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Abstract—A considerable amount of research has been de-
veloped lately to analyze social media with the intention of
understanding and exploiting the available information. Recently,
irony has took a significant role in human communication as
it has been increasingly used in many social media platforms.
In Natural Language Processing (NLP), irony recognition is an
important yet difficult problem to solve. It is considered to
be a complex linguistic phenomenon in which people means
the opposite of what they literally say. Due to its significance,
it becomes essential to analyze and detect irony in subjective
texts to improve the analysis tools to classify people opinion
automatically. This paper explores how deep learning methods
can be employed to the detection of irony in Arabic language
with the help of Word2vec term representations that converts
words to vectors. We applied two different deep learning models;
Convolutional Neural Network (CNN) and Bidirectional Long
Short-Term Memory (BiLSTM). We tested our frameworks with
a manually annotated datasets that was collected using Tweet
Scraper. The best result was achieved by the CNN model with
an F1 score of 0.87.

Keywords—Verbal irony; natural language processing; machine
learning; automatic irony detection

I. INTRODUCTION

Sentiment analysis is known as the extraction and inter-
pretation of opinions expressed in a text written in a natural
language on a certain subject [1]. Recently, sentiment analysis
and opinion mining became extremely popular due to the
increase of social network usage, which led to produce a
huge number of texts. Researchers and many organizations
became more interested in analyzing such a text type in order
to understand human communication better. Hence, irony is
a sophisticated form of sentiment expression where people
express their opinions in a certain way [2]. Therefore, it has
become an important topic in NLP as it flips the polarity of
the posts.

According to Cambridge dictionary1, irony is described as
a figure of speech that means the opposite of what people
really say in a way of being humorous. For example, ” I love
going to the dentist!!”. Irony can be either situational or verbal.
Situational event occurs when naturally expecting something
to happen but the opposite take place [3]. While verbal irony
is when individuals express words that represent the opposite
of what they actually feel and that is the focus of the existing
studies in irony detection. Sarcasm is another term that often
occur along with Irony. There exists a lack of conformity in the
relationships between irony and sarcasm. Some researchers [4]

1https://dictionary.cambridge.org/

[5] define sarcasm as a type of irony in which it is directed at
an individual, with the purpose to mock. While others [6], [7]
see them as a distinct phenomenon and consider sarcasm differ
from irony in which sarcasm include an element of ridicule that
irony has not.

In our regular everyday communication, we meet people
who like to use irony in the conversation. In most cases, we can
detect irony depending on the tone, context, facial expressions,
and the person’s character. However, when ironic posts in
social media are in question, recognizing the irony becomes
more challenging and complex due to its ambiguous nature,
the missing intonation of the person who writes the message,
restricted length of the words, the informal language, the use
of hashtags, and the context is not always clear.

Irony has been studied by many research fields such as
psychology [8], linguistics education [9], and computational
science. It is used widely as an indirect negation in order to
achieve different communication goals in many situations such
as criticizing, make fun of people, and manipulate answers to
upsetting questions.

In recent years, social media have become a part of people’s
everyday modern life. It enables them to share their opinions
on different topics along with other matters. Therefore, the
appearance of irony in social networks such as microblogs
has greatly increased. For this reason, one of the primary
motivations behind this research is detecting real intention
behind posts accurately and understanding how people feel
regarding specific matters can be useful for many applications.
It can help in correctly identifying security issues such as
threatening posts by verifying whether the threat words are
literal or not. Also, it can be helpful in distinguishing figurative
language devices that are used in the different social media
platforms, product reviews, feedback, etc., and recognizing
the ironic negative reviews/post that being misinterpreted as
positive. In general, any tool that aims to extract the meaning
of a post effectively can benefit from such a property.

Existing work on detecting irony in Arabic language have
mainly focused on classical machine learning [10], [11], [12].
While recent research on detecting irony in English language,
such as [13], [14], and [15], applied neural network ap-
proaches. Hence, the importance of this research lies on adopt-
ing neural network techniques to improve recognizing irony in
Arabic texts. To the best of our knowledge, there is only one
experiment [12] on detecting irony in Arabic using a neural
model, namely BiLSTM. Therefore, we propose a framework
that learns irony using a convolutional neural network (CNN).
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In addition, we experimented with Bidirectional Long Short-
Term Memory (BiLSTM) as well. The approach we applied
outperformed the state of the art. The main contributions of
this research can be summarized as follows:

1) A manually annotated ironic Arabic dataset.
2) We believe that this is the first work on using CNN

for irony detection in Arabic texts.

