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Abstract—High efficiency video (HEVC) coding made its 
mark as a codec which compress with low bit rate than its 
preceding codec that is H.264, but the factor that stop HEVC 
from many applications is its complex encoding procedure. The 
rate distortion optimisation (RDO) cost calculation in HEVC 
consume complex calculations. In this paper, we propose a 
method to cross out the issue of complex calculations by 
replacing the traditional inter-prediction procedure of brute 
force search for RDO by a deep convolutional neural network to 
predict and perform this process. In the first step, the modelling 
of the deep depth decision algorithm is done with optimum 
specifications using convolutional neural network (CNN). In the 
next step, the model is designed and trained with dataset and 
validated. The trained model is tested by pipelining it to the 
original HEVC encoder to check its performance. We also 
evaluate the efficiency of the model by comparing the average 
time of encoding for various resolution video input. The testing is 
done with mutually independent input to maintain the accuracy 
of the system. The system shows a substantial saving in encoding 
time that proves the complexity reduction in HEVC. 

Keywords—CNN; HEVC; deep learning; RDO; encoding time; 
complexity reduction 

I. INTRODUCTION 
Video compression is an area to explore while considering 

the flourish of video acquisition devices, social media, live 
transfer of videos etc. The high efficiency video encoding 
HEVC system possess a better compression compared to its 
previous system advanced video coding AVC. However, the 
computational complexity of HEVC is a matter of discussion 
because of its Rate distortion optimisation [1] (RDO) cost 
calculation for coding tree unit [2] (CTU). There for this 
computational complexity in HEVC is a matter of research 
interest, the focus will be to reduce the computational 
complexity[3] with better efficiency. Before going into the 
details let’s review the evolution of HEVC its drawback and 
goodness compared to its ancestral system. 

ITU-T video compression standard introduced H.261 is the 
year November 1988. In the H.26x family, first member, 
H.261 in video coding standards in the domain of the VCEG 
(ITU-T Video Coding Experts Group) then Specialists Group 
on Coding for Visual Telephony” [4]. “H.261 was originally 

designed to transmit data over ISDN lines with data rates as 
multiples of 64 Kbit/s. The coding algorithm was designed in 
such a way to work at video bit rates in 40 Kbit/s to 2 
Mbit/s”[5].MPEG-2 consists of “three different kinds of coded 
frames: I-frame /intra-coded frames, P -frame/predictive-
coded frames, and B-frame/ bidirectionally-predictive-coded 
frames” [3]. The I-frame is a single uncompressed or raw 
frame that is a separately-compressed version. “The I-frame 
coding takes the advantage of spatial redundancy and the 
persistence of vision of human eye ie the inability of human 
eye to detect several changes in the image. I-frames do not 
depend on data in the previous or the next frames,”[6] Unlike 
in P-frames and B-frames, and because of that its coding 
matches with the still photography. The raw frame is spitted 
into 8X8-pixel blocks. The data in all block is transformed 
using discrete cosine transform (DCT)[6]and results is a 
matrix of size 8×8 of coefficients that have real 
number values. The DCT transform converts spatial domain 
into frequency domain, but it does not change the information 
in the block; if the DCT is calculated with perfect precision, 
the original block can be recovered clearly by applying the 
inverse discreet cosine transform” [5] “H.263 [7]is a popular 
video compression standard for low-bit-rate compressed 
format focusing on videoconferencing. It was standardized by 
the organisation ITU-T, Video Coding Experts Group (VCEG) 
in 1995/1996”[4] . H.263 is the member of the H.26x family 
of video coding standards in the domain, ITU-T. Like other 
H.26x standards, H.263 is also based on (DCT) discrete cosine 
transform video compression. It was later advanced to add 
different additional enhanced features in the year 1998 and 
2000. “H.264 is one of the popularly used codec on the planet, 
with significant note in optical disc, broadcast process, and 
streaming in video markets etc.[5] The applications are noted 
in Table I. Still, many uses of H.264 are subject to royalties, 
something that should is taken into considered before 
Google’s WebM, as well as the general availability of 
decoding abilities on target platforms and devices” [8]. H. 264 
mostly called as AVC (Advanced video coding), its block 
segmentation based, motion compensated with DCT 
technique. The aim behind AVC was to transfer video in low 
bit rate with better efficiency for UHD videos to its adaption 
of it. 
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Fig. 1. (a) Rate Distortion Cost Calculation of CU Procedure. (b) The Representation of CU Classification as Layers to Analyze Depth. 

