Service Oriented Architecture (SOA) has emerged

as a promising architectural style that provides software

applications with high level of flexibility and reusability.

However, in several cases where legacy software components are

wrapped to be used as web services the final solution does not

completely satisfy the SOA aims of flexibility and reusability. The

literature review and the industrial applications show that SOA

lacks a formal definition and measurement for optimal

granularity of web services. Indeed, wrapping several business

functionalities as a coarse-grained web services lacks reusability

and flexibility. On the other hand, a huge number of fine-grained

web services results in a high coupling between services and large

size messages transferred over the Internet. The main research

question still concerns with “How to determine an optimal level

of service granularity when wrapping business functionalities as

web services?” This research proposes the Snowball framework

as a promising approach to integrate and compose web services.

The framework is made up three-step process. The process uses

the rules in deciding the web services that have an optimal

granularity that maintains the required performance. To

demonstrate and evaluate the framework, we realized a car

insurance application that was already implemented by a

traditional approach. The results show the efficiency of snowball
framework over other approaches.

Keywords—Service oriented architecture (SOA); web service

granularity; web service composition; software flexibility; snowball

composition framework

I. INTRODUCTION

SOA allows software systems to be composed as a group of
loosely coupled software components called services [1]. SOA
aims to provide cost effective flexible solution to business
organizations [2, 3]. However, SOA had not gained an extreme
popularity until the emerging of web service technology in
early 2000s [4]. Since that time, web service became the main
trend to implement SOA systems [5]. Several organizations
tend to wrap legacy software components in the form of web
services to implement SOA-based applications [6]. Wrapping
legacy software into web services reduces the cost of
implementing new software systems. However, in several cases
where legacy components are wrapped to be (re)used as web
services, the final solution does not completely satisfy the SOA
aims of flexibility and reusability. The reason behind that is the
unsuitable level of service granularity. Service granularity has
two different perspectives: business perspective and IT
perspective. From a business perspective, service granularity is
associated with the amount of business tasks fulfilled with that

service. On the other hand from IT perspective, web service
granularity is associated with size of data transferred from or
towards the service as well as its code length [7].

Service granularity affects reusability, efficiency and
performance of the services. Wrapping several business
functionalities as a coarse-grained web services leads to a
single use service [8]. Such service lacks reusability and
flexibility since the separation of concerns and cohesion are
missing. On the other hand, composing business tasks from
large number of small fine-grained services leads to high
coupling between services. Such situation leads to
communication complexity and degraded performance. That is,
an incorrect service granularity leads to bad performance, low
reuse possibilities, inappropriate abstraction levels, and
services without business value [9].

It is critical to balance between coarse-grained and fine-
grained web services while mapping SOA design to individual
web services [10]. Unfortunately, the literature lacks detailed
studies about service granularity and its impact on reusability,
flexibility, and performance [11].

Consequently, one of the main problems that faces
developers while developing web services-based SOA is the
difficulty to determine optimal service granularity, especially
as there is no theoretical definition for service granularity in the
literature.

The main research question still concerns with “How to
determine an optimal level of service granularity when
wrapping business functionalities as web services?”

This research proposes the Snowball as a promising
approach to compose web services in SOA-based applications.
Snowball is framework made up of a set of rules and a three-
step process. The process uses the rules to check the right and
optimal granularity of the services. It first decomposes a
Business Process (BP) into smaller sub-processes that are
further decomposed into business tasks, each of which is a set
of activities. Next, it maps the tasks into individual fine-
grained web services. Then it checks the fine-grained web
services against the rules, in order to allow their integration.
Finally, it optimizes the granularity.

Snowball aims at providing web services that have the
optimal granularity while maintaining the required flexibility,
reusability, and high performance in terms of low size of data
transferred. It is meant to be used by organizations that want to

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

344 | P a g e
www.ijacsa.thesai.org

offer its functionalities to users as web services, and can also
be used by organizations to build up their own business
applications.

To demonstrate and evaluate the framework, we realized a
car insurance application that was already implemented by a
traditional approach. The results show the efficiency of
snowball framework other traditional approaches.

