
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 1, 2022 

Preserving Location Privacy in the IoT against 
Advanced Attacks using Deep Learning 

Abdullah S. Alyousef1*, Karthik Srinivasan2, Mohamad Shady Alrahhal3, Majdah Alshammari4, Mousa Al-Akhras5 
College of Computing and Informatics, Saudi Electronic University, Riyadh, Saudi Arabia1, 2, 5 

Department of Computer Science, King Abdulaziz University, Jeddah City, Saudi Arabia3 

Department of Computer Science, Hail University, Hail City, Saudi Arabia4 

Computer Information Systems Department, King Abdullah II School for Information Technology5 

The University of Jordan, Amman, Jordan5 

 
 

Abstract—Location-based services (LBSs) have received a 
significant amount of recent attention from the research 
community due to their valuable benefits in various aspects of 
society. In addition, the dependency on LBS in the performance 
of daily tasks has increased dramatically, especially after the 
spread of the COVID-19 pandemic. LBS users use their real 
location to build LBS queries to take benefits. This makes 
location privacy vulnerable to attacks. The privacy issue is 
accentuated if the attacker is an LBS provider since all 
information about users is accessible. Moreover, the attacker can 
apply advanced attacks, such as map matching and semantic 
location attacks. In response to these issues, this work employs 
artificial intelligence to build a robust defense against advanced 
location privacy attacks. The key idea behind protecting the 
location privacy of LBS users is to generate smart dummy 
locations. Smart dummy locations are false locations with the 
same query probability as the real location, but they are far from 
both the real location and each other. Relying on the previous 
two conditions, the deep-learning-based intelligent finder ensures 
a high level of location privacy protection against advanced 
attacks. The attacker cannot recognize the dummies from the 
real location and cannot isolate the real location by a filtering 
process. In terms of entropy (the privacy protection metric), 
accuracy (the deep learning metric), and total execution time (the 
performance metric) and compared to the well-known DDA and 
BDA systems, the proposed system shows better results, where 
entropy = 15.9, accuracy = 9.9, and total execution time = 17 sec. 

Keywords—LBS; dummy; deep-learning; attacks; accuracy; 
resistance; performance 

I. INTRODUCTION 
The Internet of Things (IoT) can be defined as a network of 

devices that are connected through the Internet to facilitate 
performing tasks remotely. The IoT is involved in all aspects of 
people’s lives, and it can be used in a wide range of 
applications in industry, transportation, and medicine [1]. In 
smart cities, the IoT forms the backbone for performing several 
missions, as shown in Fig. 1. 

Among the IoTs, location-based services (LBSs) are 
considered the most important services that serve people daily. 
LBSs can be seen as commercial location applications that 
utilize the geographical location information of smart devices 
and mainly smartphones, enabling users to search for Points of 
Interest (PoIs), such as nearest restaurants, hospitals, libraries, 
and sports clubs [3]. In other words, LBSs employ a Global 

Positioning System (GPS) to perform queries issued from the 
user side. In addition, smartphone users can easily obtain the 
benefits of LBS applications by downloading them from 
various sites, such as the Apple Store or Google Play Store. 
From an intersection of technologies point of view, LBS can be 
illustrated as shown in Fig. 2. 

A. The Importance of Location-based Services 
In general, the importance of LBSs comes from their 

provided benefits, which make our lives easier and more 
enjoyable. In detail, three main sectors of daily life highlight 
the importance of LBS-enabled applications: 

1) Medical sector. In the e-health field, LBSs play a 
significant role in monitoring patient health conditions (e.g. 
pulse rates and blood pressure levels), avoiding disasters [4, 5]. 
This, in turn, means that LBSs contribute to limiting the spread 
of illnesses such as COVID-19 by enabling medical staff and 
patients to avoid meeting and consequently maintaining a safe 
social distance. 

 
Fig. 1. IoT in Smart Cities [2]. 

 
Fig. 2. LBS from an Intersection of Technologies Point of View. 
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2) Entertainment sector. A further advantage of LBSs is 
enabling users to search for PIOs, such as nearby restaurants 
and music clubs, or enjoying games online [6, 7]. 

3) Social sector. Integrating LBS applications with 
wireless communication technologies have enabled the 
creation of location-based social networking services, such as 
Foursquare, Twinkle, and GeoLife [8]. This integration bridges 
the gap between the physical world and digital online social 
networking services. 

B. Statement of Problem 
The valuable benefits of the LBS applications mentioned 

above are not without risk. The key problem behind the 
extensive utilization of LBS applications is that the privacy of 
LBS users may be attacked. In the cybersecurity research field, 
privacy is a term that refers to sensitive information about 
users' interests, habits, or personal lives [9, 10]. Obtaining such 
information harms users and can even threaten their lives in 
cases of blackmailing or stealing valuable personal 
information, including the nature of their business, the details 
of their business trips, or their religious affiliation. 

To gain a deep look at the privacy issue in LBS 
applications, the mechanism used for serving users should be 
analyzed. Using LBS applications requires constructing and 
sending queries relying on the real geographical locations of 
LBS users, who obtain their real locations through GPS. After 
manipulating these queries by the LBS provider, the results are 
returned to the users. Fig. 3 illustrates the general mechanism 
followed by LBS applications. 

As shown in Fig. 3, there are three main steps, as follows. 

1) The LBS user establishes a query using their real 
location. This query is then sent to the LBS provider. 

