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Abstract—In recent years, real-time and big data aroused and 
received a lot of attention due to the spread of embedded systems 
in almost everything in life. This has led to many challenges that 
need to be solved to enhance and improve systems that work on 
big real-time data. Apache Storm is a system used for computing 
and analyzing big real-time data of distributed systems. This 
paper aims to develop a scheduler to improve the scheduling of 
the applications represented by topologies on the Storm cluster. 
The proposed scheduler is hybridization between the scheduling 
algorithms of A3 Storm and the Workload scheduler. Its 
objective is to minimize the communication between tasks while 
balancing the workload on all cluster machines. The proposed 
scheduler is compared with the A3 Storm and Fischer and 
Bernstein’s scheduling algorithm. The comparison has been 
made using four different topologies. The experimental results 
show that our proposed scheduler outperforms the two other 
schedulers in throughput and complete latency. 
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I. INTRODUCTION 
Real-time applications such as IoT sensors, climate, and 

healthcare produce a large amount of continuous real-time 
data. The nature of this type of data is overgrowing where it 
can reach quintillions of bytes every day. This extreme and 
rapid growth of data leads to the term “big data” [1]. 5Vs 
features usually characterize big data; volume, variety, 
velocity, veracity, and value. Volume refers to the massive 
amount of data [2]. Variety means that there are different types 
of data that cause complexity. The rate at which the data is 
produced and transferred is the velocity, and it must be 
analyzed in real-time. Veracity is the precision level of data. 
Finally, the value is the valuable information derived from the 
data [1] [3]. Generally, the “big data” processing can be done 
through two processing techniques; batch and stream 
processing on high-performance computing resources [4]. 
Batch processing works on data that is previously stored. At 
the same time, stream processing refers to processing a large 
amount of data in real time. Big Data needs specified 
applications for processing the data, such as Hadoop for batch 
processing and Apache Storm, S4, Spark, and Flink for real-
time streaming applications [4]. 

Real-time refers to the concept of time quantity, which 
implies the necessity for a real-time clock to measure it [5]. 
The real-time tasks are classified into three different cases: 
hard real-time, firm real-time, and soft real-time. The 
constraint in hard real-time tasks is to create results within 

specific time constraints or cause disastrous results. Firm real-
time tasks also have to create the results before the specified 
time constraints, or the results will be invaluable. Soft real-time 
tasks have no time limitation, the results could be generated at 
any time, and it will be beneficial and acceptable [5] [6]. 

Now-a-days, the processing of streaming data is gaining 
more attention due to its sensitive cases. Thus, many 
researchers have tried to enhance the scheduling techniques to 
handle this huge amount of data and increase performance of 
processing (i.e., decreases the latency, increase the throughput, 
balance the network load, etc.). Most of the researchers’ 
algorithm achieved those performance objectives. The relevant 
algorithms some of them achieved increment in the throughput, 
some achieved network load enhancement, others achieved 
decrement in latency, etc. Real-time scheduling for streaming 
data needs continuous improvements to get better results with 
better performance. So the issue here is to propose an 
algorithm that increases the performance of the processing of 
streaming data in using Apache Storm. 

The main idea of the proposed algorithm is to reduce the 
communication between executors. The scheduler collects 
information during runtime then it creates a schedule using 
graph partitioning technique that partition the communication 
graph [7] [8]. At the end, the collected communication between 
executors during runtime is used and the pairs of most 
communicating executors are assigned to the same slot. This 
will achieve workload balance; improve resource utilization, 
high throughput with more reduced load on network. 

The paper contribution is as follows: 

1) We proposed a hybrid between two algorithms, the 
Workload scheduling algorithm and the A3 Storm algorithm, 
which improves the performance of the Apache Storm. This 
scheduler maximizes the throughput and minimizes the 
latency as the communication network load is reduced. 

2) The scheduler is based on graph partitioning; its 
objective is workload balance and inter-executor 
communication. 

3) Four topologies evaluate the scheduler, and the metrics 
of throughput and latency are collected as results. 

4) A comparison is made against two alternative 
schedulers to find which has better results when running the 
topologies on them. 
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This paper is organized as follows. In Section 2, we 
introduce an overview of the Storm and its scheduling. The 
related work is shown in Section 3. Section 4 discusses the 
state-of-the-art scheduling algorithms. The proposed algorithm 
is discussed in Section 5. Section 6 discusses the results with 
comparison to the state-of-the-art algorithms. Section 7 is the 
conclusion. 

II. OVERVIEW ON APACHE STORM 
Apache Storm is a widely used real-time processing 

framework due to its capabilities of carrying out analytics on 
data streams with high throughput. Storm is an open-source 
real-time processing framework that contains several 
components: Topology, Nimbus, Slave, and zookeeper. [9]. 
Topology is considered the main component in Storm; it is a 
directed acyclic graph (DAG) that consists of spout and bolts 
[9] [10]. The spout is the primary source of a stream, and the 
bolt is the processing unit of the topology which handles the 
stream of data. Storm is deployed on a cluster that follows a 
master-slave model. The master is called the Nimbus node, 
which is responsible for organizing the topology and analyzing 
it [11][10]. It also distributes the tasks among the supervisor 
nodes and monitors any failure occurrence on them (i.e., if one 
of the supervisors fails, it redistributes the work among the 
remaining supervisors). The slave is any supervisor node. 
Storm can have one or more supervisors, and each supervisor 
can have one or more workers, which helps execute the tasks 
assigned by the supervisor. The worker also can have one or 
more executors which are responsible for running and 
executing the tasks. In the end, the task carries out the actual 
processing of the data (i.e., the tasks can be spouts or bolts). 
Also, Storm contains the zookeeper, which coordinates the 
work between the Nimbus and supervisors and saves their state 
(i.e., in case of Nimbus failure, it will restart from its last state 
as it is saved in zookeeper). Fig. 1 depicts the components of 
the Storm cluster. 