“High Efficiency Video Coding, is also known as HEVC 
or H.265, is the step in this evolution. It builds off a lot of the 
techniques used in AVC/H.264 to make video compression 
even more efficient. When AVC looks at multiple frames for 
change those macroblock chunks can be a few different shapes 
and sizes, up to a maximum of 16 pixels by 16 pixels. With 
HEVC, those chunks can be up to 64×64 in size much larger 
than 16×16, which means the algorithm can remember fewer 
chunks, thus decreasing the size of the overall video” [9]. 
HEVC’s quad tree [10] partitioning uses the brute force search 
for RDO (rate distortion optimisation) cost calculation. The 
complexity of the procedure is more when used with normal 
signal processing steps that makes the HEVC [11]complex. 
Fig. 1(a) shows the procedure of rate distortion optimisation as 
a flowchart. It is divided into check procedure and comparison 
procedure. It initially checks for the rate distortion cost of the 
parent CTU [12] and the total cost of splitting it till end. Once 
this procedure is done comparison is done. In comparison it 
will the checking the RD [11] cost of parent and the cost after 
splitting. if the RD cost after split is more than the system will 
not split it further and if the RD cost of parent is more then it 
will proceed with the split. This calculation procedure in 
HEVC is tedious that make the system complex. This issue 
was addressed by many algorithms, some provides 

enhancement to the existing HEVC system while other set 
provides a totally new algorithm [3] providing a new 
architecture [13] to perform the procedure of compression. 
Deep learning based algorithms [13] [14] started working on 
this in recent years.  So a depth decision algorithm with deep 
CNN [15][16] is modelled to solve this issue. Fig. 1(b) shows 
the level and depth of CTU. Understanding this depth concept 
[6] helps in designing deep CNN [13] algorithm to predict 
depth and thus to make intra prediction less complex. 

The paper aims in complexity reduction in video 
compression (HEVC) by reducing encoding time. It is 
achieved by designing a deep learning-based system that 
predicts the depth of the CTU by making the intraprediction 
procedure less complex. The design is evaluated by pipelining 
it with the original HEVC and evaluates the complexity of the 
system. The overall design idea is shown in Fig. 2. The paper 
is divided mainly into two halves, 1) design of the deep depth 
decision algorithm, here the deep depth decision algorithm is 
designed  tested and validated for datasets and 2) evaluation 
and experimental results of the model pipelined with original 
HEVC, were the model is pipelined with the original HEVC 
and the performance is evaluated for various resolution 
videos. The paper is concluded with the results showing 
encoding time reduction and future scopes. 
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Fig. 2. Illustration of Steps in Order for the Modelling of Deep Depth Decision Algorithm with CNN. 

II. DESIGN OF DEEP CNN DEPTH DECISION ALGORITHM 
FOR INTER PREDICTION 

The inter prediction and its computational complexity was 
the issue took for analysis to model a new network. The 
design of this network should possess less computational 
complexity compared to the existing system and should be 

compatible to the existing codec. The design chosen should be 
compatible for faster transmission of frames while coding, so 
scalability and compatibility will also be the focus while 
designing, considering all this convolutional neural network 
(CNN) is chosen for this purpose so that all features are 
extracted correctly from the frames to produce better 
prediction as shown in Fig. 3. 