Moreover, the proposed framework has an advantage over
other composition frameworks that generally use Business
Process Execution Language (BPEL). It integrates and
composes services functionalities before the implementation
phase. Hence, the framework allows three different modes of
services: wrapping legacy components, invocation from a
service provider, or creation from scratch (coding). Therefore,
Snowball eliminates the utilization of glue code languages such
as BPEL, which leads to degraded performance and hard
validation tests.

This paper is organized as follows: Section 2 presents
related work. Section 3 develops the Snowball framework, i.e.,
rules and methodology. Section 4 presents the results of the
empirical study. The conclusion section summarizes the
contribution, its limitation, its impacts, and future work.

II. RELATED WORK

One of the main challenges in web service applications
concerns with the granularity of services. This section analyzes
different popular methodologies for SOA applications, with
respect to the granularity of web services. Several models tried
to formalize different processes for an organization to adopt
SOA [12]. However, fewer researches focused on services
granularity and size of service messages.

SOMA is a popular SOA design framework, introduced by
IBM, that models business functionality as coherent individual
services. To implement new software for an organization,
SOMA defines a domain decomposition approach to perform
the design phase. The main idea is to decompose the business
into logical coherent functional areas. Each area consists of
related processes that are further split to smaller sub processes
[13]. Each sub process is decomposed into a set of activities
which are listed together to form service portfolio [14]. Each
service's functionality in the service portfolio is assigned to a
web service. SOMA has no restriction on service granularity or
on the size of service messages, whether the service is from the
legacy system or from external services. Hence, several SOMA
designs that lead to large services that perform several
individual functionalities, hence, missing the required
flexibility [15]. Such situation leads to a set of non-reusable
services neglecting SOA aims of software reusability [16]. On
the other hand, SOMA application might be implemented with
extremely high number of fine-grained services. Such
implementation may lead to large size of data transfer while
aggregating these services together [17].

Another popular model for SOA adoption is Service
Oriented Architecture Maturity Model (SOAMM). SOAMM
defines a model for monitoring different levels of development,
implementation, and usage of SOA [18]. SOAMM defines a
set of characteristics for organizational architecture that are
essential for any organization to be able to implement web

services-based SOA. SOAMM defines service selection and
collaboration between services from the business point of view
only [19]. However, SOAMM does not define rules for service
granularity from IT perspective such as size of input/output
messages.

Thomas Erl [20] defined Mainstream SOA Methodology
(MSOAM) as a framework to design, implement, test, and
deploy web services. MSOAM identifies seven activities
during analyses and design phases. It starts by Ontology
definition, then perform business model Alignment. Further it
performs service oriented design to develop services that fulfill
each process of business functionality. This framework has an
advantage in defining dependencies between services.
However, it does not define how these dependencies can affect
service granularity. Thus several MSOAM applications suffer
from coarse-grained web services lacking flexibility and
reusability.

Business Process-driven Methods [21] is considered one of
the most common strategy used to identify services in SOA.
This method uses clustering algorithm to identify services from
the business perspective. Business elements are divided into
rules and requirements, and then a syntax analysis is applied to
perform service selection for each BP [22]. Such method
focuses on BPs, and gives less attention to data transfer. The
main drawback of this method is the extremely fine-grained
services that lead to large amount of communication overheads
between services. Implementing web service application with
large number of fine grained services increases the size of
messages required for services communication [23, 24].

This figures out the problems associated with service
granularity while implementing SOA by using web services.
The literature lacks theoretical methods to define optimal
service granularity. Unsuitable level of service granularity
leads to significant drawbacks in flexibility, efficiency and
performance of SOA based applications [25]. The proposed
framework assists developers in deciding the optimal
granularity of web services that maintains flexibility and high
performance.

III. PROPOSED SNOWBALL FRAMEWORK

The proposed snowball framework provides a systematic
approach to determine the optimal service granularity for web
services-based SOA, in terms of performance and efficiency.