 
Fig. 1. Storm Cluster. 

A default scheduler performs the standard scheduling 
process in Storm existed in Nimbus called EvenScheduler. This 
scheduler goes through two main phases; the first is assigning 
the executors to the workers, and the second is allocating the 
workers to the slots. EvenScheduler works based on round-
robin strategy as follows [3]: 

It iterates through the executors of the topology and 
allocates every executor evenly to the workers based on a 
round-robin algorithm. 

The workers are allocated and assigned evenly to the 
supervisors, considering the available slots in each supervisor. 

III. RELATED WORK 
One of the main benefits of Storm is that it is an open-

source framework that allows creating custom schedulers that 
can meet the needs of the users and data. The default scheduler 
in Storm has some drawbacks which need to be improved. For 
instance, it evenly assigns the tasks to the cluster slots, but it 
does not consider the inter-node and inter-slot communication. 
Thus, the traffic may negatively influence the throughput and 
performance of the processing. Recently, many researchers 
have proposed enhanced scheduling algorithms that can 
improve the performance of Storm. 

Aniello L. et al.  [3] have proposed two scheduling 
algorithms, offline and online. The offline scheduling 
algorithm is based on the topology structure and how its 
components are interconnected with each other. It used the 
round-robin algorithm to assign slots to nodes. The online 
scheduling algorithm was based on monitoring the 
communication and the performance of the system at run time. 
It monitored the traffic of exchanged tuples between executors, 
sorted the executors in descending order according to the 
communication patterns, and assigned the most communicating 
executors in the same slot. Then the communication pairs of 
workers are iterated in descending order and assigned to the 
nodes. This algorithm reduced the inter-node traffic and 
communication, which affected the network load and the 
throughput. 

Xu J. et al. [12] have developed a traffic-aware online 
scheduling algorithm that can reduce the inter-node and inter-
process traffic by monitoring the traffic and workload 
information during runtime. It expedites the data processing by 
using the traffic-aware online algorithm for assigning 
executors. It also enables fine-grained control over worker 
node consolidation to obtain better performance while using 
fewer worker nodes. 

In the same context, Peng B. et al. [11] have presented a 
resource-aware scheduling algorithm to improve resource 
utilization and reduce network latency. This algorithm is based 
on assigning the task according to an improved breadth-first 
traversal algorithm. It allocates the node ports that conform to 
the resource constraints and the network distance requirement. 

Fischer L. and Bernstein A. [8] have proposed a workload 
scheduling based on the graph partitioning technique. It works 
during runtime and collects the behavior of communication of 
the topologies that are running. Then it partitions the 
communication graph to produce the schedule using software 
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called METIS graph partitioning. METIS uses a multilevel 
graph bisection. It makes a miniature version of the graph by 
coarsening it and collapsing the nodes and edges. Then it 
partitions the resulting small graph before un-coarsening it to 
its first form. It adapts the partition at each step of the un-
coarsening to consider the newly un-collapsed edges and 
vertices. This scheduler improves resource utilization, reduces 
the network load, and increases the throughput. 

Another direction is presented by Li C. et al. [13]. They 
have developed a Storm topology dynamic optimization 
strategy (STDO-TOC) as a real-time scheduling algorithm. The 
STDO-TOC uses bolts capacity and analyzes the message 
queue congestion degree to alter the performance parameters 
during runtime. If the topology bottlenecks are found, they are 
automatically removed. This leads to optimizing the topology 
dynamically. 

Another resource-efficient algorithm for streaming 
application scheduling D-Storm has been presented in Liu X. 
and Buyya R. [14]. D-Storm tracks the streaming tasks during 
runtime to collect resources and communications and use them 
in the scheduling process to pack the communicating tasks 
compactly. This strategy of tight scheduling reduces resource 
utilization and inter-node communication. 

Muhammad A. et al. [15] have developed a topology-based 
resource-aware scheduling algorithm called Top Storm. It is 
based on finding the most communicating executors and 
putting them closer to each other to reduce the number of 
nodes used to execute topology. Top-Storm is considered a 
topology-based as it looks at the DAG of the topology to find 
the connections between the executors. Also, it is resource-
aware as the assigning of executors is made based on the 
computation power of nodes. 

An enhanced version of Top Storm called A3 Storm has 
been developed by Muhammad A. and Aleem M. [4]. It works 
offline by finding the most communicating executors from the 
DAG of the topology and putting them closer to each other, 
and assigning them to the nodes according to the most 
powerful one. At the same time, it can work online by using 
traffic beside the topology structure. It reads the inter executor 
traffic, sorts it into descending order, and then assigns it to the 
most influential nodes. This scheduler improves resource 
utilization and increases the throughput of the topology. 
Finally, Table I displays a brief review of the above-mentioned 
scheduling algorithms. 