This paper is structured as follows: Section 2 presents a brief
literature review on irony detection; Section 3 discusses the
approach including data generation process, feature extraction,
and the proposed method; Section 4 dedicated to the results;
lastly, Section 5 concludes the paper.

II. RELATED WORK

The interest in adopting neural networks to detect irony on
social media has been increased. Classical methods, e.g. SVM,
depend on feature engineering and manually convert texts into
feature vectors prior to the classification task. In contrast,
neural networks approaches can automatically grasp the rep-
resentations of input texts with different levels of abstraction
and then use the gained knowledge to perform the classification
task. Several deep learning-based methods have been reported
for the field of automatic irony detection. One of the early work
was by Poria et. al. [16] who proposed an architecture based on
a pre-trained convolutional neural network to detect sarcasm
on balanced and unbalanced datasets. Sentiment, emotion and
personality features were extracted and applied to the system.
The balanced datasets achieved the highest f1 score of 0.97.
Ghosh et al. [17] applied a semantic neural network model to
detect sarcasm over social media content. The architectures are
composed of two CNN layers followed by two long short-term
memory (LSTM) layers and a deep neural network (DNN)
layer. The evaluation of the model achieved an F-score of
.92. Ilić et. al. [18] proposed a deep neural network model
that depends on character-level word representations extracted
using the Embeddings from Language Models (ELMo). ELMo
is a contextualized representation method that uses vectors
extracted from BiLSTM. They tested their system on seven
datasets obtained from three different data sources. The results
yield 0.87 F-score using Twitter dataset. Authors noted that
annotating data manually is necessary in order to improve
the performance results. Furthermore, transfer learning ap-
proaches, i.e., applying the knowledge of an already trained
model to a new task, became very popular in many problems
including irony detection in recent research. Potamias et al.
[14] proposed a transformer based architecture that builds
on the pre-trained RoBERTa model and integrated with a
recurrent convolutional neural network (RCNN) that uses non-
hand crafted features as they argue that overly trained deep
learning approach does not need engineered feature step.
They used several benchmark datasets that contain ironic,
sarcastic, and figurative expressions. The highest performance
of the hybrid neural system achieved f1 score of 0.90 by
the sarcastic Riloff’s dataset [19]. As for Zhang et al. [20],
they focused on finding implicit incongruity without depending
on explicit incongruity expressions. They used three transfer
learning-based techniques to enhance the attention mechanism
of RNNs. The applied attention-based Bi-LSTM achieved
higher outcomes on the hashtag-labeled corpus compared to

the human-labeled one. The authors discuss that manually-
labeled dataset is considerably more difficult than the hashtag-
based dataset and that human annotated dataset results in a
more accurate prediction for irony in real applications. Gonzale
et al. [21] used a Transformer Encoder (TE) architecture on
two corpora; English and Spanish languages. They applied
two TE models with and without the sine-cosine positional
information: TE-Pos and TE-NoPos. As a result, TE-NoPos
outperformed the TE-Pos system. They also studied the affect
of the transformer architecture’s multi-head self-attention pro-
cesses on the irony detection topic. Wu et al. [13] proposed a
framework based on four layers of BiLSTM with three dense
layers. they combined three tasks which includes finding the
missing irony hashtags, classifying ironic or non-ironic and
detecting the irony types. The system is concatenated with the
sentiment and sentence embedding features that improved the
performance by achieving an f1 score of 0.70 and 0.49. Huang
et al. [22] considered three deep learning models; Convolutions
Neural Network (CNN), Recurrent Neural Network (RNN),
and Attentive RNN. The Attentive RNN outperformed other
models by achieving F1 score of 0.89. They discussed how
attention mechanism improved the irony detection perfor-
mance. Khalifa and Hussein [12] implemented an ensemble
of 8 models based on biLSTM network with TF-IDF, topic
modeling and word and character counts features on an Arabic
tweets. The ensemble achieved the F1 score of 0.82. Golazizian
et al [15] employed a bidirectional LSTM (BiLSTM) network
to detect irony in Persian language. They used emoji prediction
to construct a pre-trained model that include an attention layer
that improved the performance. They reached an accuracy of
83.1. Ren et al. [23] employed two context-augmented neural
network methods on Twitter dataset to recognize sarcastic
signs from contextual data. Baruah et al. [24] used BiLSTM
and BERT transformer based architecture to detect sarcasm in
Twitter texts. They applied historical conversational features
such as response only and response with varied number of
utterances from the dialogue. The F-score of 0.74 was achieved
using the BERT classifier. A recent study by Razali et al. [25]
which used CNN to extract lexical and contextual features.
They chose FastText as word embedding technique. Authors
claim that manually extracted contextual features improves the
overall accuracy.