 
Fig. 3. The Representation of Deep Depth Decision Algorithm Model, with Input as 64X64 Patch followed by Convolution, MaxPool, Fully Connected Network 

followed by the 16 Length Output. 
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The CNN[17] used here is having multiple layer, the initial 
layer is the input layer. The input used here is video frames. 
The video frame can be of various properties, the YUV is the 
format chosen for this evaluation, other formats are also 
compatible in this model. The next layer in CNN model is 
convolutional layer, this is the layer that extracts the features 
of the frame based on the kernel used. The kernel size can be 
chosen based on the features that need to be extracted, if the 
kernel size is big it collects the global features or information 
from the frame whereas the small kernel [12] extracts the local 
features. Based on the need of the feature kernel can be 
chosen. In the design 5X5, 3X3 along with the 16X16, 4X4 
[18] are also used, so model clearly extracts the global and 
local features from the frame. To cover all the inputs zero 
padding is used in this model. The stride used is same as the 
width of the kernel used in each case in the design. After 
extracting the feature its max pooled to reduce the size and 
converge the multiple values to a single value or less values. 
The activation function helps to decide the neuron is fired or 
not, so activation function is the node is kept in between and 
in the end of neural network. Here the activation function [19] 
used is ReLU rectified linear unit. ReLu maintains a value 
between (0- ∝) zero and infinity by avoiding negative values. 
It’s a simple function that returns if input is negative else 
returns the same value in other cases. Both forward and 
backward propagation exist in CNN [20] network. Here in the 
model training uses backward propagation while validation 
uses forward propagation. 

The model designed takes the input as YUV CTU of 64X 
64, the first convolution layer users its kernel and convers as 
32X32 coding unit. The both CU of 32x32 are concatenated to 
extract more features and its polled to 16X16 patch. The next 
stage of convolution with 3x3 kernel extracts its fine features, 
and a 4x4 for global features. After feature extraction in each 
stage the data are polled by 2x2. In final stage the fully 
connected later flatten the information and compress it using 
SoftMax to 256 to 64 to a 16-length vector holding all the 
information of the CTU depth. The model is trained with 
various resolution input varying from 240p to 4k. After 
training the model will be having a training loss factor of 
3.1049.  the loss function estimated in this model is the cross 
entropy. Cross-Entropy Loss can be evaluated for separate 
images and independently and finally added together to obtain 
the final cross entropy as each path are mutually independent. 
A 66.12% of accuracy is obtained by the trained model. 

A. Dataset 
The dataset is the collection of sample video frames used 

for testing training and validation of the design proposed. 
Multiple and verity in dataset helps in the improvement of 
accuracy in the model.  Here the dataset contains the Coding 
Unit image file extracted from the YUV video files as set of 
input and their corresponding depths for HEVC intra-
prediction as output to train the proposed system. The dataset 
chosen here has multiple resolution and are not of same 
pattern videos to maintain the quality and efficiency of the 
model. 

In HEVC intra-prediction, each I-frame is divided into 
64x64 (CTU). For each 64x64 CTU, there's a depth prediction 

represented by a 16x16 matrix. The elements in the matrix are 
0, 1, 2 or 3, indicating depth 0/1/2/3 for a 4x4 block in the CT. 
The dataset contains images and corresponding labels. 
There're three folders: train, validation, test Image files: Each 
image may have different size based on the resolution of the 
video, and it is one frame extracted from a video. While using 
in the system, split the image into several 64x64 images or 
32x32 and so on. 

Labels: The labels are in separate folder called pkl folder. 
For one CTU, which is a 64x64 image file, the label will be a 
Python list with a length of 16. The length is 16 vectors 
instead of a 16x16 matrix, because there's redundant 
information for a 16x16 matrix, and it can be reduced to a 
16x1 vector. So, for a 64x64 CTU, it has 16 labels, each label 
corresponds to a 16x16 image block in the CTU. If the frame 
is split into 64x64 CTUs, the size of the train dataset is around 
110K images. The size of the validation dataset is around 40K 
images. The name of the image file will be like: 
v_0_42_104_.jpg, were v represents Video Number, followed 
by FrameNumber, CTU number and image extension. The 
Video Number is to find the corresponding .pkl file, like 
v_0.pkl. To get the label for a certain 64x64 CTU, index the 
dict by: 

label_vector = video_dict [FrameNumber][CtuNumber], 
for example: label_vector = video_dict ["42"] ["104"]. The 
label_vector will be a length 16 Python list.  Dataset loading 
in deep learning projects implemented in PyTorch can be done 
by in load_example.py. 

