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Abstract—This Emotion recognition plays a prominent role in 
today's intelligent system applications. Human computer 
interface, health care, law, and entertainment are a few of the 
applications where emotion recognition is used. Humans convey 
their emotions in the form of text, voice, and facial expressions, 
thus developing a multimodal emotional recognition system 
playing a crucial role in human-computer or intelligent system 
communication. The majority of established emotional 
recognition algorithms only identify emotions in unique data, 
such as text, audio, or image data. A multimodal system uses 
information from a variety of sources and fuses the information 
by using fusion techniques and categories to improve recognition 
accuracy. In this paper, a multimodal system to recognise 
emotions was presented that fuses the features from information 
obtained from heterogenous modalities like audio and video. For 
audio feature extraction energy, zero crossing rate and Mel-
Frequency Cepstral Coefficients (MFCC) techniques are 
considered. Of these, MFCC produced promising results. For 
video feature extraction, first the videos are converted to frames 
and stored in a linear scale space by using a spatial temporal 
Gaussian Kernel. The features from the images are further 
extracted by applying a Gaussian weighted function to the second 
momentum matrix of linear scale space data. The Marginal 
Fisher Analysis (MFA) fusion method is used to fuse both the 
audio and video features, and the resulted features are given to 
the FERCNN model for evaluation. For experimentation, the 
RAVDESS and CREMAD datasets, which contain audio and 
video data, are used. Accuracy levels of 95.56, 96.28, and 95.07 on 
the RAVDESS dataset and accuracies of 80.50, 97.88, and 69.66 
on the CREMAD dataset in audio, video, and multimodal 
modalities are achieved, whose performance is better than the 
existing multimodal systems. 

Keywords—Emotion recognition; multimodal; fusion; MFCC; 
MFA; FERCNN; CREMAD; RAVDESS 

I. INTRODUCTION 
Emotion recognition is the process of determining a 

person's emotional state. Affective computing and human-
computer interaction (HCI) applications rely heavily on it [1]. 
In recent studies, emotion identification has sparked increased 
attention in academics and the commercial sector [2]. It is used 
in a variety of applications, including analysis of Twitter, 
tutoring systems, playing video games, prediction of consumer 
satisfaction, and military healthcare [3-5]. 

Speech or audio emotion recognition has been employed in 
medical studies to examine the changes in the emotions of 
depressed patients and in children who are having 
communication difficulties. It can also be used to warn the 
drivers during driving when the condition of the driver is 
fatigued to avoid accidents. Low level information from the 
speech or audio signals is extracted by the speech or audio 
emotion recognition system to comprehend the emotion status. 
Compilation of databases related to emotions, extraction of 
emotional features from the speech or audio signal, reduction 
of features by using dimensionality reduction techniques, and 
classification of emotions into respective classes are all part of 
this classification problem based on speech or audio signal 
sequences. K nearest neighbour, Gaussian mixture model, 
Support vector machines, and artificial neural networks are 
some of the traditional techniques that are used for speech or 
audio emotional recognition and are not that efficient because 
human emotions have high complexity and uncertainty [6]. 

About 93% of communication with humans is done 
through nonverbal means such as voice tone, facial 
expressions, and body language [7]. Identifying emotions 
through facial expressions which has been extensively studied 
[8][9] resulted in higher accuracies by making the changes at 
the pre-processing stage. To reduce overfitting during the 
training stage, adding dropout to the CNN model plays a 
prominent role in reducing overfitting during training [10]. 
Extracting of faces from the chain of video sequences and 
extracting the features from the resulted images are the steps 
followed in general to detect the emotions of the faces in the 
video sequences [11]. The robust face detection algorithm [12], 
the AdaBoost learning algorithm [13], and the spatial template 
tracker [14] are some of the techniques used in detecting the 
faces in the video. Fisher vectors, Active Shape model, Active 
Appearance model, local binary patterns, principal component 
analysis [15] and Gaussian mixture model [16] are some of the 
methods that are used for feature extraction in facial images. 
Occlusions and light changes may also lead the identification 
technique to be misled. If the emotion is to be identified 
through speech, ambient noise and differences in the voices of 
different participants are major factors that might affect the 
final recognition result. According to both physiological and 
psychological research, humans need both audio and visual 
signals to correctly understand emotions for which multimodal 
systems that fuse audio and video signals can be used. 
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Thanks to recent research interest in multimodal systems, 
the limitations of monomodal systems [17] [18] have been 
overcome. The information obtained from different modalities 
at different levels of fusion was fused by multimodal systems. 
The different fusion levels are classified into two different 
categories, namely: matching prior to fusion and matching after 
fusion. Feature level and sensor level fusion techniques [19] 
come under the first category, and decision, rank, and score 
level fusion techniques come under the second category. To 
combine the audio and video features of the multimodal, a 
fusion method that takes advantage of both decision and 
feature-level fusion was developed. Latent space fusion 
methods preserve analytical or numerical correlation between 
the different modalities and store them in a common latent 
space. 