2) The LBS provider processes the received query to 
answer the user. The result of the query (the retrieved POI) is 
packaged for resending. 

3) The result is sent back to the LBS user and seen on the 
smartphone screen. 

The scenario described in Fig. 3 is insecure against an 
attacker targeting the privacy of the LBS user. To define the 
problem accurately, modelling is required. Let < 𝛼.𝛽 > denote 
the coordinates of the real location of a given LBS user. Based 
on this representation, the query that is sent to the LBS 
provider is defined as: 

𝑄𝐿𝐵𝑆 = {< 𝛼.𝛽 >. 𝑆𝑃𝑜𝐼.𝐷. 𝐼𝐷}            (1) 

Where: 𝑆𝑃𝑜𝐼 : set of points of interest that represent the 
result of the sent query. 𝐷 : diameter of the search region 
(measured by Kilometres). 𝐼𝐷: identity of the LBS user. 

The privacy problem starts when an attacker tracks the real 
location of the LBS user or analyzes the sent query, as shown 
in Fig. 4. 

In both cases (i.e., tracking the real location or analyzing 
the sent query), personal information about the LBS user is 
obtained. Malicious activities can be performed by a man-in-
the-middle (MITM) attack. However, the privacy problem is 

accentuated if the attacker is the LBS provider since all 
information is accessible. Upon this, the attacker (the LBS 
provider) can track the real location of the LBS user or analyze 
the received query. A malicious profile is then constructed on 
the attacker side, containing personal information that will be 
employed to attack the victim physically. Fig. 5 illustrates this 
dangerous scenario. 

Formally, let 𝑉𝑃 denote the victim profile. Then, 

𝑉𝑃 = 𝑇𝑟𝑎𝑐𝑘 (< 𝛼.𝛽 >) ∪ (𝐴𝑛𝑎𝑙𝑦𝑧𝑒 𝑄𝐿𝐵𝑆)           (2) 

In terms of data flow and trust boundaries (attack surface), 
the security gap is represented by obtaining the query 
illustrated in Fig. 6. 

It is worth mentioning that tracking the real location of 
LBS users leads to location privacy issues, and analyzing the 
sent query leads to query privacy issues [11]. In this work, we 
are concerned about location privacy only. 

 
Fig. 3. The General Mechanism followed by LBS Applications. 

 
Fig. 4. Privacy Problem in LBS Applications. 

 
Fig. 5. Accentuated Privacy Problem in LBS Applications (LBS Provider is 

Attacker). 
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Fig. 6. Security Gap from the Attack Surface Perspective. 

C. Motivation and Research Questions 
In light of the dangerous spread of the COVID-19 

pandemic, dependence on mobile applications and the Internet 
has increased. This is because this dependency keeps people 
healthy in terms of achieving social distancing requirements. 
Increasing dependency on mobile applications is tightly 
coupled with an increasing level of privacy threats [12]. 
Moreover, existing advanced methods that could be used to 
track users, such as those that gather private information [13, 
14], make privacy concerns more relevant. The capabilities of 
attackers are growing daily, with advanced attacks used to 
collect personal information from LBS users being applied. 
The attacker in a Map Matching Attack (MMA) employs the 
side information to gather sensitive data about the LBS user. In 
other words, the attacker can discover the kinds of activities the 
user is involved in by knowing the geographical map from 
which the LBS query is issued (i.e., without tracking the real 
location of the LBS user) [15, 16]. Fig. 7 illustrates the basic 
concept of an MMA. 

Another advanced attack used for penetrating protection 
methods is the Semantic Location Attack (SLA) [18]. In an 
SLA, the attacker can infer semantic meanings related to the 
user's behavior, relying on both the time and place of where a 
user stays, as shown in Fig. 8. 

 
Fig. 7. Concept of MMA [17]. 

 
Fig. 8. Concept of SLA [19]. 

Motivated by these advanced attacks, two main research 
questions must be answered: 

1) How do we ensure high resistance against both MMA 
and SLA? 

2) How can privacy protection be quantified in terms of 
preventing attackers from penetrating privacy protection 
approaches? 

D. Contribution 
The contributions of this work are listed as follows: 

• In response to the first research question, a deep 
learning technique is proposed to generate strong 
dummy locations that protect the real location of the 
LBS user. 

• In response to the second research question (second 
quality requirement), the entropy metric is employed to 
measure the resistance of the proposed deep learning 
based privacy protection system. 

E. Structure of the Work 
The rest of this work is organized as follows. Related work 

is reviewed in Section II. Section III presents the methodology 
of designing and constructing the proposed system in detail. 
Security analysis is discussed in Section IV, followed by the 
results in Section V. Finally, the conclusion and suggestions 
for future work are provided in Section VI. 

II. RELATED WORK 
In response to privacy concerns, researchers have proposed 

several approaches. The approaches were addressed from 
different perspectives, namely, server-based approaches, user-
based approaches, and Trusted Third Party (TTP) approaches. 
Fig. 9 is a classification of LBS privacy protection approaches, 
where each category has its drawbacks. 