III. APPROACH

A. Data Generation

A critical challenge for automated irony detection is the
availability and quality of a set of ironic examples in order to
train a model. This step is performed in three stages shown in
Fig. 1.

B. Data Collection

For the ironic data, we initially collected 12700 Arabic
tweets using Tweet Scraper [26]. We gathered the data using
the following hashtags: #irony, #Sarcasm,
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As for the non-ironic datasets, we decided to use a random
sample of an existed Arabic sentiment corpus [27].
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Fig. 1. Data Generation Stages.

C. Preprocessing of Data

This step is considered as an essential task in sentiment
analysis. The goal of preprocessing is to remove corrupt and
irrelevant information from raw text. The stream of data we
gathered from Twitter is noisy as it has lots of retweets,
social interaction, etc. Hence, tweet preprocessing is essential
in order to eliminate noisy data that are not useful to the task.
We performed some basic text preprocessing listed below:

1) Remove metadata: time and ID.
2) Remove usernames, mentions, and RTT.
3) Remove all numbers.
4) Remove redundant texts.
5) Remove punctuation.
6) Remove foreign characters.
7) Remove emojis.
8) Remove hashtags.
9) Remove repeated characters.

10) Remove diacritics (shaddah, fatha, tanwin, damma,
kasra, and sukoon)

11) Remove tweets that contain URLs or images as their
existence could be required to identify any figurative
language present in the texts.

12) Replace emoticon with its corresponding meaning.
13) Use NLTK stopwords
14) Normalize some Arabic letters:

• @
�
@

@ @


to @

• ø



to ø

• 
ð ø to Z

• À to ¼

• �
è to è

D. Data Annotation

To deal with the problem of [28] that tweets include
hashtags are biased and noisy, we manually labelled Both
datasets by two Arabic speakers. However, it is considered
a time-consuming process. Three main guidelines were given
to the annotators:

1- The tweet is ironic if the literal word is opposite to the
intended.

2-The tweet is ironic if it was written in a context other
than the common context of communication with the aim of
negatively mocking sayings, ideas, beliefs or objects.

3- Otherwise, the text is not ironic.

After including the tweets that both annotators agreed on as
ironic and non-ironic, the total amount of data are 5620 ironic
and 5620 non ironic tweets (Table I). This qualitative analy-
sis revealed that despite having irony-related hashtags, many
tweets turned to be not ironic, which shows the significance
of manual corpus annotations.

TABLE I. DATASET SUMMARY

Label Number of Tweets

Ironic 5620

Non-ironic 5620

Total: 11240

E. Features Extraction

We adopted a simple feature extraction technique, which
is (pre-trained) word embedding. Word embedding is a form
of terms representation for text analysis in which When two
words have the same meaning, they are represented in a vector
space by similar vectors that are near together. Otherwise, if
the terms have different meanings, then the real-valued vectors
are far from each other.

To construct such an embedding, Word2Vec [29] is one
of the popular techniques. There exist two different methods
to learn the embedding: Skip Gram and Continuous Bag of
Words (CBOW) (Fig. 2). The CBOW model takes in context
words as an input and try to predict the target word equivalent
to the context. on the contrary, skip gram tries to predict the
surrounding words given a target word which is the opposite of
what the CBOW model does. For the purpose of this work, we
applied the pre-trained Arabic word embedding model AraVec
3.0 [30], which provides various pre-trained Arabic words. It
has a total of 12 distinct word embedding models extracted
from various Arabic content domains, which are Twitter, World
Wide Web (WWW) pages, and Wikipedia. Moreover, we used
Twitter SkipGram 300D-embeddings as according to [29],
Skip Gram works good with small dataset and is able to
represent uncommon terms. For our neural network model,
the embedding vectors are utilized to instate the weights of
the embedding layer. Then, it is linked with the remainder of
the layers in the system.
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Fig. 2. CBOW and Skip-gram.