II. RELATED STUDIES AND MOTIVATIONS 
Many attempts have been made by researchers to enhance 

emotion identification using a combination of audio and visual 
information [20]. According to [21], audio-visual emotion 
detection may be categorized as kernel-based, feature level, 
model-level, decision-level, score-level, and hybrid level 
fusion techniques. In this paper, we focus on latent-space 
fusion methods and multimodal recognition to detect emotions. 
Multimodal emotion recognition systems consistently 
outperform unimodal systems [22], [23], and [24]. Although 
there are certain benefits to using multimodal affective 
systems, they also face some important challenges [24]. 
Selecting the modalities that result in the best combinations is 
the area that has been focused on in recent studies [25]. 
CREMA-D [26], RAVDESS [27], and SAVEE [28] are some 
of the existing multimodal datasets that have been considered 
for research in recent times. A multimodal method by Cid et al. 
[29] used tempo, pitch, and energy feature extraction 
techniques to extract the audio features and a Bayesian 
classification method to classify the emotions. Edge-based 
characteristics are obtained from visual images to classify them 
in the SAVEE database. 

Gharavian et al. [30] evaluated the performance of a neural 
network called FAMNN. MFCC, Zero Crossing Rate, and 
pitch are some of the audio feature extraction techniques used 
to extract the audio features. Visual information is obtained by 
using marker positions on the face concept, and the resulted 
features are given to a feature selection algorithm (FCBF). For 
audio features, Huang et al. [31] used prosodic and frequency 
domains, while for facial expression description, they used 
geometry and appearance-based features. Using a back-
propagation neural network, each feature vector was utilised to 
train a single-modal classifier. They suggested a genetic 
learning-based collaborative decision-making model, which 
was compared to concatenated equal weighted choice fusion, 
BPN learning-based weighted decision fusion, and feature 
fusion methods. The audio spectrum features are obtained from 
BERT and CNN and are combined in parallel to form a 
multimodal [32]. 

A HGFM method was proposed by Xu [33], which fuses 
the hand-crafted features and the features extracted from the 
gated recurrent unit. The key frame videos are summarized by 

the method proposed by Noroozi [34] which uses a CNN 
model and the concept of stack fashion or late fusion for 
detecting the emotions. Xu et al. [35] proposed a multi-hop 
memorized network that describes the single-modality and 
cross-modality interactions among the three different feature 
domains in aspect-level sentimental analysis of a multimodal 
system. Zadeh et al. [36] introduced a tensor fusion network 
that uses the product of audio, visual and image elements to 
represent multimodal fusion information. 

RMFN, a multistage recurrent network for fusion described 
by Liang et al. [37], divides the multimodal fusion into various 
stages that utilize LSTM to record multimodal interactions in 
both synchronous and asynchronous modes. Liu et al. [38] 
lowered the computational complexity of the parameters by 
using a low-rank multimodal fusion approach that employs a 
low-rank tensor to relieve the increased computational cost of 
considering all three modalities. Poria et al. [39] used LSTM to 
isolate audio, video and text elements before combining them 
in a multi-level architecture. Ghosal et al. [40] developed a 
multi-attention recurrent network architecture for multimodal 
representation that learns features through attention. Tsai et al. 
[41] suggested learning interactions between modalities by 
employing multimodal transformers to construct an attention-
based cross-modal architecture. 

By using the RAVDESS dataset Fu Z et al. [47], R. 
Chatterjee et al. [48], Chang X et al. [49], Wang W et al. [50] 
achieved test accuracies of 75.76, 90.48, 91.4, and 89.8 on their 
respective multimodal systems. Ghaleb E et al. [52], He G et 
al. [53] proposed multimodal systems which resulted in test 
accuracies of 66.5 and 64 on the CREMAD dataset. Rory 
Beard et al. [51] proposed a multimodal where CREMAD and 
RAVDSR datasets are used for experimentation and resulted in 
test accuracies of 65.0 and 58.3, respectively. 