TABLE I. A BRIEF REVIEW OF REAL-TIME SCHEDULING ALGORITHMS 

Scheduling Aspects 

Scheduling Algorithms Characteristics 

Resource 
Aware Traffic-Aware Dynamic Heterogenous Self-Adaptive Topology 

Aware Network-Aware 

Aniello, et al., 2013) 
[3] x      x 

Xu, et al., 2014 [12] x     x x 

Peng, et al., 2015 
[11]  x x  x x  

Fischer & 
Bernstein, 2015) [8]      x  

Li, et al., 2017 [13]       x 

Liu & Buyya, 2017 
[14]      x x 

Muhammad, et al., 
2021 [15]  x x  x  x 

Muhammad & 
Aleem, 2021) [4]        x 

624 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 1, 2022 

IV. PRELIMINARIES 

A. Workload Scheduler 
The workload scheduler is the standard storm topology. It 

has two types of views, logical view, and physical view. The 
logical view, 𝑇 = (𝑁 ,𝐶) , consists of N spouts and bolts 
connected with C number of connections. While the physical 
view of storm topology is represented by graph 𝐺 = (𝑉,𝐸), 
where V represents the vertices, and E represents the edges of 
the graph. A set of task instances represents the spout and bolts 
𝑣𝑖 ∈ 𝑉 , and |𝑣𝑖| = 𝑑𝑖  represents the degree of parallelism of 
each component, spout, or bolt. Every two sets of vertices V 
are connected by one edge E. Generally, the graph is weighted 
as follows [8]: 

• The vertex weights are represented by the sum of the 
number of all released and received tuples. 

• The edge weights are the number of messages released 
from any of the spout or bolt instances. 

The main idea in graph partitioning is to partition the 
vertices into equal partitions to reduce the edges’ number 
connecting the vertices of different partitions based on the k-
way partitioning method. To clarify the k-way partitioning, if a 
given graph 𝐺 = (𝑉,𝐸), the vertices will be partitioned into M 
number of partitions P, where M is equal to the supervisor 
machines number in the cluster. Where ⋃ 𝑃𝑚𝑀

𝑚=1 = 𝑉  and 
⋂ 𝑃𝑚𝑀
𝑚=1 = ∅. [8] [16]. 

The communication between partitions can be represented 
as a matrix. If there is a task 𝜏𝑢 and partition 𝑃𝑎. To check if 
the task 𝜏𝑢 is assigned to the partition 𝑃𝑎: 

𝑀𝜏𝑢,𝑃𝑎 =

�1, 𝑖𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝜏𝑢 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑃𝑎.
0, 𝑖𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝜏𝑢 𝑖𝑠 𝑛𝑜𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑃𝑎.            (1) 

Then the communication between the nodes in the 
communication graph can be represented as follows in (2) [8]: 

𝐶𝜏𝑢,𝜏𝑣 =  ∑ ∑ 𝑀𝜏𝑢,𝑃𝑎 × 𝑀𝜏𝑣,𝑃𝑏
𝑃
𝑏=1

𝑃
𝑎 =1   (2) 

Where M is the total number of partitions. 

According to (2), the formula of the node's communications 
can be summarized as follows: 

𝐶𝜏𝑢,𝜏𝑣  =

 �1,     𝑖𝑓 𝑡𝑎𝑠𝑘 𝜏𝑢 𝑎𝑛𝑑 𝑡𝑎𝑠𝑘 𝜏𝑣 𝑎𝑟𝑒 𝑜𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠
0,     𝑖𝑓 𝑡𝑎𝑠𝑘 𝜏𝑢 𝑎𝑛𝑑 𝑡𝑎𝑠𝑘 𝜏𝑣 𝑎𝑟𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠  

   (3) 

Finally, the cost function of the partitioned graph G, which 
is partitioned into M partitions, can be defined as follows [8]: 

𝑐𝑜𝑠𝑡(𝐺,𝑀)  =  ∑ ∑ 𝐶𝜏𝑢,𝜏𝑣  ×  𝑒𝑢,𝑣
|𝑉|
𝑣=1

|𝑉|
𝑢=1  (4) 

where |V| is the total number of vertices of the graph and 
𝑒𝑢,𝑣 represents the edge weights. 

This partitioning algorithm aims to optimize the costs for 
the partitions. In this algorithm, there is another constraint: the 
partitions should be balanced for the workload. The load 
balance factor Lim is defined as below [8]: 

𝐿𝑖𝑚(𝐺,𝑀)  =  𝑚𝑎𝑥(𝑃𝑖 𝐴𝑃�  ) (5) 

where 𝑃𝑖 is the sum of weights of all vertices in partition i, 
and AP is the average weight of partition over all partitions. 

The workload scheduler uses METIS as software for graph 
partitioning, which is used for partitioning a graph into equal 
partitions [16]. The partitioning process includes three main 
phases: coarsening, partitioning, and un-coarsening. 

Initially, the coarsening phase reduces the size of the graph 
by combining a set of vertices into one single vertex. The 
weight of this single vertex must be equal to the sum of 
weights of all vertices combined in it. 