F. Methods

1) Convolutional Neural Network (CNN): We adopted a
basic CNN architecture, similar to [31], to extract local features
from each utterance found in the training dataset by using
word vectors that are captured from the pre-trained Word2Vec
model. Fig. 3 represents the various layers that are applied to
perform the convolution function on the dataset. The Keras
library was used to implement the embedding layer. We
configured three parameters, which are:

• input dim: describes the size of the vocabulary in the
data text; it is composed as 30462.

• output dim: represents the dimension of the dense
embedding; it is configured as 300.

• input length: identifies the length of the maximum
document; it is composed as 41.

Once we obtained the suitable word vectors from the skip-
gram model, the neural network takes the output features as
inputs and applies two convolutional layers to the features
to learn context information of the words. The convolution
operation is described as formula (1).

Ci = f(W.X + b) (1)

where C is the convolution output that is created from a
window of words X , W is the convolution matrix, f is the
activation function and b is a bias term.

The two convolution layers have kernel sizes of 4 and 5 to
look at sequences of the word embeddings. Each layer consists
of 100 filtered outputs. Furthermore, a ReLu activation was
applied to the outputs of the convolutional layers followed
by a maxpooling layer that takes the highest element from
the rectified feature. It minimizes the dimensionality of the
feature map and helps capture the key feature. The maxpooling
operation (P), as expressed in Equation 3, is done for feature
selection that nominates the significant features suitable to

Fig. 3. The Architecture of our CNN.

various hidden layers.

C = (c1, c2...cn) (2)

Pi = max(C) (3)

S(x) =
1

1 + e−x
(4)

Next, the output is sent to a layer that flattens the matrices.
Finally, the result is a fully connected layer having the outputs
of the sigmoid function (Equation 4), that determines whether
a sentence is ironic or not, along with the binary cross entropy
loss function, which is a good option for binary classification.
The model was trained using “Adam” learning rate method.

2) Bidirectional Long Short-Term Memory (BiLSTM):
RNN is excellent for sequence learning, but it struggles with
long-range dependency due to exploding gradient. On the
other hand, LSTM has the capability to learn those long-range
dependencies. Bi-LSTM is a variant of LSTM that contains
two LSTMs to capture the input information in a forward and
backwards directions. In other words, it allows in any point in
time to preserve information from both past and future. Given
a document,

D = (x1, x2, .., xn)
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Bi-LSTM model results with a set of hidden state vectors ht

for the document sequence. Furthermore, Bi-LSTM combines
the forward LSTM (Equation 5) and the backward LSTM
(Equation 6). −→

h t = LSTM(xt,
−→
h t−1) (5)

←−
h t = LSTM(xt,

←−
h t+1) (6)

The architecture of our model consists of one Bi-LSTM layer
followed by a dropout layer to occupy most of the parameters
by ignoring neurons during the training of particular set of
units, which is chosen randomly. Next, the model flattens
the input data into a 1-dimensional array for inputting to the
dense layers. Lastly, two fully connected layers were applied
where the first layer contains 32 neurons and the second
fully connected layer, which also represents the output layer,
contains 2 neurons with the ReLU and Sigmoid activation
functions used respectively.

G. Hyperparameters Setting

There are various important hyperparameters in our sys-
tems, and we tune their values using the development corpus.
The tuned values of our models hyperparameters are summa-
rized in Table II and Table III.

TABLE II. TUNED VALUES OF THE CNN HYPERPARAMETERS

Hyperparameter Value

Kernel size 4 and 5

Number of filters 100

Maxpooling size 2

Learning rate (adam optimizer) 0.0001

Loss function Binary crossentropy

Batch size 100

TABLE III. TUNED VALUES OF THE BILSTM HYPERPARAMETERS

Hyperparameter Value

BiLSTM number of layers 1

Number of hidden units 128

Dropout rate 0.2

Optimizer (adam) 0.0001

Loss function Binary crossentropy

Using the proper learning rate and setting the correct
learning value is critical for enhancing the weights and offsets
of the neural model. The low value may cause long training
time while its high value could lead to network instability.
After several experiments, we set the learning value to 0.0001.