III. RESEARCH METHOD 

A. Dataset Description 
CREMAD and RAVDESS datasets are used for 

experimentation and evaluation purposes. Both datasets consist 
of data related to the emotions of actors in both audio and 
video modes. Angry, disgust, fear, happy, neutral, and sad are 
the common emotions present in both datasets in both modes, 
whereas RAVDESS audio data consists of two more emotions, 
calm, and surprise. CREMAD consists of 22326 and 60359 
emotions related to audio and video. RAVDESS consists of 
4321 and 45225 emotions related to audio and video. A 
detailed overview of the datasets is given in Table I below. 

B. Image Feature Extraction 
From the given set of video sequences of the multimodal 

dataset the videos should be converted into images and then 
facial features should be extracted from the images. The 
detailed description of the features is extracted from the videos 
is given below. 

From the given set of facial emotion videos  𝑓𝑣𝑖𝑑  of a 
multimodal dataset, the images are represented in linear scale 
space 𝐿𝑠𝑠  which is obtained by convoluting 𝑓𝑣𝑖𝑑  with 3 
dimensional Gaussian Kernel. 
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TABLE I. DESCRIPTION OF CREMAD AND RAVDESS DATASETS 

Name of 
The Dataset 

Emotion 
Type 

Data mode and Number of Emotions 
Audio Mode Video/Image Mode 

CREMAD 
Dataset 

Angry 3510 10472 
Disgust 4116 10098 
Fear 3918 10626 
Happy 3709 9661 
Neutral 3666 10867 
Sad 3417 8635 

RAVDESS 
Dataset 

Angry 476 7603 
Calm 524 NA 
Disgust 628 7885 
Fear 542 7394 
Happy 610 7784 
Neutral 385 7419 
Sad 559 7140 
Surprise 596 NA 

Lss�. ;  σLss
2 , τLss

2 �  =  Gauk�. ;σLss
2 , τLss

2 �  ∗  fvid(. )           (1) 

linear scale space, fvid is video sequence, σLss
2 is Spatial 

variance, τLss
2  is Temporal variance, Gauk is Spatial Temporal 

Gaussian Kernel. 

Gauk(x, y, td:σLss2 , τLss2 ) = 

                             exp(−(x2 + y2) 2σLss2 − td2⁄ / 2 τLss2 )         (2) 

Whereas 𝑥 and 𝑦 represents the axis of the frames that are 
obtained from the facial input video sequence  fvid, td denotes 
the axis if time in the temporal domain 

A method proposed by Forstner and Harris [42] [43] 
considers a Gaussian window to identify distinct points of the 
image which in turn determines the locations in fvid when there 
are significant changes in the intensity of image in the given 
space and time domains when sliding the Gaussian window in 
various directions. The distinct points can be detected by 
convoluting Spatial-Temporal Second Momentum matrix with 
the given Gaussian weighted function Gauk(. ;σi2, τi2). 

The Spatial-Temporal Second Momentum matrix is 3 × 3 
dimensional matrix and is given as 

�
Lssx2 LssxLssy LssxLsst

LssxLssy Lssy2 LssyLsst
LssxLsst LssyLsst Lssz2

�             (3) 

And the distinct points identification is given by 

μch = Gauk(. ,σi2, τi2) ∗ ��
Lssx2 LssxLssy LssxLssz

LssxLssy Lssy2 LssyLssz
LssxLssz LssyLssz Lssz2

��(4) 

Where Lssx, Lssy & Lsst are first order derivatives that are 
defined as follows 

Lssx(. ,σlss2 , τlss2 ) =  ∂x(Gauk ∗  fvid)           (5) 

Lssy(. ,σlss2 , τlss2 ) =  ∂y(Gauk ∗  fvid)           (6) 

Lssz(. ,σlss2 , τlss2 ) =  ∂z(Gauk ∗  fvid)            (7) 

Where σi2 =  Sssk ∗  σlss2  , τi2 =  Sssk  ∗  τlss2   and  Sssk is a 
constant 

The existence of distinct points in the fvid is indicated by 
the eigen values λ1, λ2, λ3 that can hold larger values. In the 
Spatial-Temporal domain the variations that are existing in the 
intensity of image are obtained by concatenating the tracelss 
and determinant of μch which is given as  

Hfn =  |(μch)| − K ∗  tracelss3 (μch)  

=  λ1 ∗ λ2 ∗ λ3 − k(λ1 + λ2 + λ3)             (8) 

K is a constant and the function 𝐻𝑓𝑛is normalized such that the 
effect of variations in the images due to illumination can be 
removed 

C. Audio Feature Extraction 
Zero crossing rate (ZCR), Mel Frequency Spectrum 

Coefficient (MFCC), pitch and energy are   some of the feature 
extraction techniques used to extract the features of the 
emotions from the given audio signal. 