The authors of work [20] proposed a Dummy Data Array 
(DDA) algorithm for generating dummy locations to protect 
the location privacy of LBS users. For a given region, which is 
divided into a grid of cells, the key idea of the DDA algorithm 
is to calculate both the vertices and the edges of each cell in the 
grid. Then, the DDA algorithm randomly selects some of the 
cells as dummy locations. To select strong dummy locations 
and achieve k-anonymity, the DDA algorithm selects k cells of 
equal area. The authors of the work [22] provided a survey of 
privacy protection approaches and they focused on dummies. 
Similarly, [21] uses dummies to protect the location privacy of 
LBS users, but with a different dummy generation method. The 
authors proposed two algorithms. The first is called 
CirDummy, which generates dummies based on a virtual circle 
that contains the real location of the LBS user. The second is 
called GridDummy, which generates dummies based on a 
virtual grid that covers the real location of the LBS user. 

 
Fig. 9. Classification of Privacy Protection Approaches for LBS 

Applications. 
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Mix zones are defined in which all users’ locations are 
hidden within these zones with some conditions to strengthen 
the protection method. In the work [23], the authors present the 
(DSC-LPP) approach to protect location privacy in the wireless 
channels. It is based on the idea of spatial cloaking-location 
privacy preserving. In the wireless channels, access points are 
essential elements in the structure of the network. Distance 
between the user and AP is the primary key for transforming 
and retrieving the location of users. Relying on this fact, the 
authors proposed to include the distance information in 
exchanged messages. The distance information can be 
exploited to confuse the attacker by manipulating it through 
mathematical transforming. The transformation leads to 
calculate a new location information, which in turn forms a 
clocking region. The clocking region reflects a security area of 
the location privacy. To enhance the performance, 
normalization is employed in the process of transformation for 
the purpose of building clocking regions. The advantage of this 
approach is that it can protect location privacy in a fixable way 
depending on increasing or decreasing the area of the clocking 
regions. However, if attackers have side information about the 
geographical map where the LBS user is located, the 
mechanism of protection becomes weak. In other words, this 
approach is not robust against MMA. 

Pseudonym method [24] is used for protection of the user 
identity. The key idea is confusing the relationship between the 
position information and user identity information. This 
method is based on TTP model, TTP is the simplest 
intermediary entity between the user and the LBS provider. If 
the request is accepted, the request will be sent to the LBS 
provider; at the same time, the real ID will be changed to a 
pseudo-ID. 

Information Retrieval (PIR) [25] was used to achieve full 
privacy protection. The key idea of the PIR technique depends 
on mathematical principle. It says that if it is impossible to 
compute a certain number or perform a certain mathematical 
task, then the information that form the task is protected. When 
the query is represented by a task, and PIR technique is 
applied, then, the LBS server can process and answer the query 
without knowing any sensitive information about the query. 

III. PROPOSED SYSTEM 
This section is structured so that the threat model is defined 

first. The proposed system design is then described in detail. 
Next, security analyzes are discussed. Finally, the mechanism 
of evaluation of the proposed system is presented with the 
corresponding metrics. 

A. Threat Model 
The objective of the threat model is to draw the 

environment within which the proposed system is running and 
is expected to be robust against attackers. The threat model 
consists of four blocks as shown in Fig. 10. 

• Attacker. The attacker is the LBS provider itself (or its 
maintainer), where all LBS queries are sent to it, and 
connecting with this malicious party is mandatory. 

• Malicious goal. The goal of the attacker is to build a 
malicious profile about the LBS user. This is done by 

gathering personal data about the victim through 
tracking the real locations used to establish LBS 
queries. 

• Capabilities. The attacker's ability is supported by 
launching attacks on the victim, including MMA and 
SLA attacks. 

• Type of attack. The type of each attack launched on the 
victim is active. This is because the LBS provider 
(attacker) can access all information received while 
serving the LBS user. 

B. System Design 
This section provides the architecture of the proposed 

system with its main components and the role of each 
component. 

1) Architecture of the proposed system: The system 
decomposes three main components: the intelligent finder, 
query builder, and sender. The system is decentralized one 
because it is installed on each mobile device of LBS user. 
Table I summarizes the three components in terms of the 
assigned task, technique used, and installation. 

Graphically, Fig. 11 shows the architecture of the proposed 
system with interconnections among the three components. 

 
Fig. 10. Blocks of the Threat Model. 

TABLE I. COMPONENTS OF THE SYSTEM 

Name Task Technique Installation 

Intelligent 
finder 

Generating dummy 
locations 

Convolutional Neural 
Network (CNN), 
Support Vector 
Machine (SVM) 

LBS user 
(Smartphone) 

Query 
builder 

Building the 
protected query Anonymity of identity LBS user 

(Smartphone) 

Sender Sending the 
protected query 

Wireless 
communication 

LBS user 
(Smartphone) 

 
Fig. 11. Architecture of the Proposed System. 
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As shown in Fig. 11, the smartphone (which represents an 
LBS user) is located in a certain location (cell) within the 
covered area that consists of (α×β) cells. The rest of the cells 
are spread on different regions that contain various PoIs. The 
cells that form the covered area can be exploited as dummy 
locations to protect the location privacy of LBS users. In other 
words, using fake locations instead of the real location cuts the 
tracking series that is performed on the attacker’s side to 
complete the malicious profile. This is because the attacker 
(LBS provider) cannot recognize the real location among 
dummies. However, the attacker attempts to compromise the 
protection method by applying advanced attacks such as MMA 
and SLA. This requires that the process of generating (or 
finding) dummy locations be accurate to provide strong 
dummies that can protect location privacy against advanced 
attacks. In this work, artificial intelligence is employed to 
generate strong dummies based on Convolutional Neural 
Networks (CNNs) and Support Vector Machines (SVMs). 
Upon this, the intelligent finder selects (generates, or searches) 
strong dummy locations and then provides them to the query 
builder to establish a query with multiple locations (one of 
them is the real one). Then, the sender sends the protected 
query (PQ) to the LBS provider (attacker). The attacker is 
confused about determining the real location among dummies. 
Below is a detailed description of the role of each component. 