Batch size is another key hyperparameter in neural net-
works. It defines the number of training examples a neural
network can process before resetting the model internal param-
eters. If the value of batch size too low, then it could slow down

the training process. On the contrary, if the value is too high,
it may needs more memory and decrease the generalization
capability. Therefore, we started with a small batch value and
then increased the value to 64 and 100 in order to use less
memory and achieve a durable system.

Neural networks model has the ability of learning complex
connections between their inputs and outputs. Yet, some of
these relations could be affected by the sampling noise. Hence,
the connections will be shown during the training phase but
will not occur in the real test data. This problem may cause
overfitting and that decreases the classifier’s accurate predic-
tion and lead to a poor performance. Therefore, we applied two
methods for the purpose of avoiding overfitting in our proposed
model. First, we employed early stopping function which refer
to stopping the training iterations before the learner passes the
point where the model’s capability to generalize can decrease
as it starts to over-train, thus overfit the training data. Second,
we used dropout which is a regularization method of neural
networks developed by [32]. It refers to randomly ignore units
along with their relationships from the neural network during
training process. This stops units from co-adapting too much.

IV. RESULTS

In this section, we explore the performances of our deep
learning models trained with word2vec (skipgram). Table IV
shows the performance results of our proposed models. We
used the accuracy, recall, precision, and F1 score as perfor-
mance metrics. These scores are defined as follows [33]:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(9)

Accuracy =
TP + TF

TP + TF + FP + FN
(10)

Where TP referred to True Positives, FP is the number
of False Positives, FN is False Negatives, and TN is True
Negatives. The predicted values are described as positive and
negative, while the real values are described as true and
false. Recall measure how much out of all the positives were
predicted correctly, whereas precision measures how many are
actually positive. F-score helps in measuring both recall and
precision at the same time. Finally, accuracy measures the
overall classifier correctness.

At first, we tried to apply one CNN layer which resulted
with 0.86 F1 score. However, the two-layer CNNs slightly
improved the performance of the classifier and achieved F1
score of 0.87. We also experimented with BiLSTM and reached
0.86 F1 score, while the results achieved by [12] using
BiLSTM model is 0.83. Our scores outperformed the classical
and neural approaches used in irony detection in the Arabic
language shared task [34]. In spite of the fact that performance
of various work existed vary since different datasets have
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TABLE IV. RESULTS OF OUR CNN MODELS AGAINST OTHER MODELS

Model Accuracy Precision Recall F1

CNN- One Layer 0.86 0.90 0.83 0.86

CNN- Two Layers 0.87 0.90 0.84 0.87

BiLSTM 0.87 0.88 0.85 0.86

BiLSTM [12] - - - 0.83

different data distributions, our experiment suggests that the
manual annotation improves the learning and prediction tasks.
Also, fine tuning the pre-trained vectors and the model play a
role in improving the overall results.

Based on the literature [14] [22] [17] [24] [25], CNN’s are
useful at finding local and position-invariant features whereas
BiLSTM are good when classification is specified by a long
range semantic relationships and dependency. In our experi-
ment, CNN worked better than BiLSTM in detecting irony
since such a sentiment is commonly determined by some key
phrases. The output of each convolution layer will let off when
a pattern is detected regardless of their position. Changing
the size of the kernels and concatenating the received outputs
allowed to discover patterns of multiples sizes (4 and 5).

V. CONCLUSION AND FUTURE WORK

Irony detection research has grown remarkably in recent
years. In this paper, we presented an approach based on
pre-trained word embedding called AraVec, to address the
problem of detecting irony in Arabic tweets. We adopted a
basic CNN architecture which found to be very effective for
irony detection in Arabic language. The experiment reveals
that the method we used performs well with two convolutional
layers and even outperform an existing technique. The CNN
model achieved F1 score of 0.87. We also experimented
with BiLSTM and the results reached 0.86 F1 score. For
future work, we plan to extend the extraction of meaningful
features, such as sentiment and contextual clues, in order to
find the optimal features. Additionally, we can experiment with
combined CNNs and RNNs to gain the characteristics of both
methods for enhancing the classification performance.
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