1) Zero crossing rate: The number of times the audio 
signal crosses the zero-line, x-axis, is referred to as the zero-
crossing rate, and it is stated as follows. 

Ztn =  1
2N
∗  ∑ �

SignAud�xAudt(n)� −
 SignAud�xAudt(n − 1)�

�N
n=1             (9) 

SignAud(xAudt) = �1       if xAudt > 0 
0          Otherwise

�         (10) 

Where, tn ∈  [tn1, tn2], xAudt(tn) is the respective audio signal 
that was divided into segments by using a sliding window that 
was having al length of T, n ∈  [0, N] and  xAudt(n) is the tnth 
Segments time sequence 

2) MFCC (Mel frequency cestrum coefficient): The 
coeeficients of the corresponding spectral form of the audio 
stream are represented using a nonlinear Mel scale. The Mel 
frequency was used to analyse cepstral coefficients, and the 
steps below were followed. 

𝑆𝑡𝑒𝑝 1: 𝐴𝑢𝑑𝑖𝑜 𝑆𝑖𝑔𝑛𝑎𝑙𝑠 𝑎𝑟𝑒 𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑑 𝑖𝑛𝑡𝑜 𝑓𝑟𝑎𝑚𝑒𝑠 𝑏𝑦 𝑢𝑠𝑖𝑛𝑔  

𝑓𝑖𝑥𝑒𝑑 𝑠ℎ𝑖𝑓𝑡 𝑎𝑛𝑑 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒𝑠. 

𝑆𝑡𝑒𝑝 2:  𝐹𝑎𝑠𝑡 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 (𝐹𝐹𝑇)  

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓𝑟𝑎𝑚𝑒 𝑖𝑠 𝑐𝑎𝑙𝑐𝑢𝑙𝑙𝑎𝑡𝑒𝑑. 

𝑆𝑡𝑒𝑝 3:  𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 𝑎𝑟𝑒 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑀𝑒𝑙 𝑆𝑐𝑎𝑙𝑒 𝑢𝑠𝑒𝑑. 

𝑆𝑡𝑒𝑝 4:  𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑆𝑡𝑒𝑝 3 𝑖𝑠  

𝑐𝑎𝑙𝑐𝑢𝑙𝑙𝑎𝑡𝑒𝑑. 

𝑆𝑡𝑒𝑝 5:  𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝐶𝑜𝑠𝑖𝑛𝑒 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 (𝐷𝐶𝑇) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ  

𝑓𝑟𝑎𝑚𝑒 𝑖𝑠 𝑐𝑎𝑙𝑐𝑢𝑙𝑙𝑎𝑡𝑒𝑑. 

Acoustic tube characteristics pitch and energy are exhibited 
by MFCC that contains great amount of emotional information 
which plays a key role in emotion recognition. 
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3) Pitch: It depicts the signal's fundamental frequency 
[44]. The valence of an audio stream is connected to its 
rhythm and average pitch from an emotional standpoint. For 
example, higher amount of pitch may be associated to 
discomfort, lower standard deviation to sadness and usually 
happiness and discomfort are having higher talk and pitch 
rates whereas sadness can be represented by lower talk and 
pitch rates [45]. Autocorrelation is used to calculate the pitch 
of the audio signal and is given as follows. 

xAud[n]  be Stochastic Process Sinusoidal function 

xAud[n] = Cos(w0n +  ∅ )  and the autocorrelation of 
 xAud[n] is given as 

RAud[t] = E{ xAud∗ [n] ∗  xAud∗ [n + t] }         (11) 

=
1
2

cos (w0t) 

Maximum of the autocorrelation value is used to calculate the 
pitch, SAud Samples are used to calculate the estimate of 
RAud[t] 

RAud
^ [t] =  1

SAud
∗  ∑ (WAud[SAud] ∗ xSAud ∗

SAud−|t|
SAud=0

                                                               WAud[SAud + |t|])       (12) 

WAud[SAud] is window length of SAud the Expected value of  

RAud
^ [t] is given as  

EAud�RAud
^ [t]� =  �1 −  |t|

SAud
 � ∗  Cos(wAud0∗ SAud)

2
 , |t|  <  SAud 

             (13) 

4) Energy: It represents the signal's intensity or total 
energy. From an emotional standpoint, an audio signal having 
exciting emotions (e.g., pain or happiness) has more energy 
than an audio signal containing sadness or fatigued feelings 
[46]. The energy of the audio signal 𝑥𝐴𝑢𝑑𝑡(𝑛) is given as 