It defines a set of rules and a three-step process. The rules
specify mapping business tasks to IT web services. The rules
also define the conditions under which two services or more
should be integrated together. The three processes define the
actions taken to apply the rules to the business tasks step by
step till getting a suitable level of service granularity. It aims at
assuring an optimal service granularity that satisfies lower
coupling and higher cohesion.

A. Service Granularity

The framework considers two different properties of
service granularity: (1) the business functional granularity,
representing the number of elementary business tasks fulfilled
by the service, and (2) the data granularity, concerning with
size of input/output data included in the service messaging.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

345 | P a g e
www.ijacsa.thesai.org

From the business perspective, the fine-grained service is the
service that performs an atomic task [23]. While from IT
perspective, a fine-grained service is the service that has a
limited size of data transfer. Thus a service could be fine-
grained from a business perspective, and coarse-grained from a
data granularity perspective. For instance, a service that
displays a map performs a single business task but carries a
huge size of data.

B. Snowball Rules to Optimize Service Granularity

The framework provides two sets of rules to optimally and
efficiently integrate fine-grained services together, considering
both functional granularity and data granularity. Dependencies
between services are also a point of concern.

1) Rules to map business tasks into IT services:Mapping

business tasks into IT services consists in assigning each

single business task to an elementary web service, i.e., an

elementary coherent fine-grained service.

a) Rule 1: If a legacy software component satisfies a
single business task, then it is wrapped to act as a web service

with only one single operation.

b) Rule 2: If the required functionility exists in

public/private registries as a web service with one operation,

then select it.

c) Rule 3: If the service is to be locally implemented (by

coding), then the code includes only one single operation.

Applying these rules results in a high flexibility and
reusability of mapped web services. However, increasing the
number of individual web services in an application affects its
complexity and performance in terms of response time and
large size of network traffic [26, 27]. Therefore, there is a need
to integrate and compose service into an optimal granularity by
using the following rules.

2) Rules to integrate IT services:After assigning

elementary business tasks to IT service, the output is a set of

fine-grained service. The following rules are applied to these

services to achive optimal granularity.

a) Rule 1: Two services Si and Sj are integrated

together if:

 The business workflow requires execution of the two
services sequentially.

 The input parameters for Si are the same as Sj or the
output of Si is the required input for Sj.

b) Rule 2: Two services Si and Sj are integrated

together if:

 Si and Sj are in the same business domain and are
connected to the same database tables and.

 Si and Sj should be at the same branch of business
workflow.

3) Factors that manages services integeration:

Factor 1: Si and Sj have sequential execution.

Factor 2: The output of Si is an input for Sj.

Factor 3: Si and Sj have the same I/O.

Factor 4: Si and Sj have connection to the same

database.

Factor 5: Si and Sj have data dependencies, i.e., Sj

cannot be executed until Si is completed as Sj has one

(not all) of its inputs passed from outputs of Si.

C. Snowball Steps to Optimize Service Granularity

The Snowball process, shown in Fig. 1, consists of three
main steps that should be completed to provide SOA
applications with the required flexibility, reusability, and high
performance of the services that compose them. Step 1
identifies business tasks, step 2 maps each business task into an
IT service, whereas step 3 optimizes the service integration.

1) Service identification: Each BP is broken down into

smaller sub-processes and then to single elementary tasks. An

elementary task performs atomic coherent business

functionality. Then all the elementary tasks are listed in a task

table, as exemplified in Table I.

2) Mapping business tasks into IT services: This step uses

the first aforementioned set of three rules to map business

tasks into IT services. Mapping business tasks to a web

service means selecting a web service that fulfills the business

functionality of the task. Each atomic business task is mapped

to an elementary web service that would be wrapped from the

legacy systems or discovered over web service registries, or

even implemented as a new web service. Different activities of

mapping atomic business functionality to web services are

shown in Fig. 2.

Fig. 1. Snowball Process.