Then the partitioning phase is done on the coarsest graph to 
receive balanced partitions with respect to the workload. 

Finally, the un-coarsening phase is used to return to the 
original graph and refine the resulting partitions. 

To assign the partitions, their number must be equal to the 
number of machines in the cluster. Each partition will be 
assigned to one supervisor, and its tasks will be assigned to the 
slots. Finally, the executors in each partition are assigned to 
slots in a round-robin manner [7]. A flowchart of the workload 
scheduler is illustrated in Fig. 2. 

B. A3 Storm Scheduler 
A3 Storm scheduler is a topology, traffic, and resource-

aware scheduler. It can find the connections between the 
executors by considering the DAG of topology, so it is 
considered a topology-aware scheduler. It also puts inter-
executor communication into consideration, so it is a traffic-
aware scheduler. Finally, it performs the physical mapping 
according to the computation power of nodes; thus, it also 
resources aware scheduler [4]. 

 
Fig. 2. Workload Scheduler Flowchart. 
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In general, the A3 Storm scheduler follows two steps: (1) 
Assignment of Executors, either by using the DAG or the 
traffic of topology. In this step, the scheduler initially gets the 
number of worker processes and the inter-executor traffic for 
executors unassigned from the traffic log. Then the executor 
assignment process begins by sorting the executors in 
descending order according to the inter-executor traffic; after 
that placing the most communicating executors as close as 
possible to each other. (2) Assignment of Slot; in this step, the 
created groups of the highest communicating executors are 
assigned slots. Then these slots are assigned to nodes which are 
sorted in descending order according to the most 
computationally powerful node calculated by (6) and (7). [4] 
[15]. 

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑜𝑤𝑒𝑟 = ∝× (𝑆𝑝𝑒𝑒𝑑) + (1−∝) × 𝑅𝐴𝑀  (6) 

𝑆𝑝𝑒𝑒𝑑 = 𝑛𝑜. 𝑜𝑓.𝐶𝑜𝑟𝑒𝑠 × 𝑛𝑜. 𝑜𝑓. 𝑆𝑜𝑐𝑘𝑒𝑡𝑠 × 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ×
𝑛𝑜. 𝑜𝑓.𝐹𝑙𝑜𝑝𝑠       (7) 

Where, ∝ is an adjustment factor equal 0.8. 

V. FORMULATION OF THE BALANCE WORKLOAD STORM 
SCHEDULER ALGORITHM 

The proposed algorithm hybridizes the Workload scheduler 
[8] and the A3 Storm scheduler [4]. As mentioned before, the 
Workload scheduler aims to reduce the network utilization by 
reducing the inter-node communication to increase the overall 
throughput and balance the workload among all available 
machines in the cluster. At the same time, the objective of the 
A3 Storm scheduler is to reduce the inter-node traffic, increase 
the throughput, and improve resource utilization. 

The proposed algorithm of Balance Scheduling on Storm 
(BSS) is based on combining both the Workload scheduler and 
A3 Storm to enhance the performance of the Workload 
scheduler in increasing the data throughput and reducing the 
time latency. The main idea of the BSS is to apply the 
methodology of workload scheduler to monitor the metrics of 
Storm, collect the data of the communication graph during 
runtime, partition the graph, and balance the workload among 
the available machines in the cluster. Then, we have replaced 
the last step in the Workload scheduler (i.e., assigning each 
partition to one node and assigning tasks to slots in a round-
robin strategy) by the A3 storm first phase (i.e., monitoring the 
communication between tasks). Therefore, after assigning the 
partitions to the nodes, the tasks will be assigned to the slots 
according to their inter-executor communication, which means 
that the most communicating executors will be assigned to the 
same slot, which will reduce the network communication 
between slots and in result this will reduce the latency and 
increase the throughput. 

A. The Proposed Algorithm of Balance Scheduling on Storm 
(BSS) 
The proposed algorithm of Balance Scheduling on Storm is 

based mainly on managing the execution of the topology. Its 
input and output are the unassigned topologies and the executor 
to node assignment, respectively. The phases of the proposed 
BSS algorithm can be concluded as follows: 

1) The scheduler collects information about the topology, 
where it gets the number of worker processes (slots) required 
to execute the topology. Then it obtains the inter-executor 
connection of the unassigned executors and the number of the 
unassigned executors. 

2) Calculating the maximum number of executors 
required per slot by (8): 

𝑒𝑒𝑠  = 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠
𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑙𝑜𝑡𝑠_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑏𝑦_𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦

 (8) 

3) Finding the available nodes in the cluster. 
4) Partitioning the vertices of the graph into equal 

partitions using the k-way partitioning method, where the 
number of partitions should be equal to the number of the 
topology workers. 

5) Sorting the nodes where the nodes with no workers are 
put at the beginning, and the partially busy nodes are put at the 
end. In this stage, the scheduler has to ensure that the number 
of nodes is not smaller than the number of partitions. 

6) Sorting the tasks in each pair in descending order 
according to their inter-executor traffic. 

7) Assigning tasks to the slots, where the most 
communicating tasks are assigned to the same slot until it 
reaches the maximum number of tasks assigned to it. Then 
assigning the next task to the next slot and so on until all 
partition tasks are assigned to the slots of the node. The 
pseudo-code of the proposed algorithm of Balance Scheduling 
on Storm is shown in Algorithm 1. 