EnergyAud =  �1
N
∗  ∑ �xAudt(n2)�N

n=1             (14) 

D. Feature Level Fusion 
From the features obtained from audio and video signals, 

only a few portions of the features are related to emotions. 
Personality, age, gender, and many other features are obtained 
from audio and video signals, which may impact the quality of 
recognition of the emotions that are used in the model for 
training. Feature Level Latent Space methods are one of the 
existing categories of methods that are used to find the 
common features related to emotions and map them into the 
required latent space. By maximizing the cross correlation of 
the respective features and by minimizing the feature distance 
or by taking the normalization of the features, they can be used 
in feature level fusion. Marginal Fisher Analysis (MFA) is a 
supervised method that is used for audio video feature level for 
fusion by extracting the required features from the respective 
modalities. The process of 𝑀𝐹𝐴𝑠 feature level fusion is given 
as below. 

Information related to class labels is used in latent space 
generation. The compactness in the intra class is given as 

Scompact =  � � �WAV
T  xi −  WAV

T  xi�
2

i ∈ Nk1(j)
+i

    

 = 2 WAV
T XAV(DAV − SAV) ∗  XAVT wAV

          (15) 
 XAV =  {x1, x2, . . . , xn} Pis the frame set, N is the total samples 
and Nk1

+  is k1 in the same class. 

SijAV =  �1             if  i ∈  Nk1
+ (j) 

0                    Otherwise
            (16) 

Dij
AV =  ∑ SijAV j              (17) 

And the Inter-Class Separability is given by 

IcpP =  ∑ ∑ �WAV
T xi − WAV

T xj�
2

(i,j)∈Pk2(ci)i          (18) 

= 2 WAV
T  XAV�DAV

P − SAVP � ∗  WAV
T WAV 

ciis the emotion of class i, Pk2(ci) is the set of K2 nearest pairs 
and SAV is given by 

SAVij
P = �1                           if(i, j) ∈ Pk2(ci)

0                                     Otherwise
            (19) 

And the objective function is given as follows 

WAV
^ =  argWAV �min �WAV 

T XAV�DAV−SAV� XAV
T WAV

WAV
T XAV�DAV

P −SAV
P � XAV

T WAV
��            (20) 

And the optimal solution is given by 

YAV = XAvT WAV             (21) 

LAV .  YAV =  λ LAV 
P .            (22) 

Where LAV =  DAV −  SAV     and LAVP = DAV
P − SAVP  are called 

Laplacian matrices for WAV and WAV
P  

E. Proposed CNN Architecture 
The proposed CNN architecture consists of four fully 

connected layers, one flattening layer and two dense layers. All 
the fully connected layers are interconnected with each other 
where the output features obtained from each fully connected 
layer are given as an input to the next fully connected layer. 
The inputs to the first fully connected layer are audio, video, 
and multimodal features that are obtained during pre-
processing by applying the audio feature, image feature, and 
feature level fusion extraction techniques described in the 
above sections. The first fully connected layer consists of 
convolution and max polling layers, and the representation of 
the first fully connected layer is given as 

Outconv1 =  Act�∑ LAVi ∗  Wi,j
n�           (23) 

Where Outconv1  is the output of the convolutional layer, 
Act is the activation function,  LAV is the latent space or latent 
features obtained after applying feature level fusion, and Wi,j

n is 
the set of weights associated with the convolutional layer 

Outconvf1 = Max polling{Outconv1}         (24) 
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Outconvf1  is the output obtained from the max polling 
layer, where the input is Outconv1, the first convolutional layer 
output. The output of the first fully connected layer 
OutMaxpoll1 is given as input to the second fully connected 
layer, which consists of convolutional, max polling, and 
dropout layers, and the representation of the second fully 
connected layer is given as 

Outconv2 =  Act�∑ OutMaxpoll1i ∗  Wi,j
2n�         (25) 

OutMaxpoll2 = Max polling{Outconv2}         (26) 

Out conv2f = Act ��OutMaxpoll2 .∗ Drop(0.2)� � ∗ W[2n+1]  
             (27) 

Out conv2f is the output of the second fully connected layer, 
Drop(0.2) means that 20% of the features are dropped from 
the output of the max polling layer, and W[2n+1] are associated 
weights used. 