Start

Business Process

Task Table

Service Table

Optimized Service Table

Snowball Rules

End

Step 1: Break down business process into tasks

Step 2: Map each task into elementary IT service (See Fig. 2)

Step 3: Optimize service table by using Snowball rules (See Fig. 3)

Lo
o

p
 u

n
til n

o
 m

o
re o

p
tim

iza
tio

n
 c

an

b
e

 o
b

ta
in

e
d

 b
y

 u
sin

g
 S

n
o

w
b

a
ll ru

le
s

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

346 | P a g e
www.ijacsa.thesai.org

Start

Task Table

Service Table

End

Find a software component that fulfills the task

Discover web service with a single operation from registries

Develop a new software component as a service that fulfills the task

FoundService Registries Wrap the component as web service with a single operation

Found Map the web service to the task

Construct the service table

Yes

Yes

No

No

Fig. 2. Details of Step 2 of the Snowball Process.

Up till this step the system is composed of fine-grained IT
services that ensure a high level of cohesion. All the atomic
services are then listed in a services table. The services table
lists all the used services, including their business functionality,
I/O parameters, connected database, and dependent services.
The dependency between services is divided into control flow
dependency and dataflow dependency. The I/O parameters and
connected database are chosen as they have the most effect on
services coupling. The dependency between services is further
used to construct the criteria of integration between two
services or more.

3) Optimization of the service table: The third step is

responsible of optimizing the integration of different

individual services together. Such integration avoids building

applications from fine-grained web services that increases the

interaction between the application and outer invoked

services. This scenario leads to poor performance. The

integration process would reduce the total size of I/O

messaging of the client application to maintain high

performance. Unlike traditional composition such as BPEL,

the integration in the Snowball process consists of adding the

business functionality of the first service to the functionality

of second service. Thus, the integration of two services

functionalities results in new service that performs the

functionalities of both services. Snowball integrates services

with each other in recursive rounds. In each round, a service is

added to the existing one(s) to constitute a new integrated

service. The newly integrated services will act as elementary

services in the next round and so on till we get a service where

no more integration process can be applied according to the

rules. After each round the service table is updated to list the

newly integrated services with their parameters. Hence,

services integration process is repeated in recursive order by

applying the second aforementioned set rules, in order to

control service integration, as shown in Fig. 3.

In this step, Snowball framework applies the
aforementioned second set of rules in order to achieve two
main objectives for services integration regarding size of
transferred data and database connections.

First objective: Minimize overall service interface
messages.

This objective is achieved by applying rule1 regarding both
the business workflow and the size of transferred data. If S1and
S2 have the same input parameters, they are integrated together
in a new service S3. During runtime S3 will be invoked with
the input parameters of S1 and returns the output parameters of
S2 rather than sending the same data twice from S1 and S2.
The decrease in the sent and received data between the
application and outer web services has a great effect on
performance, especially for huge size of parameters.

Second objective: Minimize Database connections.

This objective regards the connection between web services
and databases. Rule 2 may not be available for discovered
services as the Web Service Describing Language (WSDL) file
almost contains the input/output parameters without
information about database connections. However, if the web
services are wrapped from the legacy software asset or
implemented as new services, information about connections
between data bases and services are available.

Start

Final Service Table

End

For each service, check the two rules for integration (merging) of services

Update Service Table

Integration
Found

Release final service table
No

Yes

Service Table + Two Optimization Snowball Rules

Fig. 3. Step 3: The Optimization Process.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

347 | P a g e
www.ijacsa.thesai.org

IV. EVALUATION

To proof the significant enhancement of the proposed
framework we focused on two main factors that affect SOA
applications. The two factors are performance and efficiency.
These two factors provide a clear measurement value that
reflects how optimal a service granularity is. Performance is
measured by calculating the response time between a service
invocation and its reply. Efficiency is measured by calculating
the total size of message used during the process of service
request and reply. An insurance company was selected to
evaluate the proposed work because insurance applications
combine different functionalities from different business
domains.

A. Case Description

The insurance company has many valuable software assets
that support many of its running business processes. The
company would like to offer the existing software
functionalities and any newly created ones as web services.
The focus is on the SOA-application that support car insurance
claim BP, whereby a client request insurance reimbursement
for his/her car. To prove the significant enhancement of the
proposed framework the system functionalities are built using
two approaches. In the first approach the system is designed
using traditional SOA approach. In the Second approach, the
required functionalities are built using Snowball framework.
For the two approaches the response time and the total size of
data transferred (message size) are calculated starting from
receiving a user request till the claim process is completed.