In the final stage for evaluation and comparison CPIH data 
set is also used to know the performance of the proposed 
system verses the existing models. The CPIH data set is not 
used in any of the testing or training for proper quality check. 

B. Input and Pre-Processing Layer 
The input used here is the YUV image patch derived from 

video frames. Each of this will be saved in a folder with 
separate labels in a python dictionary. The raw inputs need to 
be pre-processed by down sampling and splitting into 64x64, 
32x32 and so on. 

C. Convolution Layer 
This layer performs convolution operation between the 

input and the kernel. If i is the pre-processed input and k is the 
kernel of size varying from 5X5 ,4x4,3x3 etc the convolution 
block output can be formulated as equation 1 and * represent 
the convolution operation. The size of the kernel decides the 
nature of the feature extracted. 

In the design both global and fine features are extracted 
with variant kernels. 

𝑜𝑢𝑡𝑝𝑢𝑡 = i ∗ k               (1) 

D. Fully Connected Layer 
The fully connected layer initially flattens the output of 

convolution layer to a large single dimensional vector. The 
SoftMax operation helps to compress it further to required size 
without losing the information in it. The FCN1, FCN2 and 
FC3 along with averaging help it to shrink to 16 length vectors 
changing from 256 to 64 to 16. 
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E. Other Layers 
The system is having a loss of feature dropping as the 

stages are crossing so the activation function ReLU[21][22], 
rectified linear unit shown in equation 2 where z is the input 
and R(z) is the output of ReLu . It should be noted that the 
output is activated by sigmoid function represented by S(z) in 
equation 3. 

𝑅(𝑧) = �𝑧,     𝑧 > 0
0, 𝑧 ≤ 0              (2) 

𝑆(𝑧) = 1
1+e−𝑧

              (3) 

In original HEVC the prediction process is complex and 
time consuming as it should predict the RDO cost, so here the 
CNN network [23],[24]with depth decision [25][26] helps to 
predict the depth of each patch of 64X64 to a 16-length vector 
whereas original HEVC needs a matrix of size 64X64 to store 
it. The model converts the input patch to a 16 vector which 
can predict all the characteristics of that CTU with depth 
information as 0/1/2/3. The model is designed to take the input 
as 64x64 but while processing its split into 32x 32. Predicting 
for 64x64 patch directly doesn’t make sense so the actual 
input is 32x32. The depth is 0 when the patch is not split and 
encoded as it is. The 64x 64 patch represent 16 length vectors. 

So, for representing 32x32 the vector required is 4x4. So, in 
the output blocks of four 4x4 patches will b available as 
output for a CTU of 64x64. Each value in the vector indicate 
the depth of the CTU. if the first vector is 0 it says that It is a 
64x64 patch and if depth is 1 means the 64x64 CTU is split 
once into four 32x32 CTUs and so on. 

III. EVALUATION AND EXPERIMENTAL RESULT ANALYSIS 
OF DEEP CNN DEPTH DECISION ALGORITHM FOR INTER 

PREDICTION 
The designed model is allowed to work with the HEVC 

codec as shown in Fig. 4. To simulate the original HEVC, HM 
software is used. The evaluation is done between the original 
HEVC and proposed model for intraprediction, pipelined to 
HEVC using CPIH dataset.  Integrating neural network 
models in HEVC encoder helps to test the complexity 
reduction using deep-learning-based method in HEVC intra-
prediction. Using neural networks, the system can directly 
predict the Coding Unit (CU) depths for each frame. The 
intention is to speed up the encoding process of HEVC 
encoder. Thus, after we have a trained model, another thing 
that needs to be done is to integrate the deep learning 
prediction process into the HEVC encoder. 

 
Fig. 4. Pipelining Structure with Deep Depth Decision Algorithm Model Added to the Original HEVC Model. It shows the Overall Steps for the Evaluation of 

the Designed Model. 