Out conv2f  the output of second fully connected layer, is 
given as input to the third fully connected layer which consists 
of the same layers as second fully connected layer and the 
output of the third fully connected layer is given as 

Out conv3f = Act ��OutMaxpoll3 .∗ Drop(0.2)� � ∗ W[2n+2](28) 

Out conv3f is given as input to the fourth fully connected 
layer which consists of a convolution and max polling layers 
and the output is given as 

Outconv4 =  Act�∑ Out conv3fi  ∗  Wi,j
n�          (29) 

Outconv4f = Max polling{Outconv4}         (30) 

The output of the fourth fully connected layer is flattened 
by giving to a flatten layer and the output is represented as 

FlattenCNN =  Flatten(a1Outconvf1, a2Outconvf2 , 

a3Outconvf3 , a4Outconvf4)           (31) 

The output of a flattening layer is given to a dense layer 
and a dropout of 20% is applied to the output obtained from the 
dense layer. The resultant features are given as input to the next 
dense layer where the output is classified. Relu activation 
function is used in the dense layers that are used in between, 
and a SoftMax activation function is used in the final dense 
output layer. The representation of the dense, dropout, and final 
output layers is as follows: 

OutDense1l = Dense�DenN, ActRelu(FlattenCNN)�        (32) 

OutDropl = Act�OutlDense1 .∗ Drop(0.2)� ∗ W         (33) 

OutFl = Dense �DenC, ActSoftmax�OutDropl ��         (34) 

OutDense1l  is the output of the dense layer, OutDropl  is the 
output of dropout layer OutFl  is the final classified output. The 
architecture of the proposed CNN is given in the Fig. 1. 

 
Fig. 1. Proposed CNN Architecture. 

F. Data Preprocessing 
For experimentation, the RAVDESS and CREMAD 

datasets are used in this paper. The datasets contain data related 
to audio and video emotions of various actors, and the 
description of the data is given in the dataset description 
section of the same module. The features of the video and 
audio data are obtained by using the image feature extraction 
and audio feature extraction methods explained above. There is 
dissimilarity in the number of features obtained from audio and 
video datasets. There are more features in the resultant dataset 
of video images when compared to audio files. A 
dimensionality reduction technique is applied to the image set 
to reduce the number of features so that the same number of 
features is present in the audio and video resultant datasets. 
Finally, a multimodal dataset is obtained by combining the 
resultant features of audio and video from the respective 
datasets by using the feature-level fusion technique that was 
explained in Section D, namely the "Feature Level Fusion" of 
the same module. The features obtained after applying Feature 
Level Fusion are given to the proposed CNN Model for 
Evaluation, and the description of the proposed CNN Model is 
explained in Section E, named "Proposed CNN Architecture." 
Fig. 2 gives the workflow of the proposed work done in this 
paper. 
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Fig. 2. Workflow of the Proposed Method. 
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IV. EXPERIMENTATION AND RESULTS 
Fig. 3(a) and (b), 3(c) and (d) and 3(e) and (f) represent 

training and testing accuracy and loss comparisons in audio, 
video, and multimodal modes on the RAVDESS dataset. Test 
accuracies of 95.96, 96.28, and 95.07 were observed. On the 
CREMAD dataset, train and test accuracies and train and test 
accuracies losses are shown in Fig. 4(a) and (b), 4(c) and (d), 
and 4(e) and (f) represent training and testing accuracy and loss 
comparisons in audio, video, and multimodal modes. Test 
accuracies of 80.70, 97.88, and 69.66 were observed. A 
detailed description of the results is given in Table II. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

(f) 
Fig. 3. (a) Training and Testing Loss of Audio Data in RAVDESS Dataset, 
(b) Training and Testing Accuracy of Audio Data in RAVDESS Dataset, (c) 

Training and Testing Accuracy of Video Data in RAVDESS Dataset, (d) 
Training and Testing Loss of Video Data in RAVDESS Dataset, (e) Training 

and Testing Loss of Multi Modal Data in RAVDESS Dataset, (f) Training and 
Testing Accuracy of Multi Modal Data on. 
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(a) 

(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 4. (a) Training and Testing Loss of Audio Data in CREMAD Dataset, 
(b) Training and Testing Accuracy of Audio Data in CREMAD Dataset, (c) 
Training and Testing Loss of Video Data in CREMAD Dataset, (d) Training 
and Testing Accuracy of Video Data in CREMAD Dataset, (e) Training and 

Testing Loss of Multi Modal Data in CREMAD Dataset, (f) Training and 
Testing Accuracy of Multi Modal Data in CREMAD Dataset. 