B. Applying Traditional Method and Snowball Framework

For a traditional approach, each one of the listed in Table I
one and representing different business tasks is mapped to an
individual web service. Then a service portfolio is constructed
without regarding the service granularity.

For snowball, the three-step processes mentioned above
were executed as follows:

Step 1: The first step takes the car insurance claim BP as
input and breaks it down to elementary tasks, which results in a
task table, as shown in Table I.

Step 2: The second step takes the task table as input and
maps each of the tasks to an elementary web service with
single operation according to the first set of rules, as shown in
Fig. 2.

Table II shows the resulting services. Each service
describes the mapped task, the input and output parameters, the
database to which it is connected, and its dependency to other
services.

Step 3: The third step takes the service table as input and
performs optimization according to the second set of rules, as
shown in Fig. 3. The optimization is a recursive, where each
iteration updates the service table according to the new
integrated services. The process ends when there are no more
services to be integrated. Every service in the service table is
tested whether it can be integrated with another service
according to the five factors defined in section 3.B.

Applying such factors to the service table presented in
Table II results in the following integrations, as shown in Table
III.

The three services S2, S3, and S4 require the same input:
client ID, client name, and insurance document ID. Moreover,
the three services are connected to the same databases: client
database and the insurance document database. The three
services also have control dependency as they all should be
executed sequentially before S5 is invoked. Accordingly, the
three services S2, S3, and S4 are aggregated into one service,
named Sa. The three services S6, S7, and S8 can also be
aggregated together, as they have client ID as an input
parameter. The three services are also connected to the same
database that is cars database. S6, S7, and S8 should be
executed as perquisite condition for S9 and S11. Accordingly,
the services S6, S7, and S8 are aggregated into one service,
named Sb.

Table III shows the final services produced by Snowball.
These are S1, S5, Sa, Sb, S9, S10, S11, and S12. For each
integrated service, Table III describes the service functionality,
the input and output parameters, the database to which it is
connected, and its dependency to other services.

C. Experimental Results

The insurance application is built as a web services-based
application by two different approaches: SOMA and Snowball.

 Traditional SOA application build up using 12
separated services.

 Snowball designed application that is built up using
only 8 services after integrating the dependent services.

1) The experiment: The two applications were built using

C# in .Net environment. The services were implemented on

IBM server with processor Xeon E5, whereas, the service

invocations were applied from a desktop with CPU core i7 and

16 M Byte memory. SOAP-UI was used as a testing tool to

calculate the message size and the response time. The

experiment was repeated ten (10) times and the average value

was calculated. The response time and message size were

calculated.

TABLE I. THE ELEMENTARY TASK OF THE BP

- Receive a claim

- Check insurer payment

- Check whether the claim is in the insured period

- Check whether the insurer have many claims (manipulator)

- Take a decision for the claim

- Get car year

- Get car making company

- Get car model

- Get car price

- Calculate estimated cost

- Get new car cost

- Get a decision for payment

- Payment

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

348 | P a g e
www.ijacsa.thesai.org

TABLE II. RESULTING SERVICES SHOWING THE ELEMENTARY TASK OF THE BP

Service Functionality
Input

parameters
Output parameters

Connected

Database
Dependent services

S1 Receive a claim - Request from client

S2 Check insurer payment

- -Client ID

- -Client name

- -Insurance document ID

- Boolean value

Client DB

 Insurance

Document DB

S3, S4

S3
Check whether the claim

is in the insured period

- -Client ID

- -Client name

- -Insurance document ID.

- Boolean value

Client DB

Insurance

Document DB

S2, S4

S4

Check whether the

insurer has many claims

(manipulator)

- -Client ID

- -Client name

- -Insurance document ID.