2) Role of an intelligent finder: The main task of this 
component is ensuring the location privacy of the LBS user. 
This is performed by protecting the location information used 
to form the sent query. Based on a novel location privacy 
protection approach, namely, Vectors of Protection (VoP), this 
component ends its assigned task. VoP fills a vector of 
locations by dummies, and the real location in the LBS query is 
replaced by this vector. The key idea of the VoP approach is 
illustrated in Fig. 12. 

As shown in Fig. 12, the real location of the LBS user 
( 𝐿𝐵𝑆𝐿𝑟 ) is represented by the left side. The role of the 
intelligent finder component is to fill the vector by dummy 
locations by executing the VoP approach. The rest of the query 
units remain constant. 

 
Fig. 12. Key idea of the VoP Approach. 

In detail, for a region divided into 𝛼 × 𝛽  cells, the real 
location of the LBS user 𝐿𝐵𝑆𝐿𝑟 is located in a certain cell. Each 
cell has a query probability 𝐶𝐸𝐿𝐿𝑝

𝑞 . The query probability is a 
term that refers to the number of queries sent from a specific 
location in the past (i.e., number of queries built based on the 
cell divided by the total number of queries built based on the 
whole cells). Each cell has a certain value of query probability, 
as shown in Fig. 13. 

The VoP approach selects dummies randomly. From the 
real location of the LBS user, some vectors are issued to the 
selected dummies. Then, the selected dummies are stored in the 
vector of dummies. The number of dummies determines the 
level of protection. This means that the LBS user has full 
control over the desired level of privacy protection. For 
instance, if the LBS user selects 3 dummy locations, the level 
of privacy protection is 4. This is because the real location is 
surrounded by three dummies, as shown in Fig. 14. 

The process of selecting dummies randomly without any 
constraint is a poor tactic. This is because the query probability 
of each dummy location differs from the query probability of 
the real location of the LBS user. This increases the ability of 
the attacker to determine the real location among dummies. 
Therefore, it is better to select dummy locations with the same 
query probabilities as the real location of the LBS user. Fig. 15 
illustrates the selection process under the same query 
probability condition. 

 
Fig. 13. Query Probabilities of Cells. 

 
Fig. 14. Achieving Privacy Protection of 4 Levels. 
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Fig. 15. Selecting Dummies Depending on the Same Query Probability 

Condition. 

This method guarantees that the uncertainty (at the 
attacker's side) in determining the real location among the 
dummies is maximal. Mathematically, this uncertainty is 
represented by entropy. Entropy is a term that refers to the 
inability to determine an object among others based on the 
same features [26]. The entropy of identifying the real location 
out of the dummy vector 𝐸𝑁𝑇𝑑𝑣𝑟  is defined as: 

𝐸𝑁𝑇𝑑𝑣𝑟 =  −  ∑ 𝐶𝐸𝐿𝐿𝑝
𝑞
i
 ×  log2  ×  𝐶𝐸𝐿𝐿𝑝

𝑞
i

𝑝𝑙
i=1           (3) 

where 𝑝𝑙 denotes the protection level of privacy. 

Despite selecting dummies based on the query probabilities 
condition, the privacy threat remains. Selecting weak dummy 
locations creates a vulnerability where the attacker can apply 
MMA and SLA successfully. Weak dummies mean that the 
dummy locations are near the real location of the LBS user. 
This allows the attacker to filter dummies easily. This requires 
additional conditions in the process of selecting dummy 
locations. This condition states that the selected dummies must 
be far away from the real location of the LBS user, as shown in 
Fig. 16. 

 
Fig. 16. Selecting dummies Depending on both the same Query Probabilities 

and Far away Conditions. 

The actual selection process is performed by the intelligent 
finder component. Electing suitable dummies (i.e., strong 
dummies) requires an intelligent method. This intelligent 
method depends on scanning the covered region and then 
determining strong dummies. In this work, a deep learning 
method (the CNN network) with the help of SVM is employed 
to elect strong dummies to fill the vector of dummies. 

The task of the CNN is extracting the features of a given 
geographic region (map). This is performed by scanning the 
map through two kinds of layers: convolutional layers and 
pooling layers. Fig. 17 illustrates the mechanism used by the 
CNN for extracting features of a given region. 

As shown in Fig. 17, the CNN goes through the map in a 
convolutional manner (depending on a filter or kernel) to 
extract the first level of features. Then, the extracted features 
are grouped through a pooling layer to draw a deep look at the 
locations included in the map. This procedure (i.e., convolution 
and pooling) is repeated frequently for the series of extractions. 
The final pooling layer includes the final features. Among the 
extracted features, some locations are suitable to be strong 
dummies, while some are weak dummies. The SVM is linked 
to the fully connected layer to classify the locations into two 
main groups: strong dummies and weak dummies. SVM is an 
intelligent technique that separates a given set of data into two 
major classes. SVM relies on margin, which can be seen as a 
restricted area between the two classes. Fig. 18 shows the basic 
concept of SVM. 