Algorithm (1): Balance Scheduling on Storm 
1. function Schedule (U); 
Input: Unassigned Topologies U 
Output: Node-Executor assignment 
2. for each topology 𝑢𝑖 ∈ 𝑈 do 
3.    𝑛 = 𝑢𝑖 .𝑛𝑢𝑚𝑂𝑓𝑊𝑜𝑟𝑘𝑒𝑟𝑠; 
// get the number of worker processes 
4.    𝑒𝑢𝑛 = 𝑢𝑖 .𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠( ); 
// get the list of Inter-Executor for unassigned executors 
5.    𝑒𝑡𝑜𝑡𝑎𝑙 =  𝑒𝑢𝑛.𝐶𝑜𝑢𝑛𝑡( ); 
6.    𝑒𝑒𝑠  = 𝑐𝑒𝑖𝑙(𝑒𝑡𝑜𝑡𝑎𝑙/𝑛)  

 
7.    Nodes = cluster.getAvailableNodes( ); 
8.    partition_file = graph.part(𝑁𝑜𝑑𝑒𝑠); 
// partition = number of workers 
9.    Nodes.sort( ); 
// Nodes that have no worker are put at the beginning and 

partially busy nodes are put at the end 
10.    𝑠𝑙𝑜𝑡𝑠𝑎𝑠 = 0; 
11.    if Nodes.size( ) >= partition.size( ) do  
12.       Foreach 𝑛 ∈ 𝑁𝑜𝑑𝑒𝑠 do 
13.        Foreach 𝑡𝑎𝑠𝑘𝑠 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛. 𝑡𝑎𝑠𝑘𝑠  do 
14.            tasks.sort(“Desc”); 
// task pairs are sorted in descending order according to the 

InterExecutor traffic 
15.            While tasks != null  
16.               For each task ∈ tasks 
17.                  If  Count <= 𝑒𝑒𝑠 
18.                      mapExecutorToSlot(𝑠𝑙𝑜𝑡𝑠𝑎𝑠, task);           
// Assign most communicating task pairs to the same slot; 
19.                      Count ++; 
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20.                  End If 
21.                  𝑠𝑙𝑜𝑡𝑠𝑎𝑠 ++; 
22.               End for 
23.            End While 
24.        End for 
25.      End for 
26.    end If 
27. End for 
28. End 

Also, all the utilized notations and functions in the 
algorithm are described in Table II. 

TABLE II. LIST OF NOTATIONS 

Symbol Definition 

U Unassigned topologies 

N Total number of workers required for the 
execution of the topology 

𝑒𝑢𝑛 List of all unassigned executors of a topology 

𝑒𝑡𝑜𝑡𝑎𝑙 Total number of topology executors 

𝑒𝑒𝑠 The maximum number of executors per slot. 

Graph.part(n) Partition the topology into partitions equal to 
the number of workers of the topology 

Cluster.getAvailableNodes() Get the available nodes in the cluster 

Nodes.size() Total number of nodes in cluster 

Partition.size() Total number of partitions 

Partition. Tasks The list of tasks of each partition 

MapExecutorToSlots Assign tasks to slots 

VI. EXPERIMENTS AND RESULTS 
The experimental study is done on the Apache Storm 

cluster, which has a Nimbus node, Zookeeper node, and two 
supervisor nodes having three and four slots, respectively. The 
configuration of the first supervisor is as follows; it has Ubuntu 
20.0.1 LTS 64-bit installed on it with GNOME version 3.36.3, 
with “10.6 GB” memory, Intel®CoreTM i7-4810MQ CPU @ 
“2.80GHz × 2” processor, and “536.9 GB” disk capacity. The 
second supervisor has Ubuntu 14.04 LTS with OS type 64-bit 
with “9.5 GB” memory, Intel®CoreTM i7-4810MQ CPU @ 
“2.80GHz” processor, and disk capacity “21.7 GB”. Both of 
the supervisors have 1000 Mb/s network connectivity speed. 
Each supervisor has Apache Storm 1.1.1, Apache Zookeeper 
3.5.7, and Java Open JDK 13. The proposed algorithm of BSS 
is compared with the default Workload scheduler and the A3 
Storm [4] on four benchmark topologies: 

1) SOL topology [17]: It has a chain-like structure. It has 
a spout and a set of bolts. It loads its data directly from the 
data source. Random messages are used to create sentences 
with words’ lengths specified by the user. It consists of one 
spout and a user-defined number of bolts. This topology aims 
to trace the network's performance, so it is better to keep the 
computation as minimum as possible. 

2) Rolling count topology [17]: It applies rolling counts of 
incoming terms. By the term rolling, it uses a sliding window 
to trace the statistics of a term until the current window 

compared to the one in previous. A rolling count tuple per 
term is emitted by reaching the end of each time window, and 
it consists of the term. The term’s rolling count is a metric that 
points at how this term is trending now and the actual duration 
of the sliding window. The term can be emitted from more 
than one node, so a bolt must join and rank the terms. So, it 
consists of a spout that directly loads the data from the data 
source, a bolt that splits the sentences, and a rolling count bolt 
that uses field grouping to count the terms and group them to 
emit the ranks of each term. 