- Boolean value

Client DB

Insurance

Document DB

S2, S3

S5
Take a decision for the

claim
- -Three Boolean values - Boolean value S2, S3, S4

S6 Get car year - Car ID - Car year Cars DB _

S7 Get car making company - Car ID - Making company Cars DB _

S8 Get car model - Car ID - Car model Cars DB _

S9
Get damaged component

prices

- -Car year

- -Car making company

- -Car model

- Damaged

component price
External DB S6, S7, S8

S10
Calculate estimated

maintenance cost

- -Damaged component price

- -Maintenance cost
- Maintenance cost S9

S11 Get new car cost

- -Car year

- -Car making company

- -Car model

- New car cost -External DB S6, S7, S8

S12 Get payment decision
- -Maintenance cost

- -New car cost
- String S10, S11

TABLE III. FINAL SERVICES COMPOSITION BY SNOWBALL FRAMEWORK

Service Functionality Input parameters Output parameters Connected Database Dependent Services

S1 Receive a claim Request from client

Sa=

integration of

S2, S3, S4

Check insurer payment:

check whether the claim is in

the insured period and

whether the insurer has

many claims (manipulator)

- Client ID

- Client name

- Insurance document

ID

- 3 Boolean values
- Client DB

- Insurance Document DB

S5 Take a decision for the claim - 3 Boolean values Boolean value Sa

Sb=

integration of

S6, S7, S8

Get car year, car making

company, and car model
- Car ID

Car year Making

company Car model
- Cars DB

S9
Get damaged component

price

- Car year,

- Car making company

- Car model

Damaged component

price
- External DB Sa

S10
Calculate estimated

maintenance cost

- Damaged component

price

- Maintenance cost

Maintenance cost S9

S11 Get new car cost

- Car year

- Car making company

- Car model

New car cost - External DB Sb

S12 Get payment decision
- Maintenance cost

- New car cost
String S10, S11

 Reply time: calculated using SOAP-UI

2) Results: The results listed in Table IV show a

significant enhancement in the message size and respond time

while maintaining the same flexibility and reusability features.

Fig. 4 shows the difference between traditional application

and Snowball application across three metrics: message size

(Fig. 4a), response time (Fig. 4b), and database connection

(Fig. 4c).

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

349 | P a g e
www.ijacsa.thesai.org

TABLE IV. EXPERIMENTAL RESULTS

Approach
Size of transferred

message
Response time

Number of connected

database

Traditional

SOMA
850 Kbyte 370 msec 11 databases

Snowball

framework
510 Kbyte 190 msec 5 databases

(a)

(b)

(c)

Fig. 4. (a) Total Message Size in Kbyte, (b) Total Response Time in Msec,

(c) Number of Connected Databases.

D. Discussion

The experimental results show a significant enhancement in
two important parameters that affect the SOA applications. The
first parameter is the performance that is measured by the
response time of the invoked service. The average response
time decreased by 48% from 362 in case of traditional
applications, to be 188 msec using Snowball framework. The
second parameter is the application efficiency that is measured
by the size of transferred data. The transferred data
significantly decreased by 39 % to be 530 KB in snowball
application rather than 869 KB in case of traditional
application. Such decrement in data size provides better
network utilization specially when using wireless connections
with narrow band width. Another significant enhancement was
decreasing the number of connections between web services
and database to only 5 databases rather than 11 in traditional
applications.

Such results proof the significant enhancement of SOA
applications while using snowball approach. Using snowball
frame work defines an optimal service granularity that
significantly decreases the application response time and its
total transferred l data size.

It is worth mentioning that the experiment is meant to
evaluate three criteria in a specific testing configuration:
response time, size of the message, and number of DB
connections. It also considers only one running BP to clarify
our idea without adding more complexity in designing and
implementing more BP.

Adding other metrics that measure a quality SOA-based
application may result in a tradeoff.

V. CONCLUSION

The granularity of individual services that compose web
service-based SOA is an important issue. Service granularity
has significant impacts on the quality of the services regarding
performance and efficiency. This work has tacked the issue of
how to find an optimal service granularity. The Snowball
framework was proposed to adjust web service granularity to
maintain flexibility, performance, and efficiency of SOA
systems. The framework is made up of two sets of rules and a
three-step process.