SVM is represented mathematically by the sigmoid 
function, which forms the (S) curve from a graphical 
perspective, as shown in Fig. 19. 

 
Fig. 17. Extracting Features of Map using CNN. 

 
Fig. 18. Basic Concept of SVM. 
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Fig. 19. Sigmoid Function. 

According to the sigmoid function, the complete CNN 
network will be seen as a classifier, where all values above 
(+1) or lower than (0) represent strong dummies, and the area 
between the range [0, +1] represents the margin. Fig. 20 shows 
the complete CNN. 

 
Fig. 20. Complete CNN Network. 

Regarding the VoP approach, the complete CNN feeds it 
with a set of strong dummies. Let 𝑓𝑖𝑛𝑎𝑙𝐶𝑁𝑁𝑑𝑢𝑚𝑚𝑖𝑒𝑠  denotes the 
final set of strong dummies. The vector of dummies is then 
filled by a random selection of dummies since they all satisfy 
the two conditions. The size of the VoP (or the number of 
selected dummies) is based on the privacy protection level that 
is desired. Mathematically, 

𝑉𝑜𝑃 = 𝑟𝑎𝑛𝑑𝑜𝑚 {𝑓𝑖𝑛𝑎𝑙𝐶𝑁𝑁𝑑𝑢𝑚𝑚𝑖𝑒𝑠}            (4) 

The intelligent finder represented by the CNN is trained on 
the Brightkite dataset [27]. It consists of 7.3 million rows and 
five columns (user ID, check-in time, latitude, longitude, and 
location id). To involve query probabilities, we add a new 
column QP to the database. The values of the QP are generated 
randomly. Additionally, the Brightkite dataset is used for the 
testing stage. Therefore, the dataset is divided into two parts, as 
shown in Fig. 21. 

 
Fig. 21. Dividing the Brightkite Dataset. 

3) Role of the query builder: This component is 
responsible for building the protected query. It receives the 
vector of dummies generated by executing the VoP approach 
(the task of the intelligent finder) and then constructs the query. 
To add a second layer of privacy protection, another task is 
assigned to this component, which blurs the ID of the LBS 
user. To end this, the query builder components use an 
anonymity technique. The key idea behind the anonymity 
technique is to hide the ID of the LBS user by replacing it with 
a fake ID. Upon this, the query generated by the query builder 
component is constructed as shown in Fig. 22. 

As shown in Fig. 22, the ID of the LBS user in the original 
query is replaced by a fake identity (𝐼𝐷�). This adds additional 
protection to location privacy since the attacker (LBS provider) 
can recognize neither the real location among dummies nor the 
identity of the LBS user. Thus, the whole units of the protected 
query are given by: 

𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑[𝑄𝐿𝐵𝑆] = {<

𝛼
𝑑1𝑥
𝑑2𝑥
⋮
𝑑𝑝𝑙𝑥

.

𝛽
𝑑1
𝑦

𝑑2
𝑦

⋮
𝑑𝑝𝑙
𝑦

>. 𝑆𝑃𝑜𝐼.𝐷. 𝐼𝐷�}          (5) 

4) Role of the sender: This component is responsible for 
sending the protected LBS query to the LBS provider for 
manipulation. Fig. 23 illustrates the task of the sender 
component. 

 
Fig. 22. The Query Builder Constructing a Protected Query. 
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Fig. 23. Sending a Protected Query to the LBS Provider (Attacker). 

Manipulating the protected LBS query at the LBS provider-
side leads to confusion. This is because the victim profile will 
be full of conflicting data that is not beneficial. Thus, the 
location privacy of the LBS user is protected against the LBS 
provider if it acts maliciously. 

IV. SECURITY ANALYSIS 
This section discusses the security analyses, where the 

issues are taken from the attacker's perspective. In this context, 
two main issues are involved, as shown in Fig. 24. 

In regard to knowing the proposed approach by the 
attacker, a reversing trial is expected to be performed to filter 
dummies. Here, the power of the randomization process is 
employed. As mentioned in formula 4 above, the final set of 
dummies is selected randomly. This means that if 20 dummies 
are strong and can be used as actual dummies, 5 dummies can 
be selected randomly to be utilized as actual dummies to 
achieve a protection level of 6 degrees. Randomization ensures 
complete doubt about determining which of the 5 dummies are 
elected among the 20 dummies. This reflects uncertainty in the 
process of selecting dummies on the attacker side. As a result, 
the attacker can only randomly guess the real location among 
dummies. Thus, reversing the VoP approach fails to achieve 
the malicious goal of the attacker. 

In regard to discussing the success of the MMA and SLA 
attacks from the perspective of the attacker, these attacks fail. 
The reason is that the VoP approach takes into account the 
𝐶𝐸𝐿𝐿𝑝

𝑞 , where it is the same for all locations (the real and 
dummies). In addition, the dummies selected by the CNN are 
far from both each other and the real location. Therefore, 
attempting to collect the dummies in one region is inapplicable 
at the attacker side. This means that the success of the attacks 
will not be achieved. 

 
Fig. 24. Issues of Security Analysis. 