Compare 
depth 

Use model 

Database construction 

Pre processing 

Split test and train dataset 

Model design with deep CNN for depth decision  

Test database for the model 

Train the database for the model 

Validate the model 
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This is to check the compatibility of the model with 
existing HEVC and also it makes the evaluation of the 
performance of our neural network model easier. This pipeline 
is used for evaluating the performance of a neural network 
model in HEVC intra-prediction process. Comparing the 
difference in encoding time, Y-PSNR, U-PSNR, V-PSNR, 
YUV-PSNR with the original HEVC encoder helps to know 
the efficiency of the model. FFmpeg, Python3, PyTorch are 
the requirements to perform this. 

The frames are send for encoding to  HM software for 
original HEVC encoding and calculates encoding time, Y-
PSNR, U-PSNR, V-PSNR, YUV-PSNR and the same set is 
send to the pipelined model or the proposed model and 
calculates the encoding time, Y-PSNR, U-PSNR, V-PSNR, 
YUV-PSNR. Both are evaluated and made as graphical 
representation to check the performance comparison. 

The results show that the time of encoding with and 
without pipelining the deep CNN network is shown in the 
Table I for some sample input. The input chosen for the test is 
mutually independent from the training set to maintain the 
accuracy and the wide range of resolution is also considered to 
check the performance of the system foe different resolution 
video frames. The results clearly show that there is a change in 
encoding time and thus the system proves it can reduce the 
and bit rate in each case, it supports the encoder with a better 
performance. Computational complexity of the original HEVC 
is high due to the RDO cost calculation. The experimental 
results show the time of encoding is drastically changed to low 
values for the proposed method. The PSNR curve is slightly 

low here compared to original model but the system 
performance is not affected by this.  The total process is done 
in python environment, when it's done, it will output with all 
information on the command line, like the encoding time, 
YUV-PSNR and so on. A sample output is shown in Fig. 5 
and the comparison graphs are shown in Fig. 6. The proof of 
reduction in complexity is shown in Fig. 7 with the change in 
encoding time. 

TABLE I. ENCODING TIME COMPARISON 

Image 
source Resolution 

Time of 
encoding 
with HEVC 
pipelined 
with Deep 
CNN 
network(T1) 

Time of 
encoding 
with 
original 
HEVC(T
2) 

T1-T2 
∆  T 
propose
d 

CPIH 
dataset 

768x512 71.273 664.634 
-
593.36
1 

-89.27 

1536x1024 467.671 2741.481 
-
2273.8
1 

-82.94 

2880x1920 2741.481 16417.71 
-
13676.
2 

-83.30 

4928x3264 1910.618 122731.3 
-
12082
1 

-98.44 

Average %∆ T 
improvement    88.49 

 
Fig. 5. Output Window showing the Bitrate-PSNR, U-PSNR, V-PSNR, YUV-PSNR, of Video Frame for Resolution (a) 768x512, (b) 1536x1024, (c) 

2880x1920,(d) 4928x3264 with the State-of-Art Method and by HEVC-HM Software Simulation. 

b a 

c d 
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Fig. 6. Comparison Chart Showing (a) Y-PSNR, (b) U-PSNR (c) V-PSNR (d) YUV-PSNR, with the State-of-Art Method and by HEVC-HM Software 

Simulation for Video Frames of Different Resolution. 

 
Fig. 7. Encoding Time Comparison. 

IV. CONCLUSION 
In this paper, a deep learning based inter-prediction is 

proposed to avoid the computational complexity issue in 
HEVC which predict the depth of the CTU in a 16-length 
vector than calculating the RDO cost by traditional signal 
processing method. The modelling adopted CNN network to 
perform this model with deep layers to predict the depth. The 
data set used for training was YUV and its tested on CPIH 
dataset to maintain the accuracy of the system and to avoid 
transfer or copied learning. The trained model is converted to 

system and pipelined to the original HEVC system to check 
the performance. The system evaluated the time of encoding 
with and without pipelining and calculated ∆  T . The   results 
and simulation clearly show that the design suits for the 
HEVC to work with less encoding time thus by reducing the 
complexity of the HEVC. The results prove it, the future 
enhancement on this can focus on the extension of this to inter 
prediction that improve the HEVC more. 
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