TABLE II. ACCURACY AND LOSS OF RAVDESS AND CREMAD 
DATASETS ON DIFFERENT TYPES OF DATA IN THE DATASET 

Name of 
Dataset Type of Data Train 

Accuracy 
Test 
Accuracy 

Train 
Loss 

Test 
Loss 

RAVDESS 

Audio 92.19 95.56 0.2430 0.161 

Video 96.92 96.28 0.1716 0.173 

Multi Modal 91.95 95.07 0.2155 0.136 

CREMAD 

Audio 72.70 80.50 0.7293 0.588 

Video 95.33 97.88 0.1978 0.151 

Multi Modal 65.20 69.66 0.7840 0.646 

Fig. 5(a) and 5(b) represent the confusion 
matrix/classification report of how the classes are classified 
during the testing phase on audio data of the RVDSR and 
CREMAD datasets. It has been observed that an average 
precision, recall, f1-score and support values of 0.955, 0.954, 
0.953 and 540 on RAVDESS, 0.807, 0.806, 0.805 and 744 on 
CREMAD datasets, respectively. The detailed description of 
various emotions and their respective performance measure 
values of RAVDESS and CREMAD audio data is given in 
Table III. 
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(a) 

 
(b) 

Fig. 5. (a) Confusion Matrix/Classification Report of RAVDESS Dataset 
Audio Data, (b) Confusion Matrix/Classification Report of CREMAD Dataset 

Audio Data. 

TABLE III. PERFORMANCE METRICS OF RAVDESS AND CREMAD 
DATASETS ON AUDIO DATA 

Name Of the 
Dataset Type of 

Emotion 
Performance Metrics 

RAVDESS  

Precision recall f1-score    Support 
Angry 0.98 0.97 0.98 564 

Calm 0.97 0.97 0.97 516 

Disgust        0.98 0.92 0.95 580 

Fear 0.95 0.98 0.96 644 

Happy 0.94 0.98 0.96 592 

Neutral 0.90 0.95 0.92 332 

Sad 0.97 0.90 0.93 568 

Surprise 0.95 0.96 0.95 524 

CREMAD 

Angry 0.94 0.87 0.90 774 
Disgust 0.75 0.82 0.78 726 

Fear 0.82 0.73 0.78 748 

Happy 0.81 0.81 0.81 812 

Neutral 0.73 0.85 0.78 616 

Sad 0.79 0.76 0.78 790 

Fig. 6(a) and 6(b) represent the confusion 
matrix/classification report of how the classes are classified 
during the testing phase on video data of the RVDSR and 
CREMAD datasets. It has been observed that an average 
precision, recall, f1-score and support values of 0.98, 0.985, 
0.985 and 997 on RAVDESS, 0.973, 0.975, 0.975 and 1027 on 
CREMAD datasets, respectively. The detailed description of 
various emotions and their respective performance measure 
values of RAVDESS and CREMAD video data is given in 
Table IV. 

 
(a) 

 
(b) 

Fig. 6. (a) Confusion Matrix/Classification Report of RAVDESS Dataset 
Video Data, (b) Confusion Matrix/Classification Report of CREMAD Dataset 

Video Data. 
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TABLE IV. PERFORMANCE METRICS OF RAVDESS AND CREMAD 
DATASETS ON VIDEO DATA 

Name Of the 
Dataset Type of 

Emotion 
Performance Metrics 

RAVDESS  

Precision recall f1-score    Support 
Angry 0.99 0.98 0.98 1028 

Disgust        0.97 0.99 0.99 1012 

Fear 0.98 0.99 0.98 1075 

Happy 0.99 0.99 0.99 940 

Neutral 0.97 0.99 0.99 1082 

Sad 0.98 0.97 0.98 842 

 

CREMAD 

Angry 0.99 0.96 0.97 1068 
Disgust 0.96 0.99 0.98 1031 

Fear 0.97 0.98 0.97 1084 

Happy 0.99 0.97 0.98 987 

Neutral 0.96 0.99 0.98 1108 

Sad 0.97 0.96 0.97 884 

A multi-modal dataset has been obtained by combing the 
features of audio and video by using the feature level fusion 
techniques described in the feature level fusion section of the 
proposed method on the RAVDESS and CREMAD datasets. 
Fig. 7(a) and 7(b) give the classification report/confusion 
matrix obtained from the proposed CNN architecture during 
the evaluation stage. The classification report shows how the 
six classes, namely angry, disgust, fear, happy, neutral, and 
sad, are properly classified during their test by the proposed 
CNN architecture. An average precision of 0.953 & 0.716, 
recall of 0.953 & 0.7, f1-support of 0.951 & 0.688, and support 
of 1613 & 2817 were observed by the proposed CNN 
architecture during the evaluation phase on RAVDESS & 
CREMAD multimodal. The detailed description of the results 
is explained in Table V. 