3) Word count topology [18]: The spout emits streams of 
sentences and sends them to a bolt that splits these sentences 
into words and emits them to another bolt that, using field 
grouping, can count how many times each word has occurred. 
Field grouping means that based on the value of the word, the 
same word must always go to the same instance so that it can 
be counted. 

4) Spike detection topology [18]: The spout receives a 
stream of data from sensors and emits them to bolts to monitor 
the occurrences of values that have spikes. Spout emits this 
stream to a bolt named Moving Average, which gets the data 
grouped according to the IDs of the device. When a new 
stream of data is received, the bolt aggregates the new values 
of a device to the list of values of the same device and emits 
new events consisting of the device ID, its current value, and 
its values moving average. These emitted events go to another 
bolt named Spike Detection, as it detects if there is a spike in 
the current event or not. 

B. Results and Discussion 
To evaluate the performance of the proposed BSS 

algorithm, we consider two performance metrics: 

1) Throughput: represents the number of tuples processed 
per unit time [18]. 

2) Complete Latency: is the average time a tuple takes to 
be entirely processed by the topology [18]. 

The experiment has been done by applying the proposed 
BSS, Workload scheduler, and A3 Storm scheduler, the four 
benchmark topologies mentioned above. Each algorithm has 
been run three times to get the average results for the three 
compared algorithms. 

3) SOL topology results: SOL is generated with one spout 
and two bolts. The required number of workers is two, and the 
number of executors and tasks equals a value of nine. The 
results are depicted in Table III. 

As shown in Table III, the Balance scheduling Storm 
algorithm achieved the highest value of throughput, which was 
“4059.67 tuples/second” at the second 240. In comparison, the 
most negligible value of throughput was “15.33 tuples/second” 
and achieved by the Workload scheduler after “60 seconds”. It 
is also obvious that the BSS had the best results for the 
throughput than the two other algorithms till “600 seconds”. At 
the “660 seconds” and “720 seconds” the A3 Storm showed 
better throughput results than the BSS and the Workload 
scheduler algorithms, then starting from the second 780, the 
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BSS returned to give high throughput than the two other 
schedulers. Regarding the latency, it is found that the best 
complete latency was “63.833 milliseconds” for the BSS the 
first “60 seconds”, while the worst complete latency value was 
949, which is recorded by the Workload scheduler after “120 
seconds”. The BSS gave the best latency results during the 
overall execution except at the second 180; the Workload 
scheduler gave the best latency. Finally, by looking at the 
average in Table III, it is obvious that the BSS gave better 
average results in terms of throughput and complete latency. 

TABLE III. SOL TOPOLOGY EVALUATION RESULTS 

Time 
(sec.) 

Throughput (tuples/sec.) Complete Latency 
(Millisecond) 

Workloa
d 
Schedule
r 

A3 
Storm 

The 
Propose
d BSS 

Workloa
d 
Schedule
r 

A3 
Storm 

The 
propose
d BSS 

60 15.33 84 183.67 437.50 77.50 63.833 

120 867 2045 1647.67 949 
764.1

0 
159.33 

180 1364 
3384.3

3 
3194 443.80 

771.8

0 
859.47 

240 1623 2888 4059.67 387.83 756 383 

300 1136.67 
2104.6

7 
3485 401.23 

747.6

7 
251.13 

360 538.67 
1585.3

3 
2609.67 442.50 

794.3

0 
225.97 

420 453 1101 3333.33 515.13 
797.3

0 
197.43 

480 212.67 987.33 1955.33 539.63 
699.2

3 
192.63 

540 422.33 910 1871.33 549.93 
604.8

7 
186.50 

600 637.33 
1298.3

3 
1880.67 544.73 

489.6

3 
185.07 

660 987.67 
2072.6

7 
1865 520.07 

391.3

0 
183.37 

720 1410 1926 1804.67 484.20 
349.8

0 
184.33 

780 2086.33 
2044.3

3 
2781.33 445.93 

315.2

7 
181.33 

840 1769 
2419.3

3 
3689.33 419.10 

291.9

3 
168.97 

900 2123.67 
2206.6

7 
2959 382.53 

276.9

7 
162.23 

Averag

e 1043.11 1803.8 2487.98 497.54 534.2 238.973 

According to the reported results, it is clear that the BSS 
outperforms both workload scheduler and A3 Storm in both 
throughput and complete latency according to the overall 
average values. In contrast, the Workload scheduler and A3 
Storm are recorded the worst average on throughput and the 
complete latency, respectively. Fig. 3 and Fig. 4 depict the 
comparison between the three algorithms' throughput and 
complete-time latency results. 

4) Rolling count topology results: Rolling Count topology 
is generated on one spout and two bolts with four workers and 
26 executors and tasks. The experiments using the three 
compared schedulers are presented in Table IV and depicted 
in Fig. 5 and Fig. 6. 

 
Fig. 3. Throughput Comparison Result between Three Schedulers for SOL. 

 
Fig. 4. Complete Latency Comparison Result between Three Schedulers for 

SOL. 
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TABLE IV. SOL TOPOLOGY EVALUATION RESULTS 

 Throughput (tuples/sec.) Complete Latency 
(Millisecond) 

Time 
(sec.) 