V. RESULT AND DISCUSSION 
This section provides the results in the context of 

comparison with two approaches. The first approach is the 
classical one. A classical approach is an approach inspired by 
the proposed VoP approach, where the dummies are selected 
randomly without taking any optimization into account (i.e., 
𝐶𝐸𝐿𝐿𝑝

𝑞  and distance-relation between the 𝐿𝐵𝑆𝐿𝑟  and the other 
dummies). The classical approach is referred to as the basic 
dummy approach (BDA). The second approach involved in the 
comparison is the one that is proposed in ref [20], which is 
DDA. 

A. Evaluation Metrics 
In this work, three types of metrics are used for evaluation, 

as shown in Fig. 25. 

The privacy-based metric, entropy, which is defined above 
(by formula 3), is employed to measure the privacy protection 
level that is achieved. Entropy is a metric addressed by many 
authors who conducted surveys, such as [28- 32], and by others 
who made technical research papers, such as [33-36]. The 
mechanism of an evaluation relying on the entropy metric is 
adjusted by the following rules: 

 
Fig. 25. Types of Evaluation Metrics. 

1) There is no upper limit to the value of entropy. 
2) There is no lower limit to the value of entropy. 
3) A higher entropy value means a higher privacy 

protection degree. 
4) A lower entropy value means a lower privacy protection 

degree. 

For the deep-learning-based metric, an accuracy metric is 
utilized. Accuracy is a term that refers to the ratio of records 
(dummies) that are correctly classified (i.e., selected as strong 
dummies) [37]. The accuracy metric is inspired by a confusion 
matrix, a common term in the data mining research field [38]. 
Table II shows the confusion matrix (COfMX). 

TABLE II. COFMX AND ITS COMPONENTS 

Actual 
dummy 
(Predicted 
dummy) 

Confusion matrix 

DM ¬ DM Sum 

DM True positives 
DM (TPDM) 

False negatives 
DM (FNDM) 

TPDM + FNDM 
= P 

¬ DM False positives 
DM (FPDM) 

True negatives 
DM (TNDM) 

FPDM + TNDM 
= N 
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Where: 
1) TPDM is a positive dummy that is correctly labelled by 

the CNN classifier. 
2) TNDM is a negative dummy that is correctly labelled 

by the CNN classifier. 
3) FPDM is a negative dummy that is incorrectly labelled 

positive. 
4) FNDM is a positive dummy that is mislabelled 

negative. 

Accuracy is given by the following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃𝐷𝑀+𝑇𝑁𝐷𝑀)
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠/𝑑𝑢𝑚𝑚𝑖𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑒𝑡

     (6) 

The mechanism of evaluation relying on the accuracy 
metric is adjusted by the following rules: 

1) There is an upper limit to the value of accuracy (1 or 
100%). 

2) There is a lower limit to the value of accuracy (0). 
3) A higher accuracy value means a higher prediction 

degree. 
4) Lower accuracy value means a lower prediction degree. 

For the performance-based metric, time dominates the case. 
Thus, the total execution time (𝑇𝑒𝑥𝑒𝑇) required to execute the 
approach is used. The 𝑇𝑒𝑥𝑒𝑇 is defined by: 

𝑇𝑒𝑥𝑒𝑇 = 𝑇𝑉𝑜𝑃𝑒𝑥𝑒 + 2 × 𝑇𝑞𝑢𝑒𝑟𝑦𝑠𝑒𝑛𝑑 + 𝑇𝑞𝑢𝑒𝑟𝑦
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔           (7) 

where 𝑇𝑉𝑜𝑃𝑒𝑥𝑒  refers to the time of executing the proposed 
VoP approach at the smartphone of the user, 𝑇𝑞𝑢𝑒𝑟𝑦𝑠𝑒𝑛𝑑  refers to 
the sending time of the query (assuming that the return takes 
the same time), and 𝑇𝑞𝑢𝑒𝑟𝑦

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 refers to the processing time at 
the server-side to answer the send query. The mechanism of 
evaluation relying on the 𝑇𝑒𝑥𝑒𝑇  metric is adjusted by the 
following rules: 

1) There is no upper limit to the value of 𝑇𝑒𝑥𝑒𝑇. 
2) There is no lower limit to the value of 𝑇𝑒𝑥𝑒𝑇. 
3) A higher 𝑇𝑒𝑥𝑒𝑇  value means a lower performance 

degree. 
4) A lower 𝑇𝑒𝑥𝑒𝑇  value means a higher performance 

degree. 
B. Entropy-Based Evaluation without Threats 

Without applying any threat, the value of entropy is 
calculated to increase the protection level from 3 to 21 (i.e., 
from three dummies to 21 dummies). Fig. 26 shows the results. 

Discussion and justifications: As shown in Fig. 26, the 
CNN-VoP and BDA approach experiences increased entropy 
values as the protection level increases. The reason is related to 
mathematical justification, where increasing the number of 
dummies involved in the protection level leads to an increase 
in the entropy value. However, the CNN-VoP approach 
achieves better scores than the BDA approach. This is due to 
selecting dummy locations under the control of 𝐶𝐸𝐿𝐿𝑝

𝑞  in the 
CNN-VoP approach. In contrast, no constraints are used in the 
BDA approach. For the DDA approach, its curve can be 
divided into three parts. The first part behaves the same as the 

CNNN-VoP and BDA approaches to increase the values of 
entropy. In the first part, the DDA sometimes overcomes the 
BDA depending on the tree that combines similar dummies, 
which in turn means that some dummies have 𝐶𝐸𝐿𝐿𝑝

𝑞  that are 
similar to the 𝐶𝐸𝐿𝐿𝑝

𝑞  of the real location or approximately 
close to it. In the second part, where PL=12, the DDA performs 
the worst. This is because there are no available candidates that 
can be used as actual dummies, and in this case, the DDA 
repeats the dummies, which negatively affects the entropy 
value. In the third part, the DDA enhances slightly, but the 
BDA outperforms it due to the broad set of dummies available 
compared to a limited set controlled by the DDA. 