The proposed framework was demonstrated and evaluated
through the development of a web-services-based SOA
application that supports the car insurance claim BP of an
insurance company. The application was developed by
traditional SOMA approach and Snowball framework. The
experimental results show significant enhancement of
Snowball over SOMA, in terms of response time, message size
and DB connections. The snowball is limited to the
optimization of the granularity from the perspective of
performance of the services and the applications composed out
of them.

The framework has practical and theoretical impacts. The
developers of SOA-based applications can use it to optimize
the granularity of their services to enforce their reuse and
consequently the time to market. From, a theoretical
perspective, the proposed work opens issues related to the
optimization of the service granularly with respect to other
quality criteria.

The future work will discuss the security enhancement
offered by Snowball approach. Also our future work will
analyze the problems associated with web service run time
failure while using Snowball approach.

REFERENCES

[1] Mohsen, A. and Naeem, K., "A review and future directions of SOA-

based software architecture modeling approaches for System of
Systems," In Service Oriented Computing and Applications, Volume 12,

Issue 3–4, pp 183–200.2018.

[2] Pulparambil, S., and Baghdadi, Y., "Service oriented architecture
maturity models: A systematic literature review," Computer Standards &

Interfaces, 61, 65-76. (2019).

[3] Papazoglou, M. P. and Georgakopoulos, A. D., "Service-Oriented
Computing," In Communications of the ACM, vol. 46 (10), pp. 24-28.

2003.

[4] Erol, O., Mansouri, M., and Sauser, B., "A framework for
enterpriseresilience using service oriented architecture approach," In:

20093rd annual IEEE systems conference. IEEE, pp 127–132.2009.

[5] Baghdadi, Y.,"Modelling business process with services: towards agile
enterprises," International Journal of Business Information Systems,

15(4), 410-433. 2014.

0

500

1000

Size of message in KByte

SOMA

Snowball

0

200

400

Response time in msec

SOMA

Snowball

0

5

10

15

Number of Database connections

SOMA

Snowball

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

350 | P a g e
www.ijacsa.thesai.org

[6] Baghdadi, Y. and Al-Bulushi, W. "A guidance process to modernize

legacy applications for SOA," SOCA 9, 41–58 .
https://doi.org/10.1007/s11761-013-0137-3.2015.

[7] Baccar, S. Baccar, S., Rouached, M., Verborgh, "Declarative Web

service composition using proofs," In Service Oriented Computing and
Applications Volume 12, Issue 3–4, pp 371–389. 2018.

[8] Immonen, A. and Pakkala, D., "A survey of methods and approaches for

reliable dynamic service compositions," In Service Oriented Computing
and Applications, Volume 8, Issue 2, pp 129–158.2014.

[9] Ayed Alwadain, Erwin Fielt, Axel Korthaus, Michael

Rosemann,"Empirical insights into the development of a service-
oriented enterprise architecture,"Data & Knowledge

Engineering,Volume 105, Pages 39-52,ISSN 0169-023X.2016.

[10] Ding, Z. and Zhou, Z., "Race Test: harmful data race detection based on
testing technologyin WS-BPEL," In Service Oriented Computing and

Applications 13:141–154 doi.10.1007/s11761-019-00261-1.2019.

[11] Silic, M., Delac, G., and Srbljic, S., "Prediction of atomic web service

reliability based on k-means clustering," In proceedings of the 9th Joint
Meeting on Foundations of Software Engineering, pages 70-80, Saint

Petersburg, Russia — August 18 - 26, ISBN: 978-1-4503-2237-9
doi>10.1145/24914112491424.2013.

[12] Baghdadi, Y., "SOA Maturity Models: Guidance to Realize SOA,”

International Journal of Computer and Communication Engineering 3 :
372-378, DOI:10.7763/IJCCE. 2014.V3.352.2014.

[13] A. Arsanjani, L. Zhang, M. Ellis, A. Allam and K. Channabasavaiah,

"S3: A Service-Oriented Reference Architecture," in IT Professional,
vol. 9, no. 3, pp. 10-17, doi: 10.1109/MITP.2007.53. May-June 2007.