 
(a) 

 
(b) 

Fig. 7. (a) Confusion Matrix/Classification Report of RAVDESS Dataset on 
Multimodal Data, (b) Confusion Matrix/Classification Report of CREMAD 

Dataset on Multimodal Data. 

TABLE V. PERFORMANCE METRICS OF RAVDESS AND CREMAD 
DATASETS ON MULTIMODAL DATA 

Name of the 
Dataset Type of 

Emotion 
Performance Metrics 

RAVDESS  

Precision recall f1-score    Support 

Angry 0.97 0.98 0.97 1601 

Disgust        0.92 0.96 0.94 1698 

Fear 0.96 0.94 0.95 1561 

Happy 0.98 0.92 0.95 1688 

Neutral 0.99 0.95 0.97 1523 

Sad 0.90 0.97 0.93 1607 

CREMAD 

Angry 0.56 0.25 0.35 2917 

Disgust 0.81 0.74 0.77 2836 

Fear 0.88 0.76 0.82 2891 

Happy 0.74 0.77 0.75 2621 

Neutral 0.79 0.87 0.83 2821 

Sad 0.49 0.81 0.61 2817 

A detailed description of the macro average and weighted 
average accuracies Precision, recall, f1-score and support of 
RAVDESS and CREMAD datasets in all the three modes 
(Audio, video, and multimoded) are given in Table VI. 

The performance of the current work done has been 
compared with earlier work. It has been observed that the 
proposed method performed better, and a detailed description 
of the comparisons is given in Table VII. 

601 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 1, 2022 

TABLE VI. MACRO AVERAGE AND WEIGHTED ACCURACIES OF 
PERFORMANCE METRICES IN DIFFERENT MODES ON RAVDESS AND 

CREMAD DATASETS 

Name of 
The 
Dataset Type of 

Accurac
y 

Type of 
Data 

Performance Metrics 

RAVDES
S 

Precisio
n 

recal
l 

f1-
scor
e 

Suppor
t 

Macro 
Average 
Accurac
y 

Audio 0.95 0.96 0.95 1080 
Video 0.97 0.96 0.97 9292 

Multimod
al 0.95 0.95 0.95 1578 

Weighte
d 
Average 
Accurac
y 

Audio 0.96 0.96 0.96 1080 
Video 0.97 0.97 0.97 9232 

Multimod
al 0.95 0.95 0.95 1578 

CREMA
D 

Macro 
Average 
Accurac
y 

Audio 0.81 0.81 0.80 4466 
Video 0.95 0.96 0.95 12642 

Multimod
al 0.71 0.70 0.69 16903 

Weighte
d 
Average 
Accurac
y 

Audio 0.81 0.80 0.81 4466 
Video 0.97 0.96 0.96 12642 

Multimod
al 0.71 0.70 0.69 16903 

TABLE VII. ACCURACY COMPARISON OF PROPOSED METHOD WITH 
ALREADY EXISTING RESULTS 

Name of The Author Datasets 
Used 

Percentage  
of Test 
Accuracy 

Proposed 
Method 
Accuracy 

Fu, Ziwang, et al. [47] 

RAVDSR 
 

75.76 

95.07% 

R. Chatterjee et al. [48] 90.48 
Chang X et al. [49] 91.4 

Wang W et al. [50] 89.8 

Rory Beard et al [51] 58.33 

Rory Beard et al [51] 
CREMAD 
 

65.0 

69.66% Ghaleb E et al. [52] 66.5 

He G et al. [53] 64 

V. CONCLUSION AND FUTURE WORK 
A multimodal system for emotion recognition was 

proposed in the current work. Audio and video information are 
used here. Audio features are obtained by the Mel-Frequency 
Cepstral Coefficients extraction technique, and all the videos 
are converted into images and stored in a spatial-temporal 
space. The image features are extracted by using a Gaussian 
weighted function. The MFA fusion technique is to fuse the 
audio and video features, and the resultant features are given to 
the FERCNN Model for training and evaluation. For 
experimentation, the RAVDESS and CREMAD datasets, 
which consist of audio and video data, are used. Test 
accuracies of 95.07 and 69.66 were obtained on the RAVDSR 

and CREMAD datasets in multimodal mode. Even though 
many multimodal emotional datasets exist, only two of them 
are considered. An efficient multimodal system that is generic 
to all types of multimodal emotional databases can be 
designed, and the maximum multimodal data accuracy on the 
CREMAD dataset is 69.66%, which can be further improved. 
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