 
Fig. 26. Value of Entropy Metric vs. Increasing PL without any Threat. 

C. Entropy-Based Evaluation under Threats 
After applying the MMA threat, the value of entropy 

experiences a decreasing trend compared to the normal 
situation; the attacker has no information about the geographic 
map from which LBS queries are sent. This is shown in 
Fig. 27. 

 
Fig. 27. Value of Entropy Metric vs. Increasing PL under MMA Threat. 

Discussion and justifications: As shown in Fig. 27, despite 
the negative impact of the MMA threat, the CNN-VoP 
approach maintained its peak position. This is because of the 
factors taken into account in the procedure for selecting the 
dummies, where (1) the 𝐶𝐸𝐿𝐿𝑝

𝑞  of each dummy is the same as 
the real location (which contributes to destroying the benefits 
that may be gained at the attacker side by analyzing the 
dummies if they are located in well-known areas) and (2) the 
dummies are spread over a wide space that cannot be collected 
in one area for malicious filtering by the attacker. The BDA 
scheme overcomes the DDA scheme since DDA is vulnerable 
to selecting the dummies based on area similarities. This gap 
can be exploited by the attacker to filter some dummies, 
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weakening the defense that is created by the DDA. In contrast, 
the BDA scheme ignores the similarities since it selects 
dummies randomly, avoiding the drawback of the DDA 
scheme. Table III shows the numerical results of the entropy 
metric. 

The results summarized in Table III show that the BDA 
scheme experiences slight weaknesses against MMA attacks 
compared to a significant weakness in the DDA scheme. 

For robustness against the SLA attack, Fig. 28 shows the 
documented results, where a severe negative impact is clearly 
seen in the DDA approach compared to the normal situation. 

Discussion and justifications: As shown in Fig. 28, the 
common fact that "the value of entropy increases as the PL 
increases" is still working in all schemes involved in 
comparison. However, the entropy values are less when 
compared to the values under MMA threat, which reflects that 
the SLA is more dangerous than the MMA threat. Despite this 
change, the CNN-VoP scheme is still ranked at the top, 
followed by the BDA scheme. At the last position, the DDA 
scheme is coming. This scenario can be justified by the 
positive contribution of using CNN to scan and elect strong 
dummies for membership in the final set of dummies used for 
privacy protection. The BDA scheme ignores the factor related 
to elect dummies that achieve the condition of distance (i.e., 
long distances between the elected dummies and the real 
location). The DDA scheme employs none of the factors, and 
therefore, it performs the worst as a protection method. Table 
IV shows the entropy values after applying the SLA threat. 

To address the difference between the MMA and SLA 
threats, Fig. 29 shows a visual representation of the entropy 
values documented in Table III and Table IV. 

Table V shows the transformation of the visual 
representation of Fig. 29 into numeric values. 

TABLE III. RESULTS OF ENTROPY IN THE THREE SCHEMES UNDER MMA 
THREAT 

                       PL 
Approach 3 6 9 12 15 18 21 

CNN-VoP 

En
tro

py
 

V
al

ue
s 

1.658 3.046 4.208 6.046 9.987 11.587 13.508 

BDA 0.854 2.196 2.809 3.906 4.501 6.946 7.609 

DDA 0.427 1.078 2.145 2.578 3.150 5.347 6.005 

 
Fig. 28. Value of Entropy Metric vs. Increasing PL under SLA Threat. 

TABLE IV. RESULTS OF ENTROPY IN THE THREE SCHEMES UNDER SLA 
THREAT 

                   PL 
Approach 3 6 9 12 15 18 21 

CNN-VoP 

En
tro

py
 

V
al

ue
s 

1.007 2.113 3.666 5.711 7.999 9.720 11.994 

BDA 0.700 1.539 1.999 2.878 3.332 4.448 5.996 

DDA 0.364 0.886 1.589 1.988 2.997 4.123 5.231 

 
Fig. 29. Visual Representation of the Entropy values under MMA and SLA 

Threats. 

TABLE V. DIFFERENCE IN ENTROPY VALUES AMONG THE THREE 
SCHEMES AFTER APPLYING MMA AND SLA THREATS 

                           PL 
Approach 3 6 9 12 15 18 21 

CNN-VoP 
D

iff
er

en
ce

 
of

 E
nt

ro
py

 
V

al
ue

s 

0.651 0.933 0.542 0.335 1.988 1.867 1.514 

BDA 0.154 0.657 0.81 1.028 1.169 2.498 1.613 

DDA 0.063 0.192 0.556 0.579 0.153 1.224 0.774 

Table V shows that the SLA threat has a more negative 
impact on the privacy of LBS users than the MMA threat. This 
is because the attacker employs time usage and knowledge 
about the geographic map to attack privacy (or filter some 
dummies). Thus, it is recommended to pay more attention to 
the semantic location threat in the location privacy research 
arena. 