[14] Osshiro M. et al. Márcio Osshiro, Elisa Y. Nakagawa, Débora M. B.

Paiva, Geraldo Landre, Edilson Palma, Maria Istela Cagnin, "Cambuci:
A Service-Oriented Reference Architecture for Software Asset

Repositories," In: Latifi S. (eds) Information Technology - New
Generations. Advances in Intelligent Systems and Computing, vol 558,

Springer, Cham https://doi.org/10.1007/978-3-319-54978-1_74 ISBN
978-3-319-54978-1.2018.

[15] Laradi, N., Bernard, P. and Plaisent, M., "The Organizational Impacts of

a Service Oriented Architecture," In Journal of Economic Development,
Management, IT, Finance and Marketing, 10(1), 88-96, March 2018.

[16] X. Liu, Y. Ma, G. Huang, J. Zhao, H. Mei and Y. Liu, "Data-Driven

Composition for Service-Oriented Situational Web Applications," in
IEEE Transactions on Services Computing, vol. 8, no. 1, pp. 2-16, , doi:

10.1109/TSC.2014.2304729. Jan.-Feb. 2015.

[17] Camacho, J. A., Chamorro, C. D. and Caicedo, N. G., " Implementation

by means of Web service with Service Orientation Architecture for a
System Tele-operated," In International Seminar of Biomedical

Engineering (SIB) IEEE: 10.1109/SIB.2018.8467754, 16-18 May,
Bogota, Colombia. 2018.

[18] Candido, G. Colombo, A., Barata, J. and Jammes F, "Service-oriented

infrastructure to support the deployment of evolvable production
systems," In IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 759-767.

2011.

[19] Razavian, M., Lago, P. A., "Systematic Literature Review on SOA
Migration, "In Journal of Software: Evolution and Process, 27(5), 337-

372. https://doi.org/10.1002/ smr.1712.2015.

[20] Erl, T., "SOA Principles of Service Design (paperback)," The Book.
Prentice Hall Press Upper Saddle River, NJ, USA ISBN:0134695518

9780134695518.2016.

[21] Choi, D.L. Nazareth, H.K. Jain, "The impact of SOA implementation on
IT-business alignment: a system dynamics approach," In ACM Trans.

Manag. Inf. Syst. 4, 3 (https://doi.org/10.1145/2445560.244556). 2013.

[22] Baryannis, G., Kritikos, K. and Plexousakis, D., "A specification-based

QoS-aware design framework for service-based applications," In Service
Oriented Computing and Applications, 11: 301.doi10.1007/s11761-017-

0210-4.2017.

[23] Niknejad, N., Hussin, A.R.C., and Amiri, I.S., "Introduction of Service-
Oriented Architecture (SOA) Adoption," In: The Impact of Service

Oriented Architecture Adoption on Organizations. Springer Briefs in
Electrical and Computer Engineering. Springer, Cham.2019.

[24] Guinard, D., Trifa, V., Karnouskos, S., Spiess, P. and Savio, "D.

Interacting with the SOA-Based Internet of Things: Discovery, query
selection, and on-Demand Provisioning of Web service," In ServComput

IEEE Trans 3(3):223–235. 2010.

[25] Kumar, L. Kumar, S. R. and Sureka, A. (2017) Using source code
metrics to predict change-prone web service: A case-study on ebay

services. In 2017 IEEE Workshop on Machine Learning Techniques for
Software Quality Evaluation (MaLTeSQuE)Klagenfurt, Austria IEEE,

DOI:10.1109/MALTESQUE.2017.7882009.

[26] Gazzarata, R, Vergari, F, Cinotti, T. S. and Giacomini, M., "A
standardized SOA for clinical data interchange in a cardiac tele

monitoring environment," In IEEE J. Biomed. Heal. Informatics, vol.
18, no. 6, pp. 1764-1774. 2014.

[27] H. M. Sneed, "Integrating legacy software into a service oriented

architecture," Conference on Software Maintenance and Reengineering
(CSMR'06), 2006, pp. 11 pp.-14, doi: 10.1109/CSMR.2006.28.