Workloa
d 
Schedule
r 

A3 
Storm  

The 
propose
d BSS 

Workloa
d 
schedule
r 

A3 
Storm  

The 
propose
d BSS 

60 0 0 43.67 0 0 791.38 

120 3757.33 2647 7978.33 828.46 424.51 500.12 

180 7171.33 
4652.3

3 

11547.3

3 
693.91 473.84 406.36 

240 9029 
5422.3

3 
13006 650.52 976.38 366.88 

300 12457.67 
5427.6

7 
11772 501.28 989.39 374.19 

360 11976 4284 12162 452.36 
1123.4

6 
365.63 

420 14029 
3610.3

3 

14039.3

3 
453.09 

1295.5

7 
360.11 

480 15489.33 
2226.6

7 

12862.3

3 
471.16 

1507.7

6 
348.85 

540 13130.33 2218 
17422.3

3 
502.71 

1740.9

9 
337.25 

600 12256.67 3152 
17847.3

3 
562.91 

1844.0

3 
330.63 

660 11614.67 5202 
15966.3

3 
610.09 

1727.8

8 
331.03 

720 10104.67 
7001.3

3 
14791 663.46 

1605.8

3 
332.59 

780 8298.67 
7322.6

7 

17422.3

3 
708.77 

1541.1

4 
328.19 

840 11112.67 
8103.6

7 
18629 725.97 

1527.5

8 
322.37 

900 12185.33 
7801.6

7 

24627.3

3 
712.18 

1511.1

8 
310.48 

Averag

e 
10174.18 

4604.7

8 

14007.7

8 
569.12 1219.3 387.07 

Table IV shows that the BSS has the highest average of 
throughput, and the A3 Storm has the least average value of 
throughput. The best value reached of the throughput was 
“24627.33 tuples/second” at the second 900 by the BSS. 
During the overall execution the BSS showed better results for 
throughput. But only at “240 seconds” and “480 seconds”, the 

BSS gave lower results and the Workload scheduler showed 
higher results than the BSS. For the complete latency values, 
the results showed that the BBS has a minor average of 
complete latency. In comparison, the Workload scheduler has 
the highest value of the average complete latency. The least 
value recorded was “310.48 milliseconds” for the BSS at the 
second 900, and the highest value was for the A3 Storm 
“1844.03 milliseconds” at the second 600. Furthermore, as 
displayed in Table IV, at the first “60 seconds,” both the 
Workload scheduler and A3 Storm could not finish any data 
processing, and their recorded throughput was zero. While the 
BSS processed the data in this limited time and produced 
“43.67 tuples/second”. At the end of the Table IV, it is shown 
that the BSS had the best average results for the throughput and 
complete latency. 

 
Fig. 5. Complete Latency Comparison Result between Three Schedulers for 

Rolling Count. 

 
Fig. 6. Throughput Comparison Result between Three Schedulers for 

Rolling Count. 
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5) Word count topology results: This topology is executed 
using two workers with one spout and two bolts. It also 
contains 13 executors and tasks for the “3.8 GB” dataset size. 

TABLE V. WORD COUNT TOPOLOGY EVALUATION RESULTS 

 Throughput (tuples/sec.) Complete Latency 
(Millisecond) 

Time 
(sec.) 

Workloa
d 
schedule
r 

A3 
Storm  

The 
propose
d BSS 

Workloa
d 
schedule
r 

A3 
Storm  

The 
propose
d BSS 

60 417.33 344.67 2990.33 296.67 
229.6

3 
146.87 

120 13543 
11708.6

7 
22176 96.2 

233.8

7 
84.57 

180 
27664.3

3 

20740.3

3 

32432.6

7 
60.87 

140.5

3 
52.7 

240 
26123.3

3 
22706 

29887.3

3 
50.97 

104.6

3 
46.93 

300 24649 23835 
27501.6

7 
46.6 89.83 44.17 

360 
22638.3

3 

19374.3

3 
32028 44.1 86.03 44.73 

420 25167 
15821.3

3 

28415.3

3 
42.43 87.27 47.73 

480 
24097.3

3 

14178.6

7 

30859.6

7 
40.63 91.33 48.6 

540 22573 9098.33 
33317.6

7 
39.3 97.63 50 

600 
25178.6

7 
8467.33 

29689.3

3 
37.9 

104.7

7 
49.93 

660 24579 8629.33 33404 36.77 109.3 49.1 

720 
12448.3

3 

13077.6

7 

33584.3

3 
35.53 

110.7

7 
48.43 

780 19160 
16323.6

7 

27318.3

3 
35.57 109.1 48.47 

840 18233 
16929.6

7 

29635.6

7 
35.53 

105.0

3 
49.4 

900 18468 
21994.6

7 

30709.6

7 
35.4 99.73 50.63 

Averag

e 

20329.3

1 

14881.9

8 

28263.3

3 
62.3 

119.9

6 
57.48 

Table V shows that the BBS recorded the highest 
throughput, while the A3 Storm recorded Storm the least. The 
BSS has reached the maximum value of throughput, which is 
“33584.33 tuples/second” after “720 seconds,” and the A3 
Storm has the least value of throughput, which is “344.67 
tuples/second” after “60 seconds”.  Regarding the complete 
latency, the experiments' results showed that the least complete 
latency value was “35.4 milliseconds” by the Workload 
scheduler after “900 seconds” of execution. But in contrast, the 
Workload scheduler recorded the highest value of complete 
latency, which was “296.67 milliseconds” after the first “60 
seconds”. For the BSS, the reported average complete latency 
value was the least. From the comparison presented in Fig. 7 
and Fig. 8, it is obvious that the Balancing Scheduling storm 
enhanced the system's performance. 