D. Accuracy-Based Evaluation 
For the accuracy of electing suitable (or strong dummy 

locations), Fig. 30 illustrates the output of the three schemes. 

Discussion and justifications: As shown in Fig. 30, the 
CNN-VoP scheme performs the best, followed by the BDA 
and DDA schemes. The root reason for this is related to using 
SVM as a classifier in the structure of the CNN used to scan 
and discover the dummy locations. Due to the series of 
convolutional and pooling layers used in the CNN, effective 
features of the region that includes the real location of the LBS 
user are generated. Based on the extracted features, strong 
dummies that satisfy the two conditions are elected. This 
means that some strong base criteria are used in the CNN-VoP 
scheme compared to poor ones in the other two schemes. This 
helps to add another strong justification about the strength of 
the CNN-VoP scheme in deep learning. This, in turn, provides 
proof of why entropy values are higher in both cases (i.e., 
without a threat and under the threat of attack) discussed 
above. 
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Fig. 30. Accuracy of Three Schemes 

E. Performance-Based Evaluation 
According to the increased number of sent 𝑄𝐿𝐵𝑆, the total 

execution time is calculated for the three schemes, as shown in 
Fig. 31. 

 
Fig. 31. Performance of Three Schemes in Terms of 𝑇𝑒𝑥𝑒𝑇. 

Discussion and justifications: As shown in Fig. 31, the 
CNN-VoP scheme performs the best compared to the BDA and 
DDA schemes, except at the beginning, where it is the worst. 
The reason that the CNN-VoP scheme performs the worst at 
the beginning is related to the training stage, where it still has 
no knowledge and requires much more time. During this 
period, the BDA scheme selects the dummies randomly, which 
is a fast method and leads to the shortest time. The DDA 
scheme consumes some time to construct the tree of dummies 
and thus comes after the BDA. After that, when increasing the 
number of sent queries, 𝑇𝑒𝑥𝑒𝑇  increases in all schemes. 
However, the CNN-VoP scheme achieves the best performance 
since, after the training completes, it can select dummies 
directly based on a knowledge database. The BDA scheme 
returns to the second-order, while the DDA performs the worst 
(the longest time). This is related to a common problem when 
using a decision tree, which is an overfitting problem. This 

means that the process of constructing the decision tree 
requires manipulating all branches without ignoring any 
branches. This consumes substantial time and leads to poor 
performance by the DDA scheme. In terms of average, 
𝑇𝑒𝑥𝑒𝑇 = 17 𝑠𝑒𝑐 for the CNN-VoP scheme, 𝑇𝑒𝑥𝑒𝑇 = 47 𝑠𝑒𝑐 
for the BDA scheme, and 𝑇𝑒𝑥𝑒𝑇 = 67 𝑠𝑒𝑐  for the DDA 
scheme. 

VI. CONCLUSION AND FUTURE WORK 
Recently, the world witnessed a widespread COVID-19 

pandemic which changed the way people performed daily 
tasks. In this context, and to avoid infection, people tended to 
use location-based services (LBSs), which have received great 
attention from companies and research groups. Relying on an 
LBS opens the door for attackers to attack the privacy of LBS 
users since performing tasks requires sending the user's real 
location. The problem is accentuated concerning advanced 
methods that attackers can use, such as Map Matching Attacks 
(MMAs) and Semantic Location Attacks (SLAs). The privacy 
of LBS users will be under great threat if the LBS provider acts 
as an attacker and can apply MMA and SLA attacks. In 
responding to this challenge, this work presents a location 
privacy protection system. The system consists of three main 
components. The first component is the intelligent finder. The 
role of the intelligent finder is to find (or select) strong dummy 
locations for privacy protection against the malicious party (the 
LBS provider), such that the attacker will be confused about 
determining the real location of the LBS user among the 
dummies. The intelligent finder uses a deep learning technique, 
which is the Convolutional Neural Network (CNN). The CNN 
is employed to create a classifier that classifies locations found 
in the region where the LBS user is located into the categories 
of weak and strong dummies. After creating the strong dummy 
category, a Vector of Protection (VoP) approach is performed. 
Strong dummies satisfy two main constraints: (1) the query 
probability of each selected dummy is the same as the real 
location, and (2) they are spread away from each other and the 
real location. The previous two constraints ensure high 
resistance against advanced MMA and SLA threats. The 
second component is the query builder, which is responsible 
for (1) constructing the protected query based on the selected 
strong dummies and (2) hiding the identity of the LBS user. 
The third component is the sender, which is responsible for 
sending the protected query to the LBS provider. The proposed 
location privacy protection system is evaluated according to 
entropy (the privacy protection metric), accuracy (the deep 
learning metric), and total execution time (the performance 
metric). Compared to well-known systems, which are the DDA 
and the BDA, the proposed system shows better results, where 
entropy = 15.9, accuracy = 9.9, and total execution time = 17 
sec. 

Limitation: Privacy protection for an LBS considers 
location privacy and query privacy; the sent query can be 
analyzed depending on the query sampling attack. In attacking 
query privacy, the attacker relies on the PoI as well as its link 
with the locations. In this work, query privacy was not taken 
into consideration. 

Future work: In future work, we will enhance the proposed 
system to ensure comprehensive privacy protection in LBS 
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applications (i.e., ensuring both location privacy and query 
privacy). In addition, we will test the system using different 
databases for training the intelligent finder and use another 
advanced intelligent method, such as advanced clustering. 
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