 
Fig. 7. Complete Latency Comparison Result between Three Schedulers for 

Word Count Topology. 

 
Fig. 8. Throughput Comparison Result between Three Schedulers for Word 

Count Topology. 
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6) Real-time spike detection topology evaluation: Other 
experiments are carried out based on the real-time spike 
detection topology described in the Intel Lab Data [19]. The 
data set presented here is collected from 54 sensors in the Intel 
Berkeley Research lab. The data set included about two 
million readings gathered from these sensors. The topology 
has been deployed with a dataset about “11 GB” size 
generated by the repetition of the data presented in Intel Lab 
Data [19]. The recorded results after running the three 
schedulers are recorded in Table VI, and the comparison 
between these results are depicted in Fig. 9 and Fig. 10 are 
gained. 

TABLE VI. SPIKE DETECTION TOPOLOGY EVALUATION RESULTS 

 Throughput (tuples/sec.) Complete Latency 
(Millisecond) 

Time 
(sec.) 

Workloa
d 
schedule
r 

A3 
Storm  

The 
propose
d BSS 

Workloa
d 
schedule
r 

A3 
Storm  

The 
propose
d BSS 

60 5.33 0 55.67 1866.24 0 730.40 

120 998.67 728.33 981.33 797.75 
1405.1

4 
936.81 

180 1383.33 
1554.3

3 
1303.33 710.82 607.35 697.87 

240 1486 
2358.6

7 
1955 714.35 484.22 513.49 

300 1269 
1462.6

7 
2036.67 753.16 465.48 452.48 

360 1067 
1842.3

3 
1991.33 821.36 476.09 437.50 

420 954 
1284.6

7 
2311.33 824.58 475.98 448.23 

480 902.67 903.33 1740.33 813.78 531.24 481.70 

540 671.33 
1143.6

7 
1270.67 789.39 524.58 515.08 

600 1006 999 1578 786.27 535.59 488.90 

660 745.67 
1357.6

7 
1746.67 778.69 525.92 473.79 

720 920 
1397.3

3 
2205.67 776.01 515.26 462.69 

780 1141.67 
1643.3

3 
1747.33 784.31 504.56 461.25 

840 1486.67 
1553.3

3 
1889.33 786.86 503.45 444.81 

900 2056.67 1630 2269.33 709.07 501.22 427.87 

Averag

e 
1072.93 

1323.9

1 
1672.13 847.51 537.07 531.53 

Table VI shows the comparison results between the three 
algorithms in terms of throughput and complete latency. The 
Balancing Scheduling Storm has the maximum value of the 
average throughput. In contrast, the Workload scheduler has 
the minimum value. The best result of the throughput is 
“2311.33 tuples/second”, which was reached by the Balancing 
scheduling storm after “420 seconds”. The smallest value was 
“0 tuples/second,” which was reached by the A3 Storm after 
“60 seconds”. The next worst value of throughput was “5.33 
tuples/second” at the first “60 seconds” and was reached by the 
Workload scheduler. 

Also, the latency results are described in Table VI. The 
worst latency value was for the Workload scheduler at the first 
minute; it was “1866.24 millisecond”. The best value was for 
the Balancing Scheduling storm after “15 minutes” it reached 
the value of “427.87 milliseconds”. And by looking at the end 
of the Table VI, it is obvious that the BSS had the best average 
results in both terms, the throughput and the complete latency. 

 
Fig. 9. Complete Latency Comparison Result between Three Schedulers for 

Spike Detection Topology. 

 
Fig. 10. Throughput Comparison Result between Three Schedulers for Spike 

Detection Topology. 
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VII. CONCLUSION AND FUTURE WORK 
In this paper, the Balance Scheduling on Storm (BSS) 

scheduler is proposed. It is a hybrid scheduling algorithm 
based on two existing scheduling algorithms: the Workload 
scheduler and the A3 Storm. It takes balancing the workload 
between the cluster nodes while minimizing the 
communication network between them and the inter-executor 
traffic. This proposed algorithm has been compared with the 
two existing schedulers using two metrics, throughput, and 
complete latency metrics. The BSS algorithm has shown better 
performance. The results show high throughput more than the 
other two algorithms and less latency. This has improved the 
performance of the system. 

The comparison done in this paper used two essential 
metrics: throughput and complete latency. In future work, an 
enhancement in the performance will be carried out for other 
metrics, such as the amount of memory and resources used to 
give better performance and enhancement than the already 
given performance in this thesis. The comparison can be done 
with more scheduling algorithms than the two algorithms 
already compared with. New research could enhance the 
number of resources and the amount of memory and their 
usage instead of the balanced scheduling. The experiments 
would take place on more topologies to check their suitability 
and performance